3
The Nondurable Goods Index

3.1 Introduction

Governments and other institutions use a host of statistical summaries
to track aspects of society across time and space. These range from simple
counts of events such as deaths from lung cancer to sophisticated summaries
of complex processes. For instance, inflation is monitored by the cost of
completing a shopping list carefully designed to reflect the purchases that
most citizens would find essential. To give another example, indices such
as the Dow Jones summarize stock market performance.

The index of nondurable goods manufacturing for the United States,
plotted in Figure 3.1, is a monthly indicator reflecting the producton of
goods that wear out within two years, such as food, tobacco, clothing,
paper products, fuels, and utilities. Because such items are, in normal times,
repeatedly purchased, the index reflects the economy of everyday life. When
times are good, people exhibit strong and stable spending patterns, but
shocks such as the collapse of the stock market in 1929 and the onset of
World War II (1939 in Europe and 1941 in the United States) produce both
short-lived transitory effects, and longer-lasting readjustments of lifestyles.
Technical innovations such as the development of the personal computer
in the early 1980s affect both consumer habits and the production process
itself. You can access these data from the Web site for this chapter.

In this and most economic indicators, there is a multilayered structure.
There are overall trends that span a century or more, and we see in Figure
3.1 that there is a broad tendency for exponential or geometric increase.
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Figure 3.1. Monthly nondurable goods manufacturing for the United States.

Long-term changes last decades, medium-term effects such as recessions
last a number of years, and short-term shocks such as the beginning and
end of wars are over in a year or two.

We see by the ripples in Figure 3.1 that there is an important seasonal
variation in the index. The index includes items often given as gifts, so
there is a surge in the index in the last part of each year, followed by a low
period in January and February. The beginning of the school year requires
new clothes, and we expect to see another surge in the preceding months.
On the supply side, though, we need people in the manufacturing process,
and vacation periods such as the summer holidays will necessarily have an
impact on factory activities.

This seasonal variation is also affected by changes in the economy at
various time scales, and so we also want to study how the within-year
variation evolves. Perhaps the evolution of seasonal variation can tell us
something interesting about how the economy evolves in normal times,
and how it reacts to times of crisis and structural change. How did the
outbreak of World War II change the seasonal pattern? What about the
moving off-shore of a great deal of manufacturing in recent decades? But
Figure 3.1 covers too long a time span to reveal much, and we will need to
consider some new ways of plotting the seasonal trend.
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Figure 3.2. The monthly nondurable goods production shown in Figure 3.1 plot-
ted on a logarithmic scale. The dotted straight line is estimated by least squares
regression, and has a slope of 0.016, corresponding to a 1.6% increase in the index
per year.

3.2 Transformation and smoothing

Like most economic indicators, the nondurable goods index tends to exhibit
exponential increase, corresponding to percentage increases over fixed time
periods. Moreover, the index tends to increase in size and volatility at the
same time, so that the large relative effects surrounding the Second World
War seem to be small relative to the large changes in the 1970s and 1980s,
and seasonal variation in recent years dwarfs that in early years.

We prefer, therefore, to study the logarithm of this index, displayed in
Figure 3.2. The log index has a linear trend with a slope of 0.016, corre-
sponding to an annual rate of increase of 1.6%, and the sizes of the seasonal
cycles are also more comparable across time. We now see that the changes
in the Great Depression and the war periods are now much more substan-
tial and abrupt than those in recent times. The growth rate is especially
high from 1960 to 1975, when the baby boom was in the years of peak
consumption; but in subsequent years seems to be substantially lower, per-
haps because middle-aged “boomers” consume less, or possibly because the
nature of the index itself has changed.



44 3. The Nondurable Goods Index

1.70 1.72

1.68

Log10 nondurable goods index
1.64 1.66

1.62

60

1.

Year

Figure 3.3. The log nondurable goods index for 1964 to 1967, a period of com-
parative stability. The solid line is a fit to the data using a polynomial smoothing
spline. The circles indicate the value of the log index at the first of the month.

