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Bone Shapes from a Paleopathology
Study

4.1 Archaeology and arthritis

Archaeologists have conducted a major excavation at St. Peter’s Church,
Barton-upon-Humber, in the north of England. They have exhumed the
skeletons of about 2000 adults dating mainly from between 1000 and
1500 C.E. A particular way in which the bones have been studied is for
paleopathology—the use of old remains to give us information about dis-
eases that people suffered from in the past. Many diseases leave traces on
the bones, and special attention was given to osteoarthritis of the knee,
both because it is and was a common and painful disease, and because the
skeletal remains give us easy access to parts of the knee joint not easily
seen on X-rays.

The paleopathologists attempted to identify every person in the sam-
ple with definite signs of osteoarthritis of the knee, as evidenced by
eburnation—polished bone surface caused by complete cartilage loss. Ini-
tially, 23 people were found with eburnation on at least one femur. For
each such person, controls matched approximately by age, sex, and period
of burial were found from among those with no evidence of osteoarthritis at
any joint. Once the joints with postmortem damage had been eliminated,
this left 16 eburnated femora and 52 controls for analysis.

Several aspects of the biomechanics of the knee have been studied in
relation to osteoarthritis. These include obesity, injury, and lower limb
malalignment, but the shape of the joint itself has not been very much
considered. It has been hypothesized that osteoarthritis can affect bone
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Figure 4.1. Setup showing how the image is captured. A camera captured a digital
image of each bone. From Shepstone et al. (1999).

shape, or conversely that certain joint shapes may affect the biomechanics
of the joint and hence increase the risk of osteoarthritis. It is against this
background that a study of the shapes of the bones was carried out.

4.2 Data capture

As is typical, the investigation had to be carried out rapidly and with a low
budget, and so it was not possible to study the three-dimensional structure
directly. However, very interesting conclusions can be drawn from simpler
two-dimensional images of the joint shape. The first step was to capture
the data themselves. Each bone was photographed end-on, as in Figure 4.1,
to yield an image as shown in Figure 1.5.

The easiest way of identifying the shape of the joint was to “mark up”
each image on the screen by direct reference to the actual bone. The result
was a pixel image, with certain pixels specified as being within the outline
of the joint. All left femora were reflected to produce “right” images, in
order to give every bone a consistent orientation. A typical image is shown
in Figure 4.2. The knee end forms an inverted U-shape. The two arms of
the inverted U-shape formed by the knee are called condyles, and the space
between them is the intercondylar notch. The smaller indentation at the
top of the image is called the patellar groove.

For our analysis, we have 68 outlines, of which some are known to cor-
respond to arthritic joints. We regard each outline as a single data object,
and consider ways of studying the variability in shape between the bones,
and of relating this variability to the presence or absence of arthritis. The
first step in studying the shapes is to parameterize the images in an ap-
propriate way. One way of doing this is by defining landmarks; these give
a natural way of representing a shape by a fairly low-dimensional array of
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Figure 4.2. Bitmap image after drawing round the outline in Figure 1.5 on the
screen and reversing to yield standard orientation.

numbers. In Chapter 8 we return to these data and consider a different
approach concentrating on the intercondylar notch alone.

4.3 How are the shapes parameterized?

The principle of using landmarks is to locate a fairly small collection of
points from which the shape itself can be reasonably reconstructed. The
process used for the bone shapes is best described by reference to Figure
4.3. Initially, the landmarks numbered 1, 2, 5, 7, 9, and 12 were located
‘by hand’ (in fact by mouse) on the image. These correspond to lowest
and highest points on the relevant part of the outline, but because of the
strange shapes of some of the specimens, are easier located manually than
algorithmically. Then landmarks 3, 6, 8, and 11 were defined as the extreme
points within the image of the perpendicular bisector of the lines 2–5, 5–7,
7–9 and 9–12 respectively. This process was repeated on the lines 3–5 and
9–11 to give landmarks 4 and 10. For the remainder of the analysis, we
discarded the bone pixel images and worked with the landmarks.

