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Summary. Functional data analysis involves the extension of familiar statistical procedures such 
as principal components analysis, linear modelling and canonical correlation analysis to data 
where the raw observation xi is a function. An essential preliminary to a functional data analysis is 
often the registration or alignment of salient curve features by suitable monotone transformations 
hi of the argument t, so that the actual analyses are carried out on the values x,{h,(t)}. This is 
referred to as dynamic time warping in the engineenng literature. In effect, this conceptualizes 
variation among functions as being composed of two aspects: horizontal and vertical, or domain 
and range. A nonparametric function estimation technique is described for identifying the smooth 
monotone transformations hi and is illustrated by data analyses. A second-order linear stochastic 
differential equation is proposed to model these components of variation. 

Keywords: Dynamic time warping; Geometric Brownian motion; Monotone functions; Spline; 
Stochastic time; Time warping 

1. Introduction 

Techniques in functional data analysis (Ramsay and Silverman, 1997) can be employed to 
study the variation in a sample of functions xi, i = 1, . . ., N, and their derivatives. In practice 
these functions are often a consequence of a preliminary smoothing process applied to 
discrete data, and in others the entire functions may be immediately available by on-line 
recording techniques. 

Fig. 1 illustrates a problem that can frustrate even the simplest analyses of replicated 
curves. 10 estimates of the acceleration in height show individually the salient features of 
growth in children: the large deceleration during infancy is followed by a rather complex 
but small acceleration phase during late childhood, and then the dramatic acceleration- 
deceleration pulses of the pubertal growth spurt finally give way to zero acceleration in 
adulthood. The timing of these salient features obviously varies from child to child. Ignoring 
this timing variation in computing a cross-sectional mean function (the bold broken curve in 
Fig. 1) can result in an estimate of average acceleration that does not resemble any of the 
observed curves: the mean curve has less variation during puberty than any single curve, and 
the duration of the mean pubertal growth spurt is rather larger than for any individual curve. 

Fig. 2 displays a similar problem for mean temperature records of two Canadian cities; the 
marine climate of St John's, Newfoundland, is associated with rather later seasons than is the 
continental climate of Edmonton, Alberta. Before studying other ways in which the two 
curves differ, we need to consider how their seasons can be compared on the same timescale. 

Fig. 3(a) presents a particularly common registration problem. In an experiment described 
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Fig. 1. 10 height acceleration curves (in centimetres per year squared) for boys estimated by Ramsay, Bock and 
Gasser (1995): - - - -, cross-sectional mean, illustrating the fact that averaging unregistered curves can result in 
an average that does not resemble any sample curve 
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Fig. 2. Mean temperature records for Edmonton, Alberta ( ) and St John's, Newfoundland 

in Ramsay, Wang and Flanagan (1995), the force exerted by the thumb and forefinger was 
recorded during 20 brief pinches applied to a force meter, with a background force of about 
2 N applied before and after the pinch. The starting time for each record was arbitrary, so it 
was essential to find a common timescale to combine information across the records. 

These examples illustrate that the rigid metric of physical time may not be directly relevant 
to the internal dynamics of many real life systems. Rather, there can be a sort of physiological 
or meteorological timescale that relates non-linearly to physical time and varies from case 
to case. Human growth is, ignoring external factors, largely a consequence of a complex 
sequence of hormonal events that do not happen at the same rate from child to child and also 
have a variable rate over the growth of a specific child. Weather is driven by ocean currents, 
reflectance changes for land surfaces and other factors that are timed differently for different 
spatial locations. And finally muscle contractions do not build up and release at exactly the 
same rate from one pinch to another. 
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Fig. 3. (a) 20 records of force (newtons) exerted by the thumb and forefinger with a maintained background force 
of 2 N (the starting time (seconds) of each record is arbitrary); (b) these records with the times of maximum force 
(the vertical dotted line) being aligned; (c) completely registered force functions; (d) the time-warping functions 
that register them 

Put more abstractly, xi(tj), the values of two or more functions, may differ because of two 
types of variation. The first is the more familiar range variation or vertical variation due to the 
fact that two functions xl and x2 may simply differ at points of time at which they can be 
compared. But they may also exhibit domain variation in that xl and x2 should not be 
compared at a fixed time t, but at times t1 and t2 at which the two cases are essentially in 
comparable states. For example, the intensity of the pubertal growth spurts of two chil- 
dren should be compared at their respective ages of peak velocity defined by D2x1 (tl)= 
D x2(t9) = 0, rather than at any fixed age. 