A closer look at a comparatively stable period, 1964 to 1967 shown in
Figure 3.3, suggests that the index varies fairly smoothly and regularly
within each year. The solid line is a smooth of these data using a method
described in Section 3.6. We now see that the variation within this year
is more complex than Figure 3.2 can possibly reveal. This curve oscillates
three times during the year, with the size of the oscillation being smallest
in spring, larger in the summer, and largest in the autumn. In fact each
year shows smooth variation with a similar amount of detail, and we now
consider how we can explore these within-year patterns.

3.3 Phase-plane plots

The rate of change of the index at any point is rather more interesting than
its actual size. For example, the increase of 1.6% per year over the twentieth
century gives us a reference value or benchmark for the average change of
2.0% from 1963 to 1972 or the smaller 0.8% increase following 1990. The
crash of 1929, after all, mattered, not because the index was around 15 at
that point, but because it was a change so abrupt that everybody noticed
that something had happened.
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If, then, it is change that matters, it follows that we need to study what-
ever alters velocity or the first derivative of the curve. The second derivative
of the curve is its acceleration, and is instantaneous curvature in the in-
dex. When the index is curving upward, the velocity is increasing. Note
the strong positive curvature in the index at the beginning of August, for
example.

The smoothing method used to compute the curve in Figure 3.3 was
designed to give a good impression of the velocity and acceleration of the log
nondurable goods index. The capacity to generate high quality estimates
of derivatives as well as curve values is a comparatively recent technical
development in statistics and applied mathematics, and more details are
provided in Section 3.6.

Now that we have derivatives at our disposal, we can learn new things
by studying how derivatives relate to each other. Our tool is the phase-
plane plot, a plot of acceleration against velocity. To see how this might
be useful, consider the phase-plane plot of the function sin(27t), shown in
Figure 3.4. This simple function describes a basic harmonic process, such
as the vertical position of the end of a suspended spring bouncing with a
period of one time unit and starting at position zero at time ¢ = 0.

The spring oscillates because energy is exchanged between two states:
potential and kinetic. At times 1,3, ... the spring is at one or the other end
of its trajectory, and the restorative force due to its stretching has brought
it to a standstill. At that point, its potential energy is maximized, and so
is the force, which is acting either upward (positively) or downward. Since
force is proportional to acceleration, the second derivative of the spring
position, —(27)?sin(27t), is also at its highest absolute value, in this case
about +40. On the other hand, when the spring is passing through the
position 0, its velocity, 27 cos(2nt), is at its greatest, about +8, but its
acceleration is zero. Since kinetic energy is proportional to the square of
velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized
at the extremes of Y and kinetic energy at the extremes of X.

Now harmonic processes and energy exchange are found in many situ-
ations besides mechanics. In economics, potential energy corresponds to
available capital, human resources, raw material, and other resources that
are at hand to bring about some economic activity, in this case the manufac-
ture of nondurable goods. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly
line, and the goods are being shipped out the factory door.

The process moves from strong kinetic to strong potential energy when
the rate of change in production goes to zero. We see this, for example, after
a period of rapid increase in production when labor supply and raw mate-
rial stocks become depleted, and consequently potential energy is actually
in a negative state. Or it happens when management winds down produc-
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Figure 3.4. A phase-plane plot of the simple harmonic function sin(27t). Kinetic
energy is maximized when acceleration is 0, and potential energy is maximized
when velocity is 0.

tion because targets have been achieved, so that personnel and material
resources are piling up and waiting to be used anew.

After a period of intense production, or at certain periods of crisis that
we examine shortly, we may see that both potential and kinetic energy are
low. This corresponds to a period when the phase-plane curve is closer to
zero than is otherwise the case.

To summarize, here’s what we are looking for:

e a substantial cycle;

e the size of the radius: the larger it is, the more energy transfer there
is in the event;

e the horizontal location of the center: if it is to the right, there is net
positive velocity, and if to the left, there is net negative velocity;

e the vertical location of the center: if it is above zero, there is net
velocity increase; if below zero, there is velocity decrease; and

e changes in the shapes of the cycles from year to year.
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Figure 3.5. A phase-plane plot of the first derivative or velocity and the second
derivative or acceleration of the smoothed log nondurable goods index for 1964.
Letters indicate midmonths, with lowercase letters used for January and March.
For clarity, the first half of the year is plotted as a dashed line, and the second
half as a solid line.

