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Life Course Data in Criminology

2.1 Criminology life course studies

2.1.1 Background

An important question in criminology is the study of the way that people’s
level of criminal activity varies through their lives. Can it be said that there
are “career criminals” of different kinds? Are there particular patterns of
persistence in the levels of crimes committed by individuals? These issues
have been studied by criminologists for many years. Of continuing impor-
tance is the question of whether there are distinct subgroups or clusters
within the population, or whether observed criminal behaviors are part of
a continuum. Naturally, one pattern of particular interest is “desistance’,
the discontinuation of regular offending.

The classic study Glueck and Glueck (1950) considered the criminal his-
tories of 500 delinquent boys. The Gluecks and subsequent researchers
(especially Sampson and Laub, 1993) carried out a prospective longitu-
dinal study of the formation and development of criminal “careers” of the
individuals in their sample. The subjects were initially interviewed at age
around 14, and were followed up subsequently, both by personal interview
and through FBI and police records. The main part of the data was col-
lected by the Gluecks themselves over the period 1940 to 1965, but there
are subsequent data right up to the present day, giving individual life course
information up to age 70. These data are very unusual in providing long-
term longitudinal information; most criminological data are cross-sectional
or at best longitudinal only over restricted age ranges.
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Figure 2.1. Histogram of the average annual number of arrests for each of 413
men over a 25-year time period.

The objective is to understand the pattern or trajectory through life of
offending for the members of the sample. For each individual, the number
of official arrests in each year of their life is recorded, starting in some cases
as early as age 7. Obviously these are only a surrogate for the number of
crimes committed, but they give a good indication of the general level of
criminal activity. There is information on the type of crime and also on
various concomitant information, but we do not consider this in detail.

2.1.2  The life course data

We concentrate on a single set of data giving the numbers of arrests of
413 men over a 25-year period in each of their lives, from age 11 to age
35. These are the individuals for whom we have full information over this
period. An immediate indication of the diversity within the group is given
by considering the overall annual average number of arrests for each indi-
vidual. Figure 2.1 shows that some of the men had only a low overall arrest
rate, while others were clearly habitual offenders with 50 or more arrests
registered in total. It is also clear that the distribution is highly skewed.
Another aspect is the high variability for each individual over time. Fig-
ure 2.2 shows the raw data for a typical individual. It can be seen that
this person was arrested in connection with three offenses at age 11, one
at age 14, and so on. The small numbers of crimes each year mean that
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Figure 2.2. The record of a particular individual, showing the numbers of arrests
at various ages. This individual was arrested for three offenses at age 11, one at
age 14, and so on, but was not arrested at all in years 12, 13, 15, etc.

every individual is likely to show a sporadic pattern of some sort. Despite
the very noisy nature of the data, one of our aims is to find ways of quanti-
fying meaningful patterns in individuals that reflect variation in the wider
population.

Our analysis raises a number of questions of broader importance in func-
tional data analysis. The approach is to represent the criminal record of
each subject by a single function of time, and then to use these functions
for detailed analysis. But how should discrete observations be made into
functional data in the first place? Does the functional nature of the data
have any implications when producing smoothed estimates of quantities
such as the overall mean curve? How can meaningful aspects of variation
of the entire population be estimated and quantified in the presence of such
large variability in individuals?

2.2 First steps in a functional approach

2.2.1 Turning discrete values into a functional datum

We construct for each individual a function of time that represents his level
of criminal activity. A simple approach would be to interpolate the raw
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Figure 2.3. Histogram of the averages for each of 413 individuals of the square
roots of annual tallies of arrests.
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Figure 2.4. Linear interpolant of the square roots of the counts shown in
Figure 2.2.
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numbers of arrests in each year, but because of the skewness of the annual
counts this would give inordinate weight to high values in the original
data. In order to stabilize the variability somewhat, we start by taking
the square root of the number of arrests each year. The rationale for this
is partly pragmatic: if we plot a histogram of the averages across time of
these square roots we see from Figure 2.3 that the skewness is somewhat
reduced. In addition, if the numbers of arrests are Poisson counts, then the
square root is the standard variance-stabilizing transformation.

One could conceivably smooth the square roots of annual counts to pro-
duce a functional observation for the individual considered in Figure 2.2.
However, in order not to suppress any information at this stage, we interpo-
late linearly to produce the functional observation shown in Figure 2.4. We
now throw away the original points and regard this function as a whole as
being the datum for this individual. In the remainder of this chapter, we de-
note by Y1(t), Ya(t), ..., Ya13(t) the 413 functional observations constructed
from the square roots of the annual arrest count for the 413 individuals in
the study.

