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Modeling Reaction-Time Distributions

5.1 Introduction

Hyperactivity in children has been a hot topic in recent years among ed-
ucational and psychological researchers, not to mention doctors, nurses,
and other health professionals. The technical term, attention deficit (hy-
peractive) disorder, or ADHD, captures the central issue, the difficulty
these children have in focusing their attention on tasks for more than brief
periods. This affliction is especially troublesome in school.

In spite of the popularity of the term, hyperactivity is actually difficult
to diagnose, and may even be rather rare. Because of the frequency with
which certain drugs are prescribed to calm down supposedly hyperactive
children, as well as the need to test more carefully the efficacy of these
drugs, it is imperative to find clearcut techniques to identify the ADHD
syndrome.

One behavioral marker is the time taken to react to a visual stimulus
appearing after a warning signal, but with a substantial delay. In a typical
experiment, children see a warning on a computer screen that a light is
about to appear, and are required to push a key as rapidly as possible
when a light actually appears. When there is a delay of 10 seconds or so,
ADHD individuals not only take longer to react on the average, presumably
because their attention has wandered, but they also show a higher frequency
of extremely long reaction times.

Figure 5.1 displays two reaction-time distributions, one for the first child
in a sample of 17 ADHD children, and another for the first child in a sam-
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Figure 5.1. Histograms for about 70 reaction times to the onset of a signal after an
eight-second delay. The left histogram is for the first of a sample of 17 attention
deficit (hyperactive) disorder children, and the right for an age-matched control
child.

ple of 16 age-matched control children. Each histogram is computed from
about 70 reaction times. The experiment is described in Leth-Steenson,
King Elbaz, and Douglas (2000). We see that the ADHD child has many
reaction times beyond one second, while the control child never takes that
long to respond.

A histogram, such as those in Figure 5.1, gives us only a crude impression
of a distribution, and we would prefer to work with the probability density
function p(t), describing the reaction-time distributions. This would permit
us to calculate the probability of a reaction time between two limits, ¢g and
t1, as

oty
Prob{to <t< tl} = / p(t) dt .
to

But researchers who work with reaction times know that none of
the standard textbook distributions capture the features of reaction-time
distributions. These characteristics include

e an initial period of at least 120 milliseconds in which no reaction is
possible,

e a rapid increase in the number of reaction times after this dead time,
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e a strong positive skewness, and
e a very long tail with a severe tendency to outliers.

In these data, for example, we considered reaction times longer than
three seconds to be outliers and did not use them, since the large majority
of reaction times even for the ADHD children occurred in less time. The
shortest reaction time observed was 239 milliseconds.

These distributional features reflect the sequence of neural activities that
must precede a reaction, including passage of peripheral excitation to the
brain, processing of this information to yield a decision, assembly of the
excitation patterns required to generate a response, transmission of these
to the neural/muscle interfaces, and delays within muscle tissues before
an observable response is possible. All this is compounded by intrusions
of attentional lapses, other higher priority events such as a sneeze, and so
forth.

We therefore want to explore the implications of ADHD for reaction times
without relying on parametric models for the reaction-time distributions.
At the same time, we also want to explore the variation in reaction-time
distributions from child to child within each group. Our perspective here is
that we have two samples of reaction-time distributions, each distribution
being identified by around 70 observations. After eliminating reaction times
that exceeded three seconds, there were 1111 reaction times for the nor-
mal control group, and 1138 for the ADHD group. Our objective is to use
functional principal components analysis within each sample to get some
picture of the typical modes of variation. But this raises a technical issue:
Density functions are by definition positive and integrate to one, but func-
tional principal components analysis is more naturally applied to families
of unconstrained functions. It is with this issue in mind that we consider
methods of density estimation and modeling that avoid the constraints
implicit in the definition of a density function.

5.2 Nonparametric modeling of density functions

A probability density p(t) must satisfy the constraints
e p(t) > 0 over some interval [tr,ty] of interest, and
e the area under this curve is one; that is,

/tUp(t)dtzl.

tr
Given any function W (t), we can construct a probability density function
p(t) by
p(t) = Cexp W(2), (5.1)
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Figure 5.2. The solid curve is the density function for 1143 reaction times observed
for the 17 ADHD children, and the dashed curve the density function for 1113
times for the 16 control children. The vertical dotted lines indicate the knot
placement in the B-spline basis described in Section 5.6. The smoothing method
requires the choice of a smoothing parameter X, which was set to 10°. The density

values have been multiplied by 1000.

where

C

tu
[/ exp W (z) dx]_l
tr

Without any constraints on the function W (t), the conditions for p(t) to be
a probability density function will be satisfied automatically. The function
W (t) and hence the density p(t) can be estimated by a penalized mazimum
likelihood method, as described in Section 5.6.