The problem of transforming the arguments of curves to align various salient features is 
described in a very large literature in many different fields. The problem is referred to in this 
paper and by Silverman (1995) as curve registration, the engineering literature tends to the 
evocative term time warping (Sakoe and Chiba, 1978; Wang and Gasser, 1995) and the 
process of registering curves for computing average curves is called structural averaging by 
Kneip and Gasser (1988, 1992). Registering outcomes over surfaces and volumes is especially 
important in medical imaging (Bookstein, 1991). 

1.1. Formulation of the curve registration problem 
The curve registration problem can be expressed formally as follows. Let N functions xi be 
defined on closed real intervals that can be taken without loss of generality as [0, Ti]. These 
functions may be vector valued, as would be the case, for example, if they indicated positions 
in two- or three-dimensional space or simultaneous growth in several aspects of the skeleton. 
The upper boundaries may either vary randomly or be fixed. In practice the boundaries of the 
interval are usually defined by marker events such as birth and a fixed adult age for the 
growth data, or by arbitrary values such as midnight on December 31 st for the weather data. 
Or it may be that the interval is simply sufficiently large to include all of the curves of interest 
plus some tail behaviour of little concern. In the event that the functions are periodic with 
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known period, it will be assumed that each xi is extended beyond [0, Tj] if there is a need to 
use information beyond the interval. Thus, for periodic data we can also permit the study of 
the sampled functions over the intervals [0, Ti] + 6 for any 6. 

Let hi(t) be a transformation of time t for case i with domain either [0, To] for non-periodic 
data or [0, To] + 6 for periodic data. The fact that the timings of events remain in the same 
order regardless of the timescale entails that hi, the time-warping function, should be strictly 
increasing, i.e. hi(t1) > hi(t9) for t1 > t2. That is, the function hi is invertible so that for the 
same event the time points on two different timescales correspond to each other uniquely. Let 
y be a fixed function defined over [0, To] to provide a sort of template for the individual 
curves xi in the sense that after registration the features of xi will be aligned in some sense to 
those of y. We can propose, for example, the model 

y(t) = xi{hi(t)} + Ei(t) (1) 

or 

y =Xi o hi +i, 

where c is small relative to xi and roughly centred on 0. If, alternatively, the template y is 
defined by discrete values yj, j = 1, . . ., n, then our model becomes 

yj = xi{hi(tj)} + cij. (2) 

The registration task is to estimate the time-warping functions hi so that the de-warped 
components xi can be studied separately, along with possible analyses of the functions hi as 
well. 

This problem can be seen to complement the usual nonparametric regression problem, 
where h is the identity function, i.e. h(t) = t, and x is to be estimated. Alternatively, if we 
suppose that x o h = h, the registration task becomes a monotone nonparametric regression 
problem. 

1.2. Marker registration and fitting criteria 
Marker registration is often used in engineering, biology, physiology and other fields. It is the 
process of aligning curves by identifying the timing of certain salient features in the curves, of 
which the zero of acceleration during the pubertal growth spurt and optimal temperature 
timings are examples. Using this strategy, curves are aligned by transforming time so that 
marker events occur at the same values of the transformed times. Comparisons between 
marker timings can also be made by using corresponding transformed times. Sakoe and 
Chiba (1978) estimated the values of h at marker timings by minimizing the sum of weighted 
distances of two speech patterns at the marker timings and imposing monotonicity and 
continuity on h. They solved for the discrete values of h by using a dynamic programming 
algorithm. Kneip and Gasser (1988, 1992) described marker registration in detail from a 
statistical perspective. However, marker registration can present some problems: marker 
events may be missing from certain curves, and marker timing estimates can often be difficult 
to obtain. These issues are discussed for human growth curves by Ramsay, Bock and Gasser 
(1995). 