2.2.2  Estimating the mean

The next step in the analysis of the data is to estimate the mean function
of the functional data. The natural estimator to begin with is simply the
sample average defined in this case by

413

V() = 415 D Vilh).

i=1

The function Y (¢) is plotted in Figure 2.5. It can be seen that, despite the
large number of functions on which the mean is based, there is still some
fluctuation in the result of a kind that is clearly not relevant to the problem
at hand; there is no reason why 29-year olds commit fewer offenses than
both 28- and 30-year olds for instance! Before embarking on a discussion of
smoothing the mean function, it should be pointed out that this particular
set of data has high local variability. In many other practical examples no
smoothing will be necessary.

There are many possible approaches to the smoothing of the curve in
Figure 2.5, and the one we use is a roughness penalty method. We measure
the roughness, or variability, of a curve g by the integrated squared second
derivative of g. Our estimate of the overall mean is then the curve my(t)
that minimizes the penalized squared error

Sx(g) = / {9(t) — V(1)) + A / (" (6)}2dr. (2.1)

Here the smoothing parameter A > 0 controls the trade-off between close-
ness of fit to the average of the data, as measured by the first integral in
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Figure 2.5. The sample mean function of the criminology functional data.
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Figure 2.6. Estimate of the overall mean of the square root of the number of
arrests per year. Points: raw means of the data. Dashed curve: roughness penalty
smooth, A\ = 2 x 1077, cross-validation choice. Solid curve: roughness penalty
smooth, A = 107¢, subjective adjustment.
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(2.1) and the variability of the curve, as measured by the second integral.
Both integrals are taken over the range of the parameter ¢, in this case from
11 to 35. If A = 0 then the curve my(t) is equal to the sample mean curve
Y (t). As X increases, the curve my(t) gets closer to the standard linear
regression fit to the values of Y (t).

In practice, the smoothing parameter A has to be chosen to obtain a
curve my(t) that is reasonably faithful to the original sample average but
eliminates obviously extraneous variability. In practice, it is often easiest to
choose the smoothing parameter subjectively, but in some circumstances
an automatic choice of smoothing parameter may be useful, if only as a
starting point for further subjective adjustment. An approach to this auto-
matic choice using a method called cross-validation is discussed in Section
2.6. In Figure 2.6 we give the smoothed mean curve obtained by an auto-
matic choice of smoothing, and also the effect of a subjective adjustment to
this automatic choice. For the remainder of our analysis, this subjectively
smoothed curve is used as an estimate of the overall mean function. We use
the subjectively smoothed curve rather than the initial automatic choice
because of the need to have a firm stable reference curve against which to
judge individuals later in the analysis. In constructing this reference, we
want to be sure that spurious variability is kept to a minimum.

2.3 Functional principal component analyses

2.3.1 The basic methodology

What are the types of variability between the boys in the sample? There is
controversy among criminologists as to whether there are distinct criminal
groups or types. Some maintain that there are, for instance, specific groups
of high offenders, or persistent offenders. Others reject this notion and
consider that there is a continuum of levels and types of offending.

Principal components analysis (PCA) is a standard approach to the
exploration of variability in multivariate data. PCA uses an eigenvalue
decomposition of the variance matrix of the data to find directions in the
observation space along which the data have the highest variability. For
each principal component, the analysis yields a loading vector or weight
vector which gives the direction of variability corresponding to that com-
ponent. For details, see any standard multivariate analysis textbook, such
as Johnson and Wichern (2002).

In the functional context, each principal component is specified by a
principal component weight function £(t) defined over the same range of ¢
as the functional data. The principal component scores of the individuals
in the sample are the values z; given by

- / ()Y (t)dt. (22)
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The aim of simple PCA is to find the weight function &;(¢) that maximizes
the variance of the principal component scores z; subject to the constraint

/g(t)%zt =1. (2.3)

Without a constraint of this kind, we could make the variance as large as
we liked simply by multiplying £ by a large quantity.

The second-, third-, and higher-order principal components are defined in
the same way, but with additional constraints. The second component func-
tion &»(t) is defined to maximize the variance of the principal component
scores subject to the constraint (2.3) and the additional constraint

[eawi=o. (2.4)

In general, for the jth component we require the additional constraints

/ & (06 (1) dt = / &bt = ... = / W& (D) =0,  (25)

which will ensure that all the estimated principal components are mutually
orthogonal.