Any bone’s shape can be reasonably well approximated by putting a
smooth curve through the coordinates of the 12 landmarks. Although the
calculations we carry out are in terms of the 24 coordinates of the land-
marks, conceptually we are considering the shapes as the data of interest,
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Figure 4.3. Demonstration of the process of identifying and constructing land-
marks. Landmarks 1, 2, 5, 7, 9, and 12 are located manually, and the others
are then found automatically, as the extreme points within the image of the
perpendicular bisector of the lines shown. From Shepstone et al. (1999).

and the results in terms of the curves themselves. To each set of landmark
positions there corresponds a periodic curve, and the coordinates of the
landmarks are the way that the curves are represented internally to our
calculations.

To be precise, the interpolation is carried out by fitting periodic cubic
spline interpolants to the landmark x and y values separately, to give func-
tions x(t) and y(t) for t in [0, 1]. A cubic spline is a curve made of pieces
of cubic polynomials, joined together smoothly at the data points, and the
fitting was done using the S-PLUS routine spline. The landmark posi-
tions gave the values of x and y at the points i/12 for i = 1, 2, . . . , 12. As t
varies, the point (x(t), y(t)) then traces out the curve. The same technique
is used whenever we wish to recover a curve from its landmark positions.
In mathematical terms, continuing the ideas discussed in Section 2.5, we
have implicitly constructed a basis for the representation of these shapes.
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4.4 A functional principal components analysis

4.4.1 Procrustes rotation and PCA calculation
Because the size and orientation of the bones is of no particular interest, we
eliminate size and orientation variability by a process known as Procrustes
transformation. In Greek mythology, Procrustes was a robber who captured
passing travelers and made them fit his bed, either by stretching their
limbs or by chopping them off. Fortunately the analysis of data is less
traumatic, but the idea is still to adjust the data so they fit together as
closely as possible. First each configuration is centered at its mean, in order
to eliminate any translation effects. Then the configurations are all rotated
and scaled to minimize the sum of squares between the configurations. For
software details, see the Web page associated with this chapter.

Let µ1, µ2, . . . ,µ12 be the mean positions of the 12 landmarks, after
transformation. Let µ be the interpolating curve between these positions,
constructed in the way described in Section 4.3. Then µ is considered as
the mean bone shape.

Each individual shape yields a vector of 24 coordinates, the x and y
coordinates of the 12 landmarks. (Because of the Procrustes fitting, there
are some dependences between these coordinates, but that does not affect
the subsequent work.) We perform a functional principal components anal-
ysis of the 68 curves by using standard principal components analysis on
the 68 24-vectors of landmark coordinates. Before examining the results, it
is worth reviewing the way in which this functional principal components
analysis can be interpreted.

4.4.2 Visualizing the components of shape variability
Concentrate first on the leading component. For this component, standard
PCA provides a 24-vector of principal component loadings, which can be
expressed as twelve 2-vectors z1, z2, . . . , z12. As we saw in Section 2.3, a
good way of visualizing the relevant variation is to plot curves correspond-
ing to the mean plus and minus a multiple of the effect of variation in this
component direction. Indeed, in the shape context it is hardly meaning-
ful to consider the principal component weights aside from their effect on
a particular shape such as the mean. In the present example, three stan-
dard deviations of the principal component give a suitable multiple; more
generally the choice may have to be adjusted subjectively.

Let s be the sample standard deviation of the principal component. We
then find two curves, plotted in Figure 4.4. The solid curve is the interpolant
to the landmarks µ1 + 3sz1, µ2 + 3sz2, . . . ,µ12 + 3sz12. The first principal
component of this curve will be 3s, and it will exemplify the kind of curve
that has a positive value of the first principal component. The dashed curve
is the interpolant to µ1 − 3sz1, µ2 − 3sz2, . . . ,µ12 − 3sz12, and will have
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Figure 4.4. The effect of the first principal component of variation. The curves
correspond to the mean ± three standard deviations of the component. The solid
curve is the effect of adding the component and the dashed curve of subtracting
it. This component explains 21% of the variability in the original data.

a negative value of the first principal component. Furthermore, the two
curves indicate the variability of the first principal component within the
data, because of the choice of a multiple depending on s. In the present
case we do not plot the mean shape itself, because the mean can be inferred
by eye from the given curves.