As an alternative to marker registration, Silverman (1995) developed a technique for curve 
registration that does not require explication of markers. He optimized a global fitting 
criterion with respect to a restricted parametric family of transformations of time shifts and 
applied this approach to estimating a shift in time for each of the temperature functions in 
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35 Canadian weather-stations. He also incorporated this shift into a principal components 
analysis of the variation among curves, thus explicitly partitioning variation into range and 
domain components. 

This paper goes beyond Silverman's method by using an arbitrarily flexible yet com- 
putationally convenient smooth monotone transformation family developed by Ramsay 
(1998) and thus presents a nonparametric curve registration approach. The smoothness of the 
transformation is controlled by a penalty term. This approach can be applied to a broad 
range of applications: not only can it be applied to the case that curves differ from each other 
in the time domain by a constant time shift, but also to the case that curves differ from each 
other in the time domain by a variable time shift and scaling factor. 

2. Smooth monotone transformations 

Suppose that a function h has an integrable second derivative in addition to being strictly 
increasing. Then every such function can be described by the homogeneous linear differential 
equation 

D2h = wDh (3) 

because a strictly monotone function has a non-zero derivative, and hence the weight 
function w is simply D2h/Dh, or the relative curvature of h. This equation, subject to the 
requirement that h(O) = 0 and h(TO) = Ti, has the solution 

h(t) = C1 {D-' exp(D-1 w)}(t) = C1 (M D-1 w)(t) (4) 

where D-1 is the partial integration operator and C1 = Ti/D- exp{D- w(TO)}. The inte- 
gration-rectification operator, M =D-1 exp, which in this case maps a differentiable 
integrable function D- w into a twice-differentiable monotone function, may be called the 
monotonization operator. When w is constant, h(t) = (Cl /w) exp(wt), so that an exponential 
function has constant relative curvature. A straight line is implied by w = 0. 

The relative curvature w can also be seen as the rate of the local percentage change in Dh. 
The Taylor expansion of Dh at to yields 

Dh(t) t Dh(to){1 + w(to)(t -to)1 

Thus w(to) is approximately the proportional change in Dh per unit time at t = to. 
Just like using log- or exp-functions to eliminate the need for imposing positivity in many 

situations, using this monotone family eliminates the need for imposing monotonicity on the 
time transformation functions h by allowing us to estimate the unconstrained function w. 

2.1. The stochastic time model 
The smooth monotone family is also useful in introducing the concept of stochastic time. A 
random stochastic time process can provide a statistical model for some types of registration 
problem and permits the simulation of random warping functions. 

The following stochastic differential equation captures the concept of the time continuum 
having a stochastic character and thus varying in some systematic way from record to record: 

d{Dh(t)} = Dh(t){w(t) dt + dz(t)} (5) 

where z is a stochastic process, w is a fixed relative acceleration function and dz(t) is the 
deviation from this function at time t. As a specific example, let z = B be Brownian motion 
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with parameters 0 and &2, so that dB represents Gaussian white noise with mean 0 and 
variance &2. The solution to equation (5) in the Ito sense is then 

h(t) = CO + Cl D-1 exp{D-1 w(t) + B(t) - at/2} = CO + Cl M(w + dB)(t) (6) 

where CO and Cl are constants (0ksendal, 1995). The additional term o2t/2 arises because B 
is not differentiable, and equation (5) cannot be treated as a differential equation in the 
conventional sense. 