In the case of the criminology data, the approach just described corre-
sponds approximately to the following; the approximation is due to the
approximation of the integrals by sums in (2.2) through (2.5).

1. Regard each of the functional data as a vector in 25-dimensional
space, by reading off the values at each year of the individual’s age.

2. Carry out a standard PCA on the resulting data set of 413
observations in 25-dimensional space.

3. Interpolate each principal component weight vector to give a weight
function.

In Figure 2.7 the results of this approach are illustrated. For each of the
first three principal components, three curves are plotted. The dashed curve
is the overall smoothed mean, which is the same in all cases. The other two
curves show the effect of adding and subtracting a suitable multiple of the
principal component weight function.

It can be seen that the first principal component corresponds to the over-
all level of offending from about age 15 to age 35. All the components have a
considerable amount of local variability, and in the case of the second com-
ponent, particularly, this almost overwhelms any systematic effect. Clearly
some smoothing is appropriate, not surprisingly given the high variability
of the data.
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Figure 2.7. The effect of the first three unsmoothed principal components of
the criminology data. In each graph, the dashed curve is the overall mean, and
the solid curves are the mean 4+ a suitable multiple of the relevant principal
component weight function. The + and — signs show which curve is which.



26 2. Life Course Data in Criminology

2.3.2  Smoothing the PCA

Smoothing a functional principal component analysis is not just a matter of
smoothing the components produced by a standard PCA. Rather, we return
to the original definition of principal components analysis and incorporate
smoothing into that. Let us consider the leading principal component first
of all.

To obtain a smoothed functional PCA, we take account of the need not
only to control the size of £, but also to control its roughness. With this in
mind, we replace the constraint (2.3) by a constraint that takes roughness
into account as well. Thus, the first smoothed principal component weight
function is the function & (¢) that maximizes the variance of the principal
component scores subject to the constraint

/{f(t)}2dt +a /{5”(t)}2dt =1. (2.6)

As usual, the parameter o > 0 controls the amount of smoothing inherent
in the procedure.

A roughness penalty is also incorporated into the additional constraints
on the second-, third-, and higher-order smoothed principal components.
The second component function £;(t) is now defined to maximize the vari-
ance of the principal component scores subject to (2.6) and the additional
constraint

‘/&w&®ﬁ+a/fﬂ®¥wﬁ=0 (2.7)

For the jth component we require constraints analogous to (2.5), but with
corresponding extra terms taking the roughness penalty into account. This
will ensure that the estimated components satisfy the condition

/&@@@ﬁ+a/$@m%whﬂ

for all ¢ and j with i £ j.

There are some attractive features to this approach to defining a
smoothed principal components analysis. First, when o = 0, we recover
the standard unsmoothed PCA of the data. Second, despite the recursive
nature of their definition, the principal components can be found in a single
linear algebra calculation; details are given in Section 2.5.3.

2.3.8 Smoothed PCA of the criminology data

The first three principal component weight functions arising from a
smoothed PCA are given in Figure 2.8. The smoothing parameter was
chosen by subjective adjustment to the value o = 107°. It can be seen that
each of these components now has a clear interpretation.
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Figure 2.8. The effect on the mean curve of adding and subtracting a multiple of
each of the first three smoothed functional principal components. The smoothing
parameter was set to o = 107°.
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The first quantifies the general level of criminal activity throughout later
adolescence and adulthood. A high scorer on this component would show
especially above-average activity in the years from age 18 to age 30. It is
interesting that this increased difference is not in the teenage years when
the general level is very high anyway. High scorers on this component are
above average during late adolescence but not markedly so; it is in their
late teens and twenties that they depart most strongly from the mean. For
this reason we call this component “Adult crime level.”

The second component indicates a mode of variability corresponding to
high activity up to the early twenties, then reforming to better than average
in later years. High scorers are juvenile delinquents who then see the error
of their ways and reform permanently. On the other hand those with large
negative scores are well-behaved teenagers who then later take up a life of
crime. We call this component “Long-term desistance.”

The third component measures activity earlier in life. High scorers on this
component are high offenders right from childhood through their teenage
years. The component then shows a bounceback in the early twenties, later
reverting to overall average behavior. This component is most affected by
juvenile criminal activity and we call it “Juvenile crime level.”

