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Introduction

1.1 Why consider functional data at all?

Functional data come in many forms, but their defining quality is that
they consist of functions—often, but not always, smooth curves. In this
book, we consider functional data arising in many different fields, ranging
from the shapes of bones excavated by archaeologists, to economic data
collected over many years, to the path traced out by a juggler’s finger. The
fundamental aims of the analysis of functional data are the same as those
of more conventional statistics: to formulate the problem at hand in a way
amenable to statistical thinking and analysis; to develop ways of presenting
the data that highlight interesting and important features; to investigate
variability as well as mean characteristics; to build models for the data
observed, including those that allow for dependence of one observation or
variable on another, and so on.

We have chosen case studies to cover a wide range of fields of application,
and one of our aims is to demonstrate how large is the potential scope
of functional data analysis. If you work through all the case studies you
will have covered a broad sweep of existing methods in functional data
analysis and, in some cases, you will study new methodology developed for
the particular problem in hand. But more importantly, we hope that the
readers will gain an insight into functional ways of thinking.

What sort of data come under the general umbrella of functional data?
In some cases, the original observations are interpolated from longitudi-
nal data, quantities observed as they evolve through time. However, there
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are many other ways that functional data can arise. For instance, in our
study of children with attention deficit hyperactivity disorder, we take a
large number of independent numerical observations for each child, and
the functional datum for that child is the estimated probability density of
these observations. Sometimes our data are curves traced out on a surface
or in space. The juggler’s finger directly traces out the data we analyze in
that case, but in another example, on the characteristics of examination
questions, the functional data arise as part of the modeling process. In the
archaeological example, the shape of a two-dimensional image of each bone
is the functional datum in question. And of course images as well as curves
can appear as functional data or as functional parameters in models, as we
show in our study of electromyography recordings and speech articulation.

The field of functional data analysis is still in its infancy, and the bound-
aries between functional data analysis and other aspects of statistics are
definitely fuzzy. Part of our aim in writing this book is to encourage read-
ers to develop further the insights—both statistically and in the various
subject areas from which the data come—that can be gained by thinking
about appropriate data from a functional point of view. Our own view
about what is distinctive about functional data analysis should be gained
primarily from the case studies we discuss, as summarized in Section 1.3,
but some specific remarks are made in Section 1.4 below.

1.2 The Web site

Working through examples for oneself leads to deeper insight, and is an
excellent way into applying and adapting methods to one’s own data. To
help this process, there is a Web site associated with the text. The Web
site contains many of the data sets and analyses discussed in the book.
These analyses are not intended as a package or as a “cookbook”, but our
hope is that they will help readers follow the steps that we went through
in carrying out the analyses presented in the case studies. Some of the
analyses were carried out in MATLAB and some in S-PLUS.

At the time of printing the Web site is linked to the Springer Web site
at www.springer-ny.com.

1.3 The case studies

In this section, the case studies are briefly reviewed. Further details of
the context of the data sets, and appropriate bibliographic references, are
given in the individual chapters where the case studies are considered in
full. In most of them, in addition to the topics explicitly mentioned below,
there is some discussion of computational issues and other fine points of
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Figure 1.1. The functional datum corresponding to a particular individual in the
criminology sample; it shows the way that the annual square root number of
crimes varies over the life course.

methodology. In some chapters, we develop or explain some material that
will be mainly of interest to statistical experts. These topics are set out in
sections towards the end of the relevant chapter, and can be safely skipped
by the more general reader.

Chapter 2: Life course data in criminology
We study data on the criminal careers of over 400 individuals followed
over several decades of their lifespan. For each individual a function is
constructed over the interval [11, 35], representing that person’s level of
criminal activity between ages 11 and 35. For reasons that are explained, it
is appropriate to track the square root of the number of crimes committed
each year, and a typical record is given in Figure 1.1. Altogether we consider
413 records like this one, and the records are all plotted in Figure 1.2.
This figure demonstrates little more than the need for careful methods of
summarizing and analyzing collections of functional data.

Data of this kind are the simplest kind of functional data: we have a
number of independent individuals, for each of whom we observe a sin-
gle function. In standard statistics, we are accustomed to the notion of
a sequence of independent numerical observations. This is the functional
equivalent: a sequence of independent functional observations.
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Figure 1.2. The functional data for all 413 subjects in the criminology study.