The stochastic function exp(B) is often called geometric Brownian motion (Oksendal, 1995). 
Since Brownian motion is an independent additive increments process, its exponential is an 
independent multiplicative factor process. The observed rate function Dh is the deterministic 
function exp{D-1 w(t) - 2t/2} perturbed multiplicatively by exp(B). This can be envisaged as 
a clock that is running fast or slow from instant to instant, constantly undergoing a percen- 
tage change in rate in a memoryless chaotic manner. 

If there is no drift (w = 0), under appropriate initial conditions we have E(h) = t. (See 
Appendix A for details.) This tells us that the central location for these individual warped 
times coincides with the diagonal line h(t) = t, i.e. the solution to D2h/Dh = 0. 

The stochastic time model is of interest in modelling why curves need alignment in 
situations where the terminating event occurs at a random time Ti. Many situations involve 
fixed termination times, often as a consequence of a preliminary normalization of the time 
interval, and thus the constraint hi(T) = T holds. For these cases, a Brownian bridge model 
would be more appropriate, but we shall not pursue this topic any further. 

3. Estimation of warping function h 

3.1. Estimation of h for a fixed target y 
Let y be a fixed function in the same class as the sample functions xi. Dropping the subscript 
for the moment, consider the problem of estimating the time-warping function h that 
minimizes a measure of the fit FA of x o h to target function y. 

In this paper we minimize the penalized squared error criterion 

FA(y, xlh) = Ily(t) - x{h(t)I 112 dt + A J w2(t) dt, (7) 

for h in the smooth monotone family defined in equation (4). Thus h is estimated by 
estimating its relative curvature w. If y is observed discretely, f 

11_112 dt is replaced by a sum of 
squared errors. For a given value of A, if Dh is close to 0 or equivalently if h is very flat, a 
heavy penalty is put on D2h via w = D2h/Dh to ensure that h is not so wiggly as to deviate 
from monotonicity; in contrast, if Dh is large, this same A effectively gives a light penalty on 
D 2h, paying less attention to the curvature of the transformation function h. Though 
penalizing D2h ensures smoothness in h, it does not ensure monotonicity, whereas penalizing 
w yields both smoothness and monotonicity. 

Larger values of smoothing parameter A shrink the relative curvature w = D2h/Dh to 0, 
and therefore shrink h(t) to t. Moreover, since the relative curvature measure w is scale free, 
appropriate values of A tend not to vary much from one application to another. We find, for 
example, that A-values of l0-4, 10-3 and 10-2 have worked well over a range of applications. 

In the analyses reported in this paper, the function w is represented by a linear combination 
of B-spline bases 
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K 
W(X) = E CkBk(X)- (8) 

k=O 

The B-spline bases are of a specified order and defined by a breakpoint sequence (,, 1= 
1, .. ., L. The definition (4) of h involves two partial integrals, and although the use of 
quadrature schemes even as simple as the trapezoidal rule is quite practical for computational 
purposes it would be desirable in many problems to have an explicit expression for h. 
Accordingly Ramsay (1998) used order 1 B-spline bases for w, since these permit the 
expression of h in a closed form. 

3.2. The Procrustes fitting criterion 
The Procrustes fitting process, used in many multivariate data analysis problems, involves the 
alternation between using the data to define a target for defining a particular transformation 
of each observation and estimating the transformations themselves. In the applications, the 
cross-sectional average x(0)(t) of the unregistered curves is used as the initial target y for the 
estimation of each sample warping function h?'). If the curves have obvious landmarks, they 
may also be aligned before computing x(?)(t). 

Once these warping functions have been estimated, an updated cross-sectional average 

y(t) = x.(l)(t) = N- E xi{h?')(t)} 

can be computed and used as a target for computing revised warping functions. Our experi- 
ence indicates, however, that there is seldom any need for this revision, since the change in the 
hi from the first to the second iteration tends to be negligible. 