Sampson and Laub (1993, Chapter 1) place particular emphasis on early
onset of delinquency and on adult desistance as important aspects of the
life course often neglected by criminologists. Our analysis supports their
claim, because the smoothed principal components analysis has picked out
components corresponding to these features.

2.3.4  Detailed examination of the scores

We now find the score of each of the 413 individuals in the sample on these
three principal components, by integrating the weight function against the
functional datum in each case. This gives each individual a score on each of
the attributes “adult,” “desistance,” and “juvenile.” These are plotted in
pairs in Figure 2.9. There is essentially no correlation among these scores, so
the three aspects can be considered as uncorrelated within the population.

However, the distribution of the first component, labeled “Adult” in the
plots, is very skewed, with a long tail to the right; note that the mean of
these scores is only 1.8. Even after taking the square root transformation,
there are some individuals with very high overall rates of offending. If the
overall score is low, then the values of “Desistance” are tightly clustered,
but this is not the case for higher levels. This is for the simple reason
that individuals with low overall crime rates have no real scope either to
desist strongly, or to increase strongly. Because the overall rate cannot
be negative, there are, essentially, constraints on the size of the second
component in terms of that of the first, and these are visible in the plot.
What the plot shows is that individuals with high overall rates can equally
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Figure 2.9. Plots of the first three principal components scores of the criminology
life course data. The mean of the Adult scores is about 1.8.

well be strong desisters or strong “late developers,” The same variability
of behavior is not possible among low offenders.

The second and third components have symmetric unimodal distribu-
tions, and the third plot gives the kind of scatter one would expect from
an uncorrelated bivariate normal distribution. The second plot of course
shows the skewness of the “Adult” variable, but otherwise shows no very

distinctive features.
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Figure 2.10. High desistance/low adult score plotted against Adult score.

Let us return to the plot of Adult against Desistance scores. An impor-
tant issue in criminology is the existence of distinct groups of individuals in
the population. There is no suggestion in this plot of a cluster of high-crime
individuals even though there is a long tail in the distribution. However,
there does appear to be a preponderance of cases near the upper boundary
of the plotted points toward the left of the picture. These are all individ-
uals with low adult crime rates and with nearly the maximum possible
desistance for their adult crime scores. In order to identify these cases, we
introduce a high desistance/low adult (HDLA) score, defined by

HDLA = 0.7 x (Desistance score) — (Adult score) + 8.

A plot of the HDLA score against the Adult score is given in Figure
2.10. The multiple of 0.7 in the definition of HDLA was chosen to make
the boundary at the top of this plot horizontal. The arbitrary constant 8
was added to make all the scores positive. We can see that there is a range
of values of Adult scores for which HDLA is near its maximum value.
A histogram of the HDLA values is given in Figure 2.11. Although the
individuals with HDLA values near the maximum do not form a separate
group, there is certainly a strong tendency for a cluster to form near this
value. What do the trajectories of such individuals look like?

Ignoring all other variability, we examine the raw data of the 36 indi-
viduals with HDLA scores above 7.87. These are plotted in Figure 2.12.
The individual trajectories cannot be easily distinguished, but the message
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Figure 2.11. Histogram of the HDLA scores.

is clear: these are individuals who give up crime altogether by their late
teens, even though earlier on they may have been quite high offenders. This
is confirmed by Figure 2.13, which compares the HDLA score to the last
age at which any offense is committed. A small number of individuals have
very high HDLA scores but still offend very sporadically later in life. Thus
the HDLA score is a more robust measure of almost total desistance than
is the simple statistic of the last age at which any offense is committed.

2.4 What have we seen?

Constructing functional observations from discrete data is not always
straightforward, and it is often preferable to transform the original data
in some way. In the case of the criminology life course data, a square root
of the original annual counts gave good results.

A key feature of the life course data is the high variability of the
individual functional data. Even though there are over 400 curves, the
sample mean curve still contains noticeable spurious fluctuation. A rough-
ness penalty smoothing approach gives a natural way of incorporating
smoothing into the estimation of the mean. In the functional context, some
guidance as to the appropriate value of the smoothing parameter can be
obtained by a cross-validation method discussed in more detail below.
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Figure 2.12. Raw data for the individuals with HDLA scores above 0.27. The
data have been slightly jittered in order to separate the lines.
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Figure 2.13. Age of last recorded offense plotted against HDLA scores. The indi-
viduals with highest HDLA scores correspond closely to those who give up crime
altogether by age 20.
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Without some smoothing, a functional principal components analysis of
these data does not give very meaningful results. However, good results can
be obtained by incorporating a roughness penalty into the size constraint
of the principal component weight functions. The various principal compo-
nents have immediate interpretations in terms of the original criminological
issues, and can be used to build a composite score, the high desistance/low
adult score, which brings out particular features of importance. There is
no real evidence of strong grouping within the original data.