It can be seen from Figure 4.4 that if an outline has a positive score
on the first principal component, then we can expect it to have a deeper
intercondylar notch, and also a more pronounced bulge in the top right
part of the image. The converse characteristics would be associated with a
negative value of this component.

Similar plots for each of the principal components 2 to 5 are shown
in Figure 4.5. The second component will be of particular importance; a
positive score is associated with a narrowing of the right-hand condyle
(in our diagram) and with a deepening and widening of the intercondylar
notch.

How do arthritic bones differ from controls? For each component, a t-
test was carried out to compare the eburnated and noneburnated bones.
There was no significant difference on components 1, 3, 4, and 5, but the
difference on component 2 was highly significant (t = −3.01, p = 0.0037).
On this component, the mean for the eburnated bones was −10.9 and for
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Figure 4.5. The effects of the second to fifth principal components of variation.
These explain 18%, 12%, 9%, and 8% of the original variability, respectively. Only
on the second component is there a significant difference (p = 0.0037) between
the eburnated and noneburnated bones. On this component the mean score for
the eburnated bones was significantly higher than for the controls.

the controls it was 3.4. This indicates that, on the average, the eburnated
bones will tend to have the properties associated with a positive score on
component 2.

4.5 Varimax rotation of the principal components

It is well known in classical multivariate analysis that an appropriate ro-
tation of the principal components can, on occasion, give components of
variability more informative than the original components themselves. A
rotation method constructs new components based on the first k principal
components, for some relatively small k. The idea is that k is chosen to
include all the components that convey meaningful information, but not
those that are just “noise”. In the present example, we concentrate on the
first five components and set k = 5.

The varimax method is often a useful approach. The method chooses
components to maximize the variability of the squared principal compo-
nent weights. The resulting modes of variability tend to be concentrated
on part of the range of the function in question, so in the present context
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Figure 4.6. The effects of the first five varimax-rotated components for the bone
shape data. The percentages of variability explained are, respectively, 14%, 15%,
15%, 11%, and 13%. The arthritic bones had significantly higher scores than the
controls on component 2 and significantly lower on component 3.

they express departures from the mean curve over part of the outline shape
rather than the whole of it. They are still orthogonal, but the values of the
components for the data will no longer necessarily be uncorrelated. Further-
more, the variances of the varimax components will be less spread out than
those of ordinary components, and need no longer decrease monotonically.
The varimax algorithm is discussed further in Section 4.8.

The modes of variation corresponding to the varimax-rotated com-
ponents are shown in Figure 4.6. Compared to the original principal
components in Figures 4.4 and 4.5, some of the varimax components are
more definitely interpretable in terms of the bone shape. Varimax compo-
nent 2 completely corresponds to a thinner right condyle, in the orientation
shown in the figure. Component 5 is concentrated almost entirely on a
much narrower join between the condyles. Component 3 is associated with
a broader intercondylar notch, but more particularly with a much more
symmetric patellar groove than the mean.

The percentages of variances explained by the components are roughly
the same for each of the components displayed. As with the raw princi-
pal components, the component scores for the two classes of bones were
compared. On components 2 and 3 the difference is significant, but not
as strongly as previously (p < 0.025 in both cases). On component 2
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the eburnated bones tend to have negative scores, whereas their scores
on component 3 tend to be larger than average. This suggests that the
eburnated bones tend to have a thicker right condyle, and a flatter and
more symmetric patellar groove.

Is varimax rotation worthwhile? It yields components that have much
more direct meaning for the bone shapes themselves. In terms of finding
ways in which the two groups of bones differ, it highlights two components
rather than concentrating attention on a single component. However, the
individual interpretation of each of these two components, especially vari-
max component 2, is much more physically intuitive than the composite
effect represented by original component 2 in Figure 4.4.

4.6 Bone shapes and arthritis: Clinical
relationship?

The relationship between the shape of the femur and the incidence of os-
teoarthritis of the knee has not been studied widely, and so any clinical
conclusions have to be tentative. It is possible to analyze the data further,
for example, by breaking down the eburnated group according to the po-
sition of the eburnation. There is then some suggestion that the location
of the eburnation is associated with the third varimax-rotated component
score, corresponding to the variation in shape of the patellar groove. On
the other hand, the change in shape of the condyles associated with the
second varimax component seems only to be associated with presence or
absence of eburnation. However, the numbers of bones in each subgroup
are not sufficient to draw firm conclusions.