Figure 5.2 displays the density functions estimated for the combined data
for the two groups. We see that even the fast ADHD times are slower by
around 200 milliseconds than fast times for the controls. For example, for
the ADHD group, only 8% of the times are faster than 600 msec, compared
with the control group which has 40% of the times. We also see that the
distributions show some bimodality, and even a hint of trimodality. A dis-
tinctive feature of the ADHD times is the large shoulder and long tail on
the positive side of the distribution. For example, fewer than 1% of control
group times exceed 1600 msec, as compared to 12% of the ADHD times.

The two densities in Figure 5.2, however, ignore individual differences
in response times, and in particular, are likely to have more spread than
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Figure 5.3. Individual reaction-time densities for four of the ADHD children (solid
curve) along with the reaction-time density estimated for the entire group (dashed
curve). The density values are multiplied by 1000, and the smoothing parameter
was set to 107.

individual distributions since, within each sample, there are children who
are systematically fast and others who are systematically slow.

Figure 5.3 displays estimated ADHD density functions for selected in-
dividuals. We see that there is indeed considerable interchild variation in
their shapes. The upper-left panel indicates more fast reactions than av-
erage, but a nearly uniform distribution of times beyond one second. The
lower-left panel has a density more typical of control children, with no ap-
preciably long tail. Both the right panels show a pronounced secondary
mode to the right of one second, and the bottom panel even has a slight
tertiary mode.

5.3 Estimating density and individual differences

The individual densities plotted in Figure 5.3 give us a visual impression
that the ADHD children vary considerably among themselves in terms of
their reaction-time distributions. This would be consistent, for example,
with the presence of a disability that varied in severity. How can we repre-
sent the unusual shape of these reaction time distributions, and still give
some indication of how these children vary?
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A few critical remarks are in order about the usual way in which
reaction-time data are analyzed. The nearly universal practice of using
mean reaction time to represent a subject’s typical performance has se-
rious drawbacks. The first is that the mean is a much less appropriate
measure of centrality when the distribution is strongly skewed than it is
for nearly symmetric distributions like the normal. The long positive tail
tends to pull the mean toward it and at the same time increase the vari-
ability of its estimate. The mode, by contrast, would be a better indication
of a typical reaction time.

The other defect of the mean has to do with how it is modeled. Standard
statistical tools such as analysis of variance and regression analysis postu-
late that whatever changes the typical reaction changes it additively. This
amounts to saying that a little bit is added or subtracted to all reaction
times by causal factors such as the presence of ADHD. But the results in
Figure 5.2 suggest something more like a multiplicative impact of ADHD
in which short reaction times are affected less than long reaction times,
and leading, consequently, to the long positive tail being exaggerated. Ac-
cording to a multiplicative impact model, reaction times are affected by a
percentage increase rather than a simple shift.

Let us explore, therefore, the variation from child to child and from group
to group by using the following transformation for reaction time ¢ measured
in milliseconds,

z = logyo(t — 120) . (5.2)

The constant 120 is first subtracted because this is more like the true “zero”
of reaction times, being about the fastest reaction time that is achievable.
The log transformation of the shifted reaction times acknowledges that the
impact of ADHD is more multiplicative than additive, and therefore that
the impact on a logarithmic time scale will be more additive than it will
be in the original time scale.

We may now propose the following additive model to describe the log
transformed reaction time z;;;, of child 4 on trial j in group k:

Zijk = pk + gk + Ui - (5.3)

The parameter uj quantifies the typical performance of children in group
k and the parameter ), read “child ¢ within group k,” quantifies the
individual typical performance of this child. As is usual in ANOVA models,
we fix the relative sizes of these effects by imposing the restriction

Ny,
E Q| = 07
=1

where N}, is the number of children in group k.
The residual term U, expresses the lack of fit of the model for a specific
reaction time, and it is the variation of the values of U;;; that we see in
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Figure 5.4. The densities of log-shifted reaction-time residuals Us;, for 17 ADHD
or hyperactive children (solid line) and 16 normal children (dashed line). Mean
effects for individual control children have been removed, so that this group’s
density is centered on 0. The ADHD density is centered on 0.33 (corresponding to
122 msec) in order to emphasize the coherence of the modes. The vertical dotted
lines indicate the knot placement in the B-spline basis described in Section 5.6.