3.3. Extension of the fitting criterion 
More generally, instead of using criterion (7) in the estimation of the warping function hi, we 
may want to minimize 

FA(y, xlh) = , J aj(t)IID1y(t) - D'x{h(t)Ijj,i dt + AJ w2(t) dt (9) 

where aj(t) are weight functions, 

IID1y(t) - D1x{h(t)}j II = (D1y(t) - D1x{h(t)})'Wj(D1y(t) - D1x{h(t)}) (10) 

and the Wj are weight matrices. This loss function incorporates several potentially useful 
aspects. It is possible, for example, that curve registration should take place at the level of 
some derivative Djy and Dix o h rather than at the level of the functions themselves. For 
example registering the acceleration functions for the growth curves has turned out to be 
more illuminating. More generally, it may be profitable to use a mixture of derivatives 
defined by the aj if we are interested in function behaviour at several levels. The weight 
matrices Wj also allow for more general weightings of the elements of the functions when they 
are vector valued. Finally, the weight functions aj also permit unequal weighting of fit to the 
target over time. It may happen, for example, that we are primarily interested in registering 
the curves over some central portion of the interval. 

The derivative of FA with respect to coefficient vector c (as in equation (8)) is 
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&FA(y, xlIh) rn a h(t) tODix(h)\ 
A@>____ 

| - 2 E j aj(t) ( ) ) Wj(Djy(t) - Djx{h(t)}) dt 

?+ J{ |Ow(t)} dt2 (11) 

The derivative aDix(h)/Dh must be estimated with care. It must match Dix in the sense that, 
if Dix has been estimated by a smoothing technique, then aDix(h)/Oh must be the derivative 
of the smoother, evaluated at the values of function h. This can be achieved by using higher 
order polynomial or spline smoothing techniques. An S-PLUS module Pspline for 
function and derivative estimation by spline smoothing penalizing the norm of the deriv- 
ative of order m by the first author is available by anonymous file transfer protocol at 
statlib. stat. cmu. edu or from the World Wide Web at www. stat. cmu. edu. Our 
experience indicates that if a derivative of order j is required the penalty should use the 
derivative of order m = ? + 2. 

4. Illustrations and applications 

4.1. A test problem 
The first illustration of the technique illustrates the capacity of the curve registration tech- 
nique to recapture known warping functions hi given a fixed target function y and a set of 
functions y o h-', where (h-' o hi)(t) = t. The target was 

y(t) = sin(t2/r), t = 0, 2ir/100, 4ir/100, . . ., 2ir, (12) 

and each inverse warping function h-1 was an approximate realization of the stochastic time 
function (6), with w = 0 and a = 4. These inverse warping functions were achieved for each 
curve by generating 1001 values from N(0, 16), and using the trapezoidal rule to approximate 
the partial integrals at the 101 argument values. Fig. 4(a) displays 20 sample curves y o h-,' 
along with the target function y, and Fig. 4(b) shows the corresponding 20 inverse warping 
functions h-'. Although the curvature in the warping functions is mostly fairly mild, the 
consequences for the y o h-' can be rather severe. 

Each of these sample functions was registered by estimating the hi that minimizes criterion 
(7). These estimates were in class (8) where the B-splines were of order 1 with six break point 
values (k = 0, 2iX/5, 4iX/5, 6iX/5, 8X/5, 2X; thus each estimate was defined by five parameters 
Ck. The smoothing parameter used was A = 0.0001. Fig. 5(a) shows the 20 registered func- 
tions, and Fig. 5(b) indicates the quality of the recovery of the true warping functions hi by 
the estimates hi for three sample curves. 