The questions we address in Chapter 2 include the following.

• What are the steps involved in making raw data on an individual’s
criminal record into a continuous functional observation?

• How should we estimate the mean of a population such as that in
Figure 1.2, and how can we investigate its variability?

• Are there distinct groups of offenders, or do criminals reside on more
of a continuum?

• How does our analysis point to salient features of particular data? Of
particular interest to criminologists are those individuals who are ju-
venile offenders who subsequently mature into reasonably law-abiding
citizens.

The answers to the third and fourth questions address controversial issues
in criminology; it is of obvious importance if there is a “criminal frater-
nity” with a distinct pattern of offending, and it is also important to know
whether reform of young offenders is possible. Quantifying reform is a key
step towards this goal.

Chapter 3: The nondurable goods index
In Chapter 3 we turn to a single economic series observed over a long
period of time, the U.S. index of nondurable goods production, as plotted
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Figure 1.3. The nondurable goods index over the period 1919 to 2000.
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Figure 1.4. Phase-plane plots for two contrasting years: left 1923, right 1996.
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in Figure 1.3. Although the index is only produced at monthly intervals,
we can think of it as a continuously observed functional time series, with
a numerical value at every point over a period of nearly a century. The
record for each year may be thought of as an individual functional datum,
although of course the point at which each such datum joins to the next is
arbitrary; in our analysis, we take it to be the turn of the calendar year.

Our main concern is not the overall level of production, but an investi-
gation of the dynamics of the index within individual years. It is obvious
to everyone that goods production nowadays is higher than it was in the
1920s, but more interesting are structural changes in the economy that
have affected the detailed behavior, as well as the overall level of activity,
over the last century. We pay particular attention to a construct called the
phase-plane plot, which plots the acceleration of the index against its rate
of growth. Figure 1.4 shows phase-plane plots for 1923 and 1996, years near
each end of the range of our data.

Our ability to construct phase-plane plots at all depends on the possi-
bility of differentiating functional data. In Chapter 3, we use derivatives
to construct useful presentations, but in later chapters we take the use of
derivatives further, to build and estimate models for the observed functional
phenomena.

Chapter 4: Bone shapes from a paleopathology study
Paleopathology is the study of disease in human history, especially taking
account of information that can be gathered from human skeletal remains.
The study described in Chapter 4 investigates the shapes of a large sample
of bones from hundreds of years ago. The intention is to gain knowledge
about osteoarthritis of the knee—not just in the past, but nowadays too,
because features can be seen that are not easily accessible in living patients.
There is evidence of a causal link between the shape of the joint and the
incidence of arthritis, and there are plausible biomechanical mechanisms
for this link.

We concentrate on images of the knee end of the femur (the upper leg
bone); a typical observed shape is shown in Figure 1.5. The functional data
considered in Chapter 4 are the outline shapes of bones like this one, and are
cyclic curves, not just simple functions of one variable. It is appropriate to
characterize these by the positions of landmarks. These are specific points
picked out on the shapes, and may or may not be of direct interest in
themselves.

Specifying landmarks allows a sensible definition of an average bone
shape. It also facilitates the investigation of variability in the population,
via methods drawn from conventional statistics but with some original
twists. Our functional motivation leads to appropriate ways of displaying
this variability, and we are able to draw out differences between the bones
that show symptoms of arthritis and those that do not.
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Figure 1.5. A typical raw digital image of a femur from the paleopathology study.

Chapter 5: Modeling reaction time distributions
Attention deficit hyperactive disorder (ADHD) is a troubling condition,
especially in children, but is in reality not easily characterized or diagnosed.
One important factor may be the reaction time after a visual stimulus.
Children that have difficulty in holding attention have slower reaction times
than those that can concentrate more easily on a task in hand.

Reaction times are not fixed, but can be thought of as following a dis-
tribution specific to each individual. For each child in a study, a sample
of about 70 reaction times was collected, and hence an estimate obtained
of that child’s density function of reaction time. Figure 1.6 shows typical
estimated densities, one for an ADHD child and one for a control.

By estimating these densities we have constructed a set of functional
data, one curve for each child in the sample. To avoid the difficulties caused
by the constraints that probability densities have to obey, and to highlight
features of particular relevance, we actually work with the functions ob-
tained by taking logarithms of the densities and differentiating; one aspect
of this transformation is that it makes a normal density into a straight line.