3.4 The nondurable goods cycles

We use the phase-plane plot, therefore, to study the energy transfer within
the economic system. We can examine the cycle within individual years,
and also see more clearly how the structure of the transfer has changed
throughout the twentieth century. Figure 3.5 phase-plane plots the year
1964, a year in a relatively stable period for the index. To read the plot,
find the lower-case “j” in the middle right of the plot, and move around the
diagram clockwise, noting the letters indicating the months as you go. You
will see that there are two large cycles surrounding zero, plus some small
cycles that are much closer to the origin.

The largest cycle begins in mid-May (M), with positive velocity but near
zero acceleration. Production is increasing linearly or steadily at this point.
The cycle moves clockwise through June (first J) and passes the horizontal
zero acceleration line at the end of the month, when production is now
decreasing linearly. By mid-July (second J) kinetic energy or velocity is
near zero because vacation season is in full swing. But potential energy
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or acceleration is high, and production returns to the positive kinetic/zero
potential phase in early August (A), and finally concludes with a cusp at
summer’s end (S). At this point the process looks like it has run out of
both potential and kinetic energy.

The cusp, near where both derivatives are zero, corresponds to the start
of school in September, and to the beginning of the next big production
cycle passing through the autumn months of October through November.
Again this large cycle terminates in a small cycle with little potential and
kinetic energy. This takes up the months of February and March (F and
m). The tiny subcycle during April and May seems to be due to the spring
holidays, since the summer and fall cycles, as well as the cusp, don’t change
much over the next two years, but the spring cycle cusp moves around,
reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles
swinging widely around zero, each terminating in a small cusplike cycle.
This suggests that each large cycle is like a balloon that runs out of air,
the first at the beginning of school, and the second at the end of winter.
At the end of each cycle, it may be that new resources must be marshaled
before the next production cycle can begin.

With this basic pattern characterizing the phase-plane plot for a stable
year, it can be revealing to examine years in which important events took
place. Figure 3.6 shows what happened in 1929 to 1931. Year 1929 has the
same features as we saw above for 1964, but we see a bulge to the left in the
late autumn, when the stock market crashed. By November of that year
production was in a state of freefall. We pick up the story in the middle
cycle for 1930, and see that, after a small spring and larger summer cycle,
the autumn cycle loses much of its potential energy, and this is even more
evident in 1931. Probably this is attributable to the collapse of consumer
demand in the holiday period as people restrict spending to the essentials.

Figure 3.7 pictures the events leading to World War II. The first part
of 1937 shows only small amounts of energy as the Depression continues.
But the cycle is dramatically altered in the fall by the sudden decrease in
the money supply imposed by the Treasury Board when it feared that the
economy might be overheated and headed for another crash. You can see
in Figure 3.2 that this precipitous event is comparable in size to the stock
market crash of 1929, but even more sudden. The spring and fall cycles
were all but wiped out in 1938.

The bottom plot in Figure 3.7 shows the reduced seasonal variability
during the war years, and this is also clearly visible in Figure 3.2. In times
of war people don’t take holidays, make do with what they have, and spend
less at Christmas. Moreover, war production did not exhibit much seasonal
variation since the demand for nondurable goods, like the war itself, was
steady through the year.