4.2. A cautionary example 
The next example is intended to illustrate that too much flexibility in h can lead to serious 
distortion of a registered curve if e(t) in model (1) is not centred approximately at 0. The 
single function to be aligned was simply twice the target y used in the previous example, so no 
alignment is really required. Fig. 6 shows what happens when 21 equally spaced break point 
values were used and A = 0.001. The technique attempts to minimize the discrepancy between 
the target and the curve by compressing time (Dh(t) < 1) in regions where both curves are 
either increasing or decreasing and expanding time (Dh(t) > 1) at the peaks. It is essential to 
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Fig. 4. (a) 20 sample curves, each produced by applying the target function indicated by the dotted curve to the 
values of a random monotone function h71; (b) these 20 monotone functions 
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Fig. 5. (a) 20 registered sample curves; (b) three estimated warping functions and the corresponding 
true functions used to generate the sample curves (- - - mz 
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Fig. 6. The full curve is a consequence of registering the broken curve to the target indicated by the dotted line 
by using 21 break points and A =0.001: the warping function must be more heavily regularized by increasing A or 
by reducing the number of break points. 

impose more regularity on w to avoid these effects. The distortion was minimal for this 
example for A = 10, or with A = 0.001 and only 11 break points. 

4.3. Registering the pinch force records 
Each pinch force record shown in Fig. 3(a) contains enough of the background 2-N force 
record to contain all of the build-up and release of force. Our first step was a simple marker 
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registration, using the time of maximum force as the marker. The initial portion of each 
record was clipped so that the time of maximum force occurred at that of the earliest 
recorded maximum, and the final portion of each record was then clipped so that each record 
contained 0.1 s or 151 force values. The warping function h in the first step is, then, 
hi(t) = t - 6i. Fig. 3(b) displays the result. 

This simple procedure failed to align the curves completely, in part because the noise in the 
data meant that the time of maximum force was also rather noisy, and in part because the 
shapes of the curves varied to some extent. In the next step we applied the Procrustes 
registration process by computing the cross-sectional mean of the marker-aligned force 
records. This provided the target values yj in model (2), and these still contained a certain 
amount of noise. 

Because the minimization of the fitting criterion (7) requires that the functions xi and their 
derivatives Dxi at any value of t, our next step was to use polynomial spline smoothing 
to estimate these functions. We used the Pspline module described earlier, penalizing the 
third derivative so that the first-derivative estimate would be smooth. Our final choice of 
smoothing parameter was slightly higher than that indicated by the minimum generalized 
cross-validation criterion to provide reasonable smoothness in each Dxi. The spline 
smoothing process assures that Dxi is the actual derivative of xi. 

Function w was expanded in terms of order 1 B-splines defined by the break value sequence 
0, 0.01, 0.02, . . ., 0.1, and we liked the results that we obtained with smoothing parameter 
A = 1.0. Fig. 3(c) shows that a substantial improvement in registration was achieved over 
marker alignment. The warping functions hi are given in Fig. 3(d). The Newton-Raphson 
iterations used to minimize the fitting criterion with respect to the coefficients defining wi all 
converged in four iterations or fewer. We judged that carrying out another iteration of the 
Procustes procedure by re-registering with respect to the mean of these registered curves did 
not result in any interesting change in the estimated mean. 

4.4. Registering the height acceleration functions 
The 10 acceleration functions in Fig. 1 were registered by using the cross-sectional mean 
shown in Fig. 1 as a target. The break values (k defining the order 1 B-splines were 4, 7, 10, 
12, 14, 16 and 18 years, and the curves were registered over the interval [4, 18] using criterion 
(7) with A = 0.01. Two Procrustes iterations produced the results displayed in Fig. 7. Fig. 7(a) 
displays the 10 warping functions hi, and Fig. 7(b) shows the curves xi o hi. Fig. 1 compares 
the unregistered and registered cross-sectional means. We see that the differences are 
substantial, and moreover that the mean of the registered functions tends to resemble much 
more closely most of the sample curves displayed in Fig. 1. 

5. Discussion 

The main objective of this paper was to display the capacity of the smooth monotone 
function family (4) to render curves similar in shape by a non-linear transformation or 
warping of the argument. Our experience with functional data suggests that this step, 
although often overlooked, ought to be a routine part of a functional data analysis that 
combines information across curves. Ramsay and Silverman (1997) offer further discussion 
and illustration of this problem. 