Investigating these functional data demonstrates that the difference be-
tween the ADHD and control children is not simply an increase in the mean
reaction time, but is a more subtle change in the shape of the reaction time
distribution.
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Figure 1.6. Estimated densities of reaction times for two children in the sample.
The solid curve corresponds to a child with ADHD, and the dashed curve is one
of the controls.

Chapter 6: Zooming in on human growth
Human growth is not at all the simple process that one might imagine
at first sight—or even from one’s own personal experience of growing up!
Studies observing carefully the pattern of growth through childhood and
adolescence have been carried out for many decades. A typical data record
is shown in Figure 1.7. Collecting records like these is time-consuming and
expensive, because children have to be measured accurately and tracked
for a long period of their lives.

We consider how to make this sort of record into a useful functional
datum to incorporate into further analyses. A smooth curve drawn through
the points in Figure 1.7 is commonly called a growth curve, but growth is
actually the rate of increase of the height of the child. In children this is
necessarily positive because it is only much later in life that people begin
to lose stature. We develop a monotone smoothing method that takes this
sort of consideration into account and yields a functional datum that picks
out important stages in a child’s growth.

Not all children go through events such as puberty at the same age. Once
the functional data have been obtained, an important issue is time-warping
or registration. Here the aim is to refer all the children to a common biolog-
ical clock. Only then is it really meaningful to talk about a mean growth
pattern or to investigate variability in the sample. Also, the relationship of
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Figure 1.7. The raw data for a particular individual in a classical growth study.

biological to chronological age is itself important, and can also be seen as
an interesting functional datum for each child.

The monotone smoothing method also allows the consideration of data
observed on much shorter time scales than those in Figure 1.7. The results
are fascinating, demonstrating that growth does not occur smoothly, but
consists of short bursts of rapid growth interspersed by periods of relative
stability. The length and spacing of these saltations can be very short,
especially in babies, where our results suggest growth cycles of length just
a few days.

Chapter 7: Time warping handwriting and weather records
In much biomechanical research nowadays, electronic tracking equipment is
used to track body movements in real time as certain tasks are performed.
One of us wrote the characters “fda” 20 times, and the resulting pen traces
are shown in Figure 1.8. But the data we are actually able to work with
are the full trace in time of all three coordinates of the pen position.

To study the important features of these curves, time registration is es-
sential. We use this case study to develop more fully the ideas of registration
introduced in Chapter 6, and we discover that there are dynamic patterns
that become much more apparent once we refer to an appropriate time
scale.
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Figure 1.8. The characters “fda” written by hand 20 times.

Weather records are a rich source of functional data, as variables such as
temperature and pressure are recorded through time. We know from our
own experience that the seasons do not always fall at exactly the same
calendar date, and one of the effects of global climate change may be dis-
ruption in the annual cycle as much as in the actual temperatures achieved.
Both phase variation, the variability in the time warping function, and am-
plitude variation, the variability in the actual curve values, are important.
This study provides an opportunity to explain how these aspects of vari-
ability can be separated, and to explore some consequences for the analysis
of weather data.

Chapter 8: How do bone shapes indicate arthritis?
Here we return to the bones considered in Chapter 4, and focus attention
on the intercondylar notch, the inverted U-shape between the two ends of
the bone as displayed in Figure 1.5. There are anatomical reasons why
the shape of the intercondylar notch may be especially relevant to the
incidence of arthritis. In addition, some of the bones are damaged in ways
that exclude them from the analysis described in Chapter 4, but do not
affect the intercondylar notch.

The landmark methods used when considering the entire cyclical shape
are not easily applicable. Therefore we develop landmark-free approaches to
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the functional data analysis of curves, such as the notch outlines, traced out
in two (or more) dimensions. Once these curves are represented in an ap-
propriate way, it becomes possible to analyze different modes of variability
in the data.

Of particular interest is a functional analogue of linear discriminant
analysis. If we wanted to find out a way of distinguishing arthritic and
nonarthritic intercondylar notch shapes, simply finding the mean shape
within each group is not a very good way to go. On the other hand, blindly
applying discriminant methods borrowed from standard multivariate anal-
ysis gives nonsensical results. By incorporating regularization in the right
way, however, we can find a mode of variability that is good at separating
the two kinds of bones. What seems to matter is the twist in the shape of
the notch, which may well affect the way that an important ligament lies
in the joint.