Another three years in which important changes occur are 1974 to 1976,
plotted in Figure 3.8. The Vietnam War was concluded in this period, and
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Figure 3.6. Phase-plane plots for the years 1929 to 1931, during the onset of the
Great Depression. The horizontal and vertical scale is the same as in Figure 3.5.
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Figure 3.7. Phase-plane plots for two years preceding the Second World War and
a typical war year.
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Figure 3.8. Phase-plane plots for 1974 to 1976, when the production cycles are
changing rapidly.
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Figure 3.9. Phase-plane plots for 1996 to 1998, showing the greatly reduced
variability of current production cycles.
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Figure 3.10. The phase-plane plot for 1997 on a larger scale, showing the
structural changes in current production cycles.

the OPEC oil crisis also contributed to a change in economic patterns.
One consequence was the decrease in the size of the fall loop. What we
cannot see in this small time window, though, is that fundamental changes
initiated in the mid-1970s persist to the present day.

What is happening now? Figure 3.9 shows that the production cycles are
now much smaller than they once were. We still see fairly large seasonal
oscillations, but they are now much smoother, and hence show less variation
in velocity and acceleration. Also, if we look at Figure 3.10 showing the 1997
cycles on a larger scale, we see that there are now four cycles rather than
three, and that the final winter cycle has a strongly negative net velocity.
Are this loss of dynamism and these structural changes due to the fact that
production is no longer so dependent on manpower? Or, perhaps, that it
is more tightly controlled by information technology? On the other hand,
it may be simply that far more nondurable goods are now manufactured
outside the United States.

A further clue to recent changes is that in the early 1990s, personal com-
puters and other electronic goods were classified as durable. Consequently,
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one sees in the comparable index for durable goods a strong increase in
its typical slope at that point. Although it is true that electronic goods
usually last more than two years, the pace of technological development in
this sector has meant that, effectively, consumers have tended to discard
these items because they are obsolete. This loss of electronic goods in the
nondurable goods index has surely diminished its energy.

3.5 What have we seen?

Phase-plane plotting is revealing because it focuses our attention on the
dynamics of the seasonal component of variation in the goods index. We
plot velocity on the horizontal axis, representing the rate of change of the
process; and plot acceleration on the vertical axis, indicating the input or
withdrawal of whatever resources or forces produce this change. Because
seasonal components tend to exhibit oscillatory or harmonic behavior, we
can interpret what we see as a transition between two types of energy:
kinetic associated with velocity, and potential associated with acceleration.
Harmonic behavior, in which the system moves between these two states,
shows up as a loop surrounding the origin. The bigger the radius of the
loop, the more energy the system has, and the smaller or closer it is to
zero, the less the energy.

We saw that the typical year shows three such loops, associated with
the spring, summer, and fall. The summer loop typically has the largest
associated energy. But the fall loop seems to be most affected by shocks
such as the stock market crash of 1929, the shutting down of the money
supply in 1937, and the end of the Vietnam War in 1974. This is probably
due to the fact that the fall production loop is associated with buying for
the Christmas holidays, and therefore is something consumers can turn on
and off according to whether times are good or tough, respectively.

We also saw the seasonal dynamics reflecting longer-term changes. There
is much less energy in the system now than in the 1960s, as reflected in the
smallness of loops in recent times.

The dynamics of a process typically show more variation than the statics
or position of the process, and we could see things happening in the phase-
plane plots that would be hard to spot in the plot of the process itself, such
as in Figure 3.2.

This focus on dynamics leads to the question of whether we can model
these dynamic features directly, rather than putting all of our statistical
energy into reproducing the curve itself. This leads us naturally to the idea
of using a differential equation to describe the process, a type of modeling
that will allow us to model the dynamic behavior seen in the phase-plane
plot as well as the curve itself. We use differential equations in models in
Chapters 11 and 12.
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3.6 Smoothing data for phase-plane plots

3.6.1 Fourth deriwative roughness penalties

We can imagine that the economic forces generating the log index values are
reasonably smooth. In practice, this means that a curve giving a satisfactory
picture of these processes has a certain number of derivatives. For phase-
plane plotting, in particular, we need to use two derivatives in addition to
the curve values themselves. We estimate these derivatives by smoothing
the data, using a method that will give useful estimates of velocity and
acceleration as well as of the underlying curve itself.