Model (1) and criterion (7) which goes naturally with it have their limitations, however, as 
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Fig. 7. (a) Estimated time-warping functions hi for the 10 height acceleration curves in Fig. 1; (b) the registered 
curves 

the cautionary example above indicates. Kneip and Gasser (1992) considered the more 
general model 

y(t) = as(t) x1{hi(t)} + ci(t) (13) 

in which the amplitude modulation function ai allows for scale variation among curves, such 
as seen in Fig. 6 and to some extent in Fig. 3. We are investigating alternative fitting criteria 
that will work better than equation (7) for this situation. 

It must be recognized that the curve registration problem tends to be underdetermined, 
especially when the smooth functions xi are themselves to be estimated to some extent from 
noisy data. The underdetermination is especially evident in formulation (13), where there is 
no hope of deriving stable estimates of both ai and hi unless it can be assumed that their 
variation is small relative to that of xi. Even then, there are situations, such as xi o hi hi, 
where there will be a trade-off among the shapes of ai, xi and h, that cannot be resolved by the 
data. Because of this, the continuous control over the departure of hi from linearity offered by 
the penalization of 1 W2II is an essential feature of a practical registration technique in our 
view. The same applies to the departure of ai from constancy, suggesting the differential 
equation formulation for ai 

Dai = viai- 

The problem of choosing the smoothing parameter A is on the one hand a little easier here 
because of the invariance of w with respect to changes of scale in t. But on the other hand the 
tendency to underidentification means that one should keep w as small as possible consistent 
with obtaining a reasonable degree of registration. We have not found any way of making 
this decision automatically, and we are not even sure that it would be desirable to do so, 
since the amount of registration required for a problem can depend on various other 
considerations such as what subsequent analyses are involved. 

Finally, the registration of two- and three-dimensional images, where the argument t is 
multidimensional, is a much more difficult problem, and one in great need of a useful 
solution, especially in fields such as neuroimaging. It is our hope that there will be ways of 
generalizing these results that will prove profitable in this wider domain. 
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Appendix A: Moment calculation of the stochastic time model 

Let XI = h, X2 = Dh and X = (XI, X2)'. Then the second-order stochastic differential equation (5) can 
be written as a system of two first-order equations: 

dXI (t) = X2(t) dt; (14) 
dX2(t) = X2(t){w(t) dt + dz(t)). 

Let p(x, tlxo) be the conditional density function, given the initial condition x(O) = xo. This is an Ito- 
type equation and consequently satisfies the Fokker-Planck diffusion equation 

OP O(X2P) 0 a2 &(X~jP) Dp(x, tlxo, 0) =-X2 -w(t) ax + (15) 
Ox, Ox2 2 2x 

where Dp is the time derivative Op/Ot, and the initial distribution is p(x, 0) = 1 for x = xo and p(x, 0) 
= 0 otherwise. The analytical solution of this equation is not obvious, and its numerical solution can 
also involve considerable difficulty. Fortunately, however, the moment functions of X can be calculated 
relatively easily to yield some information about the process. The moment functions 

mkl(t) = E{Xk;(t)X2(t)) 

satisfy 

Dmk,(t) = k mklI,+I(t) + 1{w(t) + 2 - ) Mkl(t). (16) 

Of particular interest to us are the moment functions E{lhk(t)) = E{Xkj(t)) = mkO(t). However, by 
equation (16), DmkO(t) = kmklI,(t), so lower order moment functions must first be calculated. Let 

Cij = EIX'(O)X2i(0)1, (17) 
q,(t) = exp{1 D- l w(t) + 1(1-- l)o2t/2t} 

with qo(t) = 1. If mk-l,,+1(t) is known, by equation (16) we have 

mkl(t) =q/(t){kD 11?1 Ck}, (1 8) q;,' 
so the marginal moment function for the rate Dh is 

mol(t) = Co t)= CO exp{1D-w(t)+l(l- l) 2 }t (19) 

Note that the moment function mo,(t) of the stochastic process X2 (which is described by dX2(t) 
= X2(t){w(t) dt + dz(t))) is the product of two independent parts: its moment at the initial state Co, and a 
time-dependent factor. By equations (18) and (19), 

ml(t) = q(t){Co +,?DI (qD?1 )(t) + Cl/}, (20) 

and therefore the first two moments of h are 

E(h) = mlo(t) = C0o Mw(t) + CIO, (21) 
E(h2) = m20(t) = 2 DWlmll(t) + C20, 

where 
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ml (t) = exp{D- 'w(t)I{C02 M(w + (X2)(t) + Cl I 1. 