Chapter 9: Functional models for test items
Now we move from the way our ancestors walked to the way our children
are tested in school. Perhaps surprisingly, functional data analysis ideas can
bring important insights to the way that different test questions work in
practice. Assume for the moment that we have a one-dimensional abstract
measure θ of ability. For question i we can then define the item response
function Pi(θ) to be the probability that a candidate of ability θ answers
this question correctly.

The particular case study concentrates on the performance of 5000 candi-
dates on 60 questions in a test constructed by the American College Testing
Program. Some of the steps in our analysis are the following.

• There is no explicit definition of ability θ, but we construct a suitable
θ from the data, and estimate the individual item response functions
Pi(θ).

• By considering the estimated item response functions as functional
data in their own right, we identify important aspects of the test
questions, both as a sample and individually. Both graphical and
more analytical methods are used.

• We investigate important questions raised by splitting the sample
into female and male candidates. Can ability be assessed in a gender-
neutral way? Are there questions on which men and women perform
differently? There are only a few such test items in our data, but
results for two of them are plotted in Figure 1.9. Which of these
questions you would find easier would depend both on your gender
and on your position on the overall ability range as quantified by the
estimated score θ.
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Figure 1.9. Probabilities of success on two test questions are displayed for both
females and males, against a fair score that is a reasonable gender-neutral measure
of ability.

Chapter 10: Predicting lip acceleration from electromyography
Over 100 muscles are involved in speech, and our ability to control and
coordinate them is remarkable. The limitation on the rate of production
of phonemes—perhaps 14 per second—is cognitive rather than physical.
If we were designing a system for controlling speech movements, we would
plan sequences of movements as a group, rather than simply executing each
movement as it came along. Does the brain do this?

This big question can be approached by studying the movement of the
lower lip during speech and taking electromyography (EMG) recordings
to detect associated neural activity. The lower lip is an obvious subset
of muscles to concentrate on because it is easily observed and the EMG
recordings can be taken from skin surface electrodes. The larynx would
offer neither advantage!

A subject is observed repeatedly saying a particular phrase. After
preprocessing, smoothing, and registration, this yields paired functional
observations (Yi(t), Zi(t)), where Yi is the lip acceleration and Zi is the
EMG level. If the brain just does things on the fly, then these data could
be modeled by the pointwise model

Yi(t) = α(t) + Zi(t)β(t) + εi(t). (1.1)

On the other hand, if there is feedforward information for a period of length
δ in the neural control mechanism, then a model of the form

Yi(t) = α(t) +
∫ t

t−δ

Zi(s)β(s, t) ds + εi(t) (1.2)

may be more appropriate.
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The study investigates aspects of these formulations of functional linear
regression. The EMG functions play the role of the independent variable
and the lip accelerations that of the dependent variable. Because of the
functional nature of both, there is a choice of the structure of the model
to fit. For the particular data studied, the indication is that there is in-
deed feedforward information, especially in certain parts of the articulated
phrase.

Chapter 11: The dynamics of handwriting printed characters
The subject of this study is handwriting data as exemplified in Figure
1.8. Generally, we are used to identifying people we know well by their
handwriting. Since in this case we have dynamic data about the way the
pen actually moved during the writing, even including the periods it is off
the paper, we might expect to be able to do better still.

It turns out that the X-, Y-, and Z-coordinates of data of this kind can
all be modeled remarkably closely by a linear differential equation model
of the form

u′′′(t) = α(t) + β1(t)u′(t) + β2(t)u′′(t). (1.3)

The coefficient functions α(t), β1(t), and β2(t) depend on which coordinate
of the writing one is considering, and are specific to the writer. In this
study, we investigate the ways that models of this kind can be fitted to
data using a method called principal differential analysis.

The principal differential analysis of a particular person’s handwriting
gives some insight into the biomechanical processes underlying handwrit-
ing. In addition, we show that the fitted model is good at the classification
problem of deciding who wrote what. You may well be able to forge the
shape of someone else’s signature, but you will have difficulty in producing
a pen trace in real time that satisfies that person’s differential equation
model.