What is the possible link between arthritis and the shape of the bones?
On the basis of these data alone, it is not possible to discover to what ex-
tent shape variation in the condyle is a cause or an effect of osteoarthritis.
Differences in intercondylar notch shape could conceivably affect the func-
tioning of the ligaments in the joint, or increase the likelihood of damage,
and lead to an increased risk of knee osteoarthritis. Conversely, arthritis
causes a change in biomechanics, which could possibly lead to bone remod-
eling. An increase in the width of the condyle would help to stabilize an
unstable joint or dissipate increased pressure. The data support the con-
cept of a feedback mechanism within which this kind of reshaping of joints
is an attempt to slow, or counter, the effects of osteoarthritis.

The association of eburnation with the shape of the patellar groove is
more of a puzzle. Postmortem studies have shown a naturally occurring
wide variation in patellar groove shape. This could be a potential risk
factor, with a wide and shallow groove leading to biomechanical differences
that can cause osteoarthritis. However, the potential mechanisms are not
yet well understood.
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4.7 What have we seen?

Functional data do not have to be a simple function of one variable, but
can take many other forms. For the analysis of the bone shape data, the
functions of interest were shapes as described by cyclic curves in two dimen-
sions. An interesting topic for future research would be the consideration
of the full three-dimensional joint shape; leaving aside statistical consid-
erations, in the present context this would have been impossible because
appropriate data-collection equipment was not available.

Landmarks can provide a very good way of representing functional data.
We think about our data as functions, but we have to represent them in
a finite-dimensional way in order to carry out calculations, and landmarks
are one way of getting a finite-dimensional representation. The landmarks
may or may not be of direct interest in themselves—in this chapter they
were only the means to the end of considering the function as a whole.

Principal components analysis gave us the way of identifying impor-
tant modes of variability in the data. In some data sets we would study
the values of the principal components on individuals, but in this case it
was of particular interest to compare two groups, the eburnated and the
noneburnated bones. Once the principal component scores had been found,
standard statistical techniques could be used to compare the groups.

The varimax procedure improved the interpretability of the components
to some extent, and also was useful in subsequent analysis taking into
account the position of eburnation. Varimax and other rotation methods
are not a panacea, but will often provide a helpful contribution to the
analysis of the data.

4.8 Notes and bibliography

Much of the material of this chapter is based on Shepstone, Rogers, Kir-
wan, and Silverman (1999), although the method of varimax rotation is
somewhat different. They give details of data collection and of the arthritis
background, with many references to the relevant literature. They also give
further discussion of the conclusions drawn in Section 4.6 above. The data
collection from the original bones was carried out as part of Lee Shepstone’s
Ph.D. research (Shepstone, 1998), under the supervision of the other three
authors of the paper.

The use of landmarks to characterize curves is discussed in Ramsay and
Silverman (1997, Chapter 5). Dryden and Mardia (1998) give a full discus-
sion of landmark-based methods of the analysis of shape data, together with
many references to the literature on statistics of shape. For more material
and references on functional PCA, see Ramsay and Silverman (1997, Chap-
ter 6). Their Section 6.3.3 gives some discussion of the varimax-rotation
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procedure. Fuller details of varimax rotation, and also of Procrustes fitting,
are given in standard multivariate text books. See, for example, Harman
(1976), or Mardia, Kent, and Bibby (1979).

There is a subtle point to be taken into account in the case we have
discussed. Each landmark is a 2-vector, and so the principal component
weights are themselves 2-vectors. We therefore base the varimax criterion
on the variability of the squared lengths of the 2-vectors of principal compo-
nent weights, rather than directly on the individual weights. Suppose that
the loadings of the first five principal component weights are given by two
12 × 5 matrices AX and AY , respectively containing the loadings on the
x- and y-coordinates of the 12 landmarks. We aim to find a 5 × 5 rotation
matrix T, yielding rotated loadings matrices BX = AXT and BY = AY T,
to maximize the variance of the quantity

12∑
i=1

5∑
k=1

||bik||2,

where bik is the 2-vector (BX
ik,BY

ik). See the Web page for this chapter for
further details.