We are often particularly interested in a process with the initial condition XO = (0, 1), in which case 

Coj= E{X2(0) I=1, 

Cyj=O l i i>0. 

If there is no drift (w = 0), we have 

mOI(t)= 1, (22) 
m02(t) = exp(o2t). 

This tells us that the exponential of a Brownian motion, i.e. the process X2 defined by dX2(t) 
= X2(t) dz(t), has a constant mean and an exponentially growing variance exp(& 2t) - 1. Furthermore, 

E(h)= t, 

var(h) = e4p(a2 2-41 2 (23) 

We see that the central location of the random time h coincides with the optimal location when there 
is no drift, whereas its standard deviation increases exponentially. These equations can be used to 
compute simple moment estimates of (X2 

References 
Bookstein, F. L. (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge 

University Press. 
Kneip, A. and Gasser, T. (1988) Convergence and consistency results for self-modeling nonlinear regression. Ann. 

Statist., 16, 82-112. 
(1992) Statistical tools to analyze data representing a sample of curves. Ann. Statist., 20, 1266-1305. 

0ksendal, B. (1995) Stochastic Diferential Equations: an Introduction with Applications. New York: Springer. 
Ramsay, J. 0. (1998) Estimating smooth monotone functions. J. R. Statist. Soc. B, 60, 365-375. 
Ramsay, J. O., Bock, R. D. and Gasser, T. (1995) Comparison of height acceleration curves in the Fels, Zurich, and 

Berkeley growth data. Ann. Hum. Biol., 22, 413-426. 
Ramsay, J. 0. and Silverman, B. W. (1997) Functional Data Analysis. New York: Springer. 
Ramsay, J. O., Wang, X. and Flanagan, R. (1995) A functional data analysis of the pinch force of human fingers. 

Appl. Statist., 44, 17-30. 
Sakoe, H. and Chiba, S. (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE 

Trans. Acoust. Spch Signal Process., 26, 43-49. 
Silverman, B. W. (1995) Incorporating parametric effects into functional principal components analysis. J. R. Statist. 

Soc. B, 57, 673-689. 
Wang, K. and Gasser, T. (1995) Alignment of curves by dynamic time warping. Unpublished. 


	Article Contents
	p. [351]
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358
	p. 359
	p. 360
	p. 361
	p. 362
	p. 363

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 60, No. 2 (1998), pp. 271-496
	Front Matter [pp. ]
	Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion [pp. 271-293]
	Detecting Possibly Non-Consecutive Outliers in Industrial Time Series [pp. 295-310]
	Additive Nonparametric Regression with Autocorrelated Errors [pp. 311-331]
	Automatic Bayesian Curve Fitting [pp. 333-350]
	Curve Registration [pp. 351-363]
	Estimating Smooth Monotone Functions [pp. 365-375]
	Bayesian Versus Frequentist Measures of Error in Small Area Estimation [pp. 377-396]
	Limited Information Likelihood Analysis of Survey Data [pp. 397-411]
	Bias-Calibrated Estimation from Sample Surveys Containing Outliers [pp. 413-428]
	Testing for Pairwise Serial Independence via the Empirical Distribution Function [pp. 429-453]
	Triple-Goal Estimates in Two-Stage Hierarchical Models [pp. 455-471]
	Ordered Multivariate Extremes [pp. 473-496]
	Back Matter [pp. ]