At this point, we have finished the specific task of analyzing the crimi-
nology data, but our discussion has raised two particular matters that are
worth exploring in more detail. A general matter is the way that functional
observations are stored and processed. A more specific issue is the cross-
validation approach to the choice of smoothing parameter when estimating
the mean. Some readers may wish to skip these sections, especially Section
2.5.2 onwards.

2.5 How are functions stored and processed?

2.5.1 Basis expansions

In the example we have considered, we could simply store all the original
values at the 25 evaluation points, since these points are the same for each
individual in the sample. However, there are several reasons for considering
other approaches. First, it is in the spirit of functional data analysis that we
wish to specify the whole function, not just its value at a finite number of
points. Second, it is important to have a method that can generalize to the
case where the evaluation points are not the same for every individual in
the sample. Third, we will often wish to be able to evaluate the derivatives
of a functional datum or other function we are considering.

A good way of storing functional observations is in terms of a suitable
basis. A basis is a standard set of functions, denoted 31 (t), B2(t), . .., Bm(¢),
for example, such that any function of interest can be expanded in terms
of the functions g;(t). If a functional datum z(¢) is written

o(t) = 3 &6 28)

then the vector of m coefficients £ = (&1, ..., &y) specifies the function.
Storing functional data in terms of an appropriate basis is a key step in
most functional data analyses. Very often, the basis is defined implicitly
within the procedure and there is no need for the user to be aware of it.
For example, our treatment of the criminology life course data used a very
simple basis, the polygonal basis made up of triangular functions like the
ones shown in Figure 2.14. In mathematical terms, the basis functions d;(t)
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Figure 2.14. Three triangular basis functions. The functions are zero outside the
range plotted.

are defined for ¢ = 1,2,...,25 and 11 <t < 35 by setting ¢t;, = ¢+ 10 and

0i(t) = { 0 otherwise. (2.9)

The coefficients &; of a particular function are, in this case, exactly the
values z(j + 10) of the function at the evaluation points. In between these
points the function is interpolated linearly.

Because the basis functions ¢;(¢) are not themselves everywhere smooth,
they will not give rise to smooth basis expansions either. A good basis for
the representation of smooth functions is a basis of B-splines, as plotted
in Figure 2.15. B-splines are a flexible and numerically stable basis that
is very commonly used. Except near the boundaries, the B-splines we use
are all identical bell-shaped curves. The nonzero part of each B-spline is a
piecewise cubic polynomial, with four cubic pieces fitting together smoothly
to give a curve that has jumps only in its third derivative.

In the following sections, we give more details of the calculations involv-
ing basis expansions. These are intended for readers who are interested in
the way that the basis expansions are used in practice and might wish to re-
construct the calculations for themselves. The algorithms are not explained
in detail, but the more mathematically sophisticated reader not willing to
take the results on trust should have no difficulty in reconstructing the
arguments underlying them.
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Figure 2.15. A B-spline basis that can be used to represent smooth functions

The first step is to use discrete observations of a function to obtain a basis
representation. Then we move to the ways in which the smoothed mean
estimation and the smoothed principal components analysis are carried
out for a set of functional data held in basis representation form. The life
course data are used as a concrete example, but the general principles can
be extended widely. Some of this material is discussed in more detail in
Ramsay and Silverman (1997) but it is convenient to draw it all together
here. Some additional material, including S-PLUS software, is given in the
Web page corresponding to this chapter.

2.5.2  Fitting basis coefficients to the observed data

Consider the criminology data for a single individual in the sample. In our
case the function corresponding to that individual is specified at the 25
points corresponding to ages from 11 to 35, and a triangular basis is used.