Chapter 12: A differential equation for juggling
Nearly all readers will be good at handwriting, but not many will be equally
expert jugglers. An exception is statistician Michael Newton at Wisconsin,
and data observed from Michael’s juggling are the subject of our final case
study. Certainly to less talented mortals, there is an obvious difference
between handwriting and juggling: when we write, the paper remains still
and we are always trying to do the same thing; a juggler seems to be
catching and throwing balls that all follow different paths.

Various markers on Michael’s body were tracked, but we concentrate on
the tip of his forefinger. The juggling cycles are not of constant length,
because if the ball is thrown higher it takes longer to come back down, and
so there is some preprocessing to be done. After this has been achieved, the
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Figure 1.10. The average juggling cycle as seen from the juggler’s perspective
facing forward. The points on the curve indicate times in seconds, and the total
cycle takes 0.711 seconds. The time when the ball leaves the hand and the time
of the catch are shown as circles.

average juggling cycle is shown from one view in Figure 1.10. More details
are given in Chapter 12.

Although individual cycles vary, they can all be modeled closely by a
differential equation approach building on that of Chapter 11. There is
a key difference, however; for the handwriting data the model (1.3) was
used to model each coordinate separately. In juggling, there is crosstalk
between the coordinates, with the derivatives and second derivatives of
some affecting the third derivatives of others. However, there is no need for
the terms corresponding to α(t) in the model.

Various aspects of the coordinate functions β(t) are discussed. Most in-
terestingly, the resulting system of differential equations controls all the
individual juggling cycles almost perfectly, despite the outward differences
among the cycles. Learning to juggle almost corresponds to wiring the
system of differential equations into one’s brain and motor system.

1.4 How is functional data analysis distinctive?

The actual term functional data analysis was coined by Ramsay and Dalzell
(1991), although many of the ideas have of course been around for much
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longer in some form. What has been more distinctive about recent research
is the notion of functional data analysis as a unified way of thinking, rather
than a disparate set of methods and techniques.

We have quite deliberately refrained from attempting an exhaustive def-
inition of functional data analysis, because we do not wish to set hard
boundaries around the field. Nevertheless, it may be worth noting some
common aspects of functional data that arise frequently in this book and
elsewhere.

• Conceptually, functional data are continuously defined. Of course, in
practice they are usually observed at discrete points and also have to
be stored in some finite-dimensional way within the computer, but
this does not alter our underlying way of thinking.

• The individual datum is the whole function, rather than its value
at any particular point. The various functional data will often be
independent of one another, but there are no particular assumptions
about the independence of different values within the same functional
datum.

• In some cases the data are functions of time, but there is nothing
special about time as a variable. In the case studies we have been
involved in, the data are functions of a one-dimensional variable,
but most of the insights carry over straightforwardly to functions
of higher-dimensional variables.

• There is no general requirement that the data be smooth, but often
smoothness or other regularity will be a key aspect of the analysis.
In some cases, derivatives of the observed functions will be impor-
tant. On other occasions, even though the data themselves need not
be smooth, smoothness assumptions will be appropriate for mean
functions or other functions involved in modeling the observed data.

1.5 Conclusion and bibliography

Those wishing to read further are referred initially to the book by Ramsay
and Silverman (1997), which gives a thematic treatment of many of the
topics introduced by case studies in the present volume. That book also
contains many additional bibliographic references and technical details. Of
particular relevance to this introduction are Chapters 1 and 16 of Ram-
say and Silverman (1997). These both stand aside somewhat from specific
methods but discuss the general philosophy of functional data analysis.
Chapter 16, in particular, considers the historical context of the subject
as well as raising some issues for further investigation. Many of the case
studies presented in this book are the fruits of our own continuing research
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in response to this challenge. Although our present book approaches func-
tional data analysis from a different direction, the remark (Ramsay and
Silverman, 1997, page 21) made in our previous book remains equally true:

In broad terms, we have a grander aim: to encourage readers to
think about and understand functional data in a new way. The
methods we set out are hardly the last word in approaching
the particular problems, and we believe that readers will gain
more benefit by using the principles we have laid down than by
following our suggestions to the letter.

Even more than a thematic treatment, case studies will always lead the
alert reader to suggest and investigate approaches that are different, and
perhaps better, than those originally presented. If a reader is prompted by
one of our chapters to find a better way of dealing with a functional data
set, then our aim of encouraging further functional data analysis research
and development will certainly have been fulfilled.