Therefore we choose to fit a smooth curve h(t) to log index values y;,7 =
1,...,973, by using the following criterion

973 2000
PENSSEx(h) = > [yi — h(t:)]* + A R (@)]2dt. (3.1)
i1 1919

The criterion has two terms. The first assesses the fidelity of the curve to
the observed data in the sense of the sum of squared errors.

But fitting the data is not our only concern, and the second term, the
penalty term, measures the extent to which the fitting function h(t) is
smooth. The notation h(*”)(t) in (3.1) means the fourth derivative of h
evaluated at time t. The penalty term captures the overall size of this
fourth derivative by integrating its square over the interval of interest.
Why the fourth derivative? Because it is sensitive to the curvature of the
second derivative, or acceleration. Recall that curvature is indicated by the
second derivative, so the curvature of the acceleration function is its second
derivative, or the fourth derivative of the actual curve h(t).

We cannot have smoothness and a nearly perfect fit to the data at the
same time, especially when we have this many observations. The smoothing
parameter A controls the relative emphasis on fitting the data and smooth-
ness. As )\ increases, smoothness is accentuated more and more, until finally
the integrated square of h(*)(t) will be driven to zero. Only polynomials
of degree three or fewer have zero fourth derivatives, and clearly a function
this simple would not fit these data at all well. On the other hand, as A goes
to zero, smoothness matters less and less, and hence fitting the data more
and more. Finally we will arrive at a function that fits the data exactly.
Unfortunately, it will not be at all smooth, and its second derivative will
be too wildly varying to be at all useful. The challenge, then, is to find a
value for A that works for us.

3.6.2 Choosing the smoothing parameter

We discussed this problem in Chapter 2. There a data-driven technique,
cross-validation, was described that could be used to guide this choice. How-
ever, we were not shy to say that our final choice depended on inspection of
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the results, and that we used a value rather different than that suggested
by this purely data-driven method. We now continue to discuss concerns
that might govern the amount of smoothness in a curve that smooths data.

Our goal in this chapter was to use phase-plane plots to reveal something
about seasonal trend, and how it evolves over time. Of course the technique
is not going to be helpful if the curve misses obviously important features
in the data. Our first move, therefore, was to carefully study how well the
curve tracks the data by using close-up plots such as Figure 3.3. We ac-
tually plotted the data and the fit separately for each of the 51 years of
interest, and noted where the curve seemed to miss the data repeatedly. We
observed, for example, that the curve was too smooth if it underestimated
peak values such as that of June year after year, or if it consistently over-
estimated low values such as July. We also learned a lot by looking at the
residuals from the fit, computed by subtracting the fitted from the actual
value. If there was some trend running over several months, this was a sign
that we had oversmoothed the data. At this stage, one may say, it is rather
easier to detect oversmoothing than undersmoothing. These investigations
gave us a fairly firm idea of an upper limit on A, but less intuition about a
lower limit.

Next we looked at what we wanted to work with, namely the phase-plane
plot. Here smoothness matters a great deal. We wanted to see important
and consistent patterns, and too much wiggliness in the plot makes this
difficult. In general, high derivatives are rather more unstable than lower
ones, so at this point it was primarily smoothness in acceleration that
mattered; if acceleration was smooth, so was velocity. So we started with a
smallish value of A, and moved it upward bit by bit until the phase-plane
plot seemed stable from year to year over periods when it should be, such
as the 1960s, and, of course, to the point where we could make sense out
of the structure of the plot. This process gave us a desirable lower limit on
A

We have to admit that this lower limit is often larger than the upper limit
identified by looking at the data fit. However, at this point some fit just has
to be sacrificed in order to see what we are looking for in the data—hence
the systematic misfitting of the July log index in Figure 3.3. Perhaps we
will return to the data someday to have a look at what we missed this time,
but for the moment we are satisfied with what we learned. Our final choice
for A\ was 10795,

In summary, our philosophy, and, we believe, the perspective of most
practitioners of smoothing, is that choosing a level of smoothing is a matter
of balancing off fitting the data against getting a stable and interpretable
estimate of what interests us. We see the choice of A as very much driven
by the needs of the investigator, and are content to see other analyses of
the same data employ a different value.