More generally we will have values x1,x2,...,2, at n evaluation points
t1,t2,...,tn, and we will have a more general set of basis functions 3;(t).
Define the n x m matrix B to have elements

Bij = Bj(ti),

so that if the coefficient vector is £ then the vector of values at the evaluation
points is BE.
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There are now two cases to consider.! If there are no more basis functions
than evaluation points, so that m < n, then we can fit the basis functions
by least squares, to minimize the sum of squares of deviations between zy,
and > 5 &iBi (tx). By standard statistical least squares theory, setting

¢=(B'B)"'B'x

will then specify the coefficients completely. If m = n the resulting expan-
sion x(t) = >_,&;3;(t) will interpolate the values z; exactly, whereas if
m < n the expansion will be a smoothed version of the original data. In
the criminology data example, the matrix B is the identity matrix and so
we simply set & = z.

On the other hand, if there are more basis functions than evaluation
points, there will be many choices of ¢ that will interpolate the given values
exactly, so that

m

Tk :Zgjﬂj(tk) for each k =1,2,...,n, (2.10)

j=1

which can be written in vector form as B¢ = x. In order to choose between
these, we choose the parameters that minimize the roughness of the curve,
suitably quantified. For instance, if a B-spline basis is used, we can use the
roughness penalty [{z(t)}?dt. Define the matrix K by

Ky = [ 105 0. (2.11)

Then the roughness is equal to £’ K¢, so we choose the coefficient vector £
to minimize &' K¢ subject to the constraint B = x. If a triangular basis is
used, we could use a roughness penalty based on first derivatives, but the
principle is the same.

One specific feature of the general approach we have described is that
it does not matter if the various functional data in the sample are not
observed at the same evaluation points—the procedure will refer all the
different functional data to the same basis, regardless of the evaluation
points at which each has been observed.

2.5.8  Smoothing the sample mean function

Now we move on to the calculation of the smoothed overall mean and to
smoothed principal components analysis. In all cases, it is assumed that
we have a set of functional data Y7 (¢),Y2(t), ..., Y, (¢) expanded in terms

IThis discussion is subject to the technical condition that B is of full rank. If, excep-
tionally, this is not so, then a roughness penalty approach can still be used to distinguish
between different basis representations that fit the data equally well.
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of a basis 61(t),...,0m(t). Thus there is an n x m matrix A = (a;;) of
coefficients such that

Yi(t) = ai;6;(t).
j=1
If we let a; =n~'Y", a;;, then we have
Y(t) = Zaj5j<t).
j=1

Because the basis functions ¢;(¢) may not be sufficiently smooth to allow
the appropriate roughness penalty to be defined, we may wish to use a
different basis O (t) of size M when expanding the estimated mean curve.
Given an M-vector 7 of coefficients, consider the function g with these basis
function coeflicients in the new basis:

g(t) = > 1B5(0).
j=1
Define the matrices J and L by

Jij :/ﬁz(t)ﬂj(t)dt and Lij ://Bz(t)éj(t)dt

and the matrix K by (2.11) above.
From these definitions it follows that

/{g(t) —Y()dt + A /g”(t)2dt = /Y(t)th +v'Jy 4+ M Ky — 2v'La.

By standard linear algebra, this expression is minimized when ~ is the
vector of coefficients vV given by
(J + AK)y™N = La. (2.12)

Solving equation (2.12) to find v), we can conclude that

ma(t) =Y 155 (8).
j=1

2.5.4  Calculations for smoothed functional PCA

Now consider the smoothed functional principal components analysis as
discussed in Section 2.3. Suppose that £(t) is a possible principal component
weight function, and that the vector f gives the coefficients of the basis
expansion of {(t) in terms of the §;(t), so that

waZﬂMﬂ
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The vector of principal component scores of the data is then

( / g(tm(t)dt) _ ALY, (2.13)

Let V' be the sample variance matrix of the basis coefficients of the
functional data, so that

n

Vik = —=1)7""> (ai; — a;)(aix — ).

i=1

The variance of the principal component scores is then f'LVL’f. On the
other hand, the constraint (2.6) on the size and roughness of £(t) is given
by

/g(t)%lt + a/E”(t)th =f(J+aK)f=1. (2.14)

To find the leading smoothed principal component, we need to maximize
the quadratic form f'LVL'f subject to the constraint (2.14). There are
several ways of doing this, but the following approach works well.

Step 1 Use the Choleski decomposition to find a matrix U such that J +
aK =U'U.

Step 2 Write g = Uf so that f'(J + aK)f = g'g. Define ¢!V to be the
leading eigenvector of the matrix (U~')LVL'U~'. Normalize g(!)
to have length 1, so that ¢(!) maximizes (U~'g)'LV L'U~'g subject
to the constraint ¢'g = 1. Set f() = U~1¢g(M) . Then £ is the basis
coefficient vector of the leading smoothed principal component weight
function.

Step 3 More generally, let ¢/ be the jth normalized eigenvector of
(U=YYLVL'U~'. Then U~'g\) is the basis coefficient vector of the
jth smoothed principal component weight function.

2.6 Cross-validation for estimating the mean

In classical univariate statistics, the mean of a distribution is the least
squares predictor of observations from the distribution, in the sense that
if p is the population mean, and X is a random observation from the
distribution, then E{(X — u)?} < E{(X — a)?} for any other number a.
So one way of evaluating an estimate of p is to take a number of new
observations from the distribution, and see how well they are predicted by
the value yielded by our estimate. In the one-dimensional case this may
not be a very important issue, but in the functional case, we can use this
insight to guide our choice of smoothing parameter.
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In an ideal world, we would measure the efficacy of prediction by com-
paring the estimated mean curve to new functional observations. However,
it would take 25 years or more to collect new data! (And, even if we were
prepared to wait, the social context would have changed in such a way as
to make it impossible to assume the new data came from the same distri-
bution as the original data.) Therefore we have to manufacture the “new
observation” situation from our existing data.

The way we do this is to leave each function out in turn from the es-
timation of the mean. The function left out plays the role of “new data.”
To be precise, let m;i(t) be the smoothed sample mean calculated with
smoothing parameter A from all the data except Y;(t). To see how well
m;i predicts Y;, we calculate

[imi@ - viwyae

To avoid edge effects, the integral is taken over a slightly smaller range
than that of the data; we integrate over 12 < ¢ < 34, but in this case the
results are not much affected by this restriction. We now cycle through the
whole functional data set and add these integrals together to produce a
single measure of the efficacy of the smoothing parameter A. This quantity
is called the cross-validation score CV(A); in our case

413

34 )
oV =Y [ my ) i)y

The smaller the value of CV(A), the better the performance of A\ as
measured by the cross-validation method.

A plot of the cross-validation score for the criminology data is shown in
Figure 2.16. The smoothing parameter value selected by minimizing this
score is A = 2 x 1077, As noted in Figure 2.6, the use of this smoothing
parameter yields an estimated mean with some remaining fluctuations that
are presumably spurious, and in our context it is appropriate to adjust the
smoothing parameter upward a little. In general, it is advisable to use
automatic methods such as cross-validation as a guide rather than as a
rigid rule.

Before leaving the subject of cross-validation, it is worth pointing out the
relation between the cross-validation method we have described here and
the standard cross-validation method used in nonparametric regression. In
nonparametric regression, we are interested in estimating a curve from a
sample (¢;, X;) of numerical observations X; taken at time points ¢;, and
a cross-validation score for a particular smoothing procedure can be found
by omitting the X; one at a time. In the functional case, however, we omit
the functional data one at a time, and so the various terms in the cross-
validation score relate to the way that a whole function Y;(¢) is predicted
from the other functions in the data set.
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Figure 2.16. Cross-validation score for the estimation of the mean of the crimi-
nology data. The smoothing parameter is plotted on a logarithmic scale, and the
minimum value is attained at A =2 x 107".

2.7 Notes and bibliography

Glueck and Glueck (1950) describe in detail the way in which the orig-
inal sample of 500 delinquent boys was constructed and the initial part
of the data collection, a process which they continued throughout their
careers. A fascinating account of the original collection and processing of
the life course data, and the way they were rediscovered, reconstructed,
and reinforced is given by Sampson and Laub (1993). Sampson and Laub
also describe the methodological controversies within the criminological re-
search community which underlie the interest in the longitudinal analysis
of these data.

A general discussion of roughness penalty methods is given in Ramsay
and Silverman (1997, Chapter 4), and for a fuller treatment including bib-
liography the reader is referred to Green and Silverman (1994). The idea
of smoothing using roughness penalties has a very long history, going back
in some form to the nineteenth century, and certainly to Whittaker (1923).
An important early reference to the use of cross-validation to guide the
choice of smoothing parameter is Craven and Wahba (1979). In the func-
tional context, the idea of leaving out whole data curves is discussed by
Rice and Silverman (1991). The smoothing method for functional principal
components analysis described in Section 2.3 is due to Silverman (1996).
See also Ramsay and Silverman (1997, Chapter 7).