the distribution of transformed reaction times for a specific child. We are
assuming that this variable has a mean of zero. If we want to express
what model (5.3) means for reaction time itself, then we can reverse the
transformation (5.2) to get

7 = 120 4 10t t Ui

But can we be so sure that the distribution of the residuals Ujjy is
normal? Not at all. We will want to preserve the idea of nonparametric
estimation of the density function py(u), where the subscript k indicates
that we allow the distribution to be different for the two groups. Our tech-
nique for estimating these densities starts from that used to estimate the
densities in Figures 5.2 and 5.3, but adds the capacity to estimate the
model components j; and «;), in addition.

The estimated densities for the residuals for the two groups in this ex-
periment are displayed in Figure 5.4. We see that the hyperactive children
show greater variability in residuals Ujji, even after the shifted log trans-
formation, and we also see that the transformed times remain somewhat
positively skewed. The mean p; of the ADHD group was 2.92, correspond-
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ing to 952 msec, and the control mean us was 2.72, or 645 msec. As
expected, this difference was highly significant (¢ = 4.8).

The pattern of modes in the two densities is striking. We can see this
level of detail in the group densities because individual effects have been
removed by estimating the individual shift parameters ;.. In the plot, the
center of the ADHD density has been shifted by what is equivalent to about
120 msec to show how well lined up the modes are. Initially, there was a
suggestion that this multimodal behavior pointed to a substantive feature
of brain function. On reflection, however, the experimenters realized that
it was an artifact of the instrumentation, which gave some preference to
times on particular cycles. Although this conclusion is not as exciting as the
neurophysiological one, it illustrates the way in which statistical analyses
can be important in drawing experimenters’ attention to aspects they had
previously overlooked.

5.4 Exploring variation across subjects with PCA

For each child, the work described in Section 5.3 yields an estimated density
function for the log-shifted reaction times z for that child. This density
function can be regarded as a functional datum for that child. In this
section, we explore the use of functional principal components analysis to
get a sense of how the density functions vary from child to child, and how
many substantial components of variation there are. In Section 5.2, we only
looked at an elementary aspect of this variation, namely a variation only
in the center of the distributions. As we have seen in previous chapters,
PCA offers the possibility of uncovering modes of variation that are more
complex. As in Section 5.2, we work with the density functions p;(z) for
log-shifted reaction times z defined in (5.3). We look only at the ADHD
group.

Principal components analysis is not well adapted to describing variation
in constrained functions. This is because principal components analysis
provides an expansion of the data in terms of empirically defined basis
functions, namely the principal components weight functions or harmon-
ics. Thus there is no convenient way to ensure that the approximation of
a density based on these harmonics will remain nonnegative. Instead of
analyzing the densities directly, therefore, we study the variation in the
derivatives of the functions W;(z) defined in (5.1), that is, the log-density
derivative functions

wi(z) = SWi(2) =+ logmi(z)
One feature that makes these functions interesting is that, for the normal
distribution, w;(z) is a straight line with negative slope. We can, therefore,
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Figure 5.5. Log-density derivatives w;(z) = (d/dz)logpi(z) for individual
log-shifted reaction-time densities for the 17 ADHD children.

investigate departures from normality such as multimodality by seeing how
different these functions are from linear.

Figure 5.5 shows what these functions look like for the ADHD children.
We confess that at first glance they do not look promising. But note that
between about z = 2.75 and z = 3.25, there is something of a linear trend.
Outside this central region, however, there is little if any structure visible.
However, all the densities themselves are near zero outside the region [2.75,
3.25], and we are not particularly interested in what the functions w;(z) are
up to over values of z that are extremely unlikely to occur. Therefore we
use a weighted version of PCA, with weight the average density p(z) for the
sample. This choice of weight diminishes the role of variation in w;(z) in
defining the harmonics when the density itself is small. The weighted PCA
proceeds by applying a standard PCA to the functions p(z)'/?w;(t). Once
the harmonics 7,,, () are identified for this analysis, we then back-transform
to compute the weighted-PCA harmonics &,,(2) = ()"0, (2) for the
original log density derivative functions w;(z).

The first three harmonics account for 63% of the variation in this
weighted PCA. This seems reasonable, considering the amount of variabil-
ity that we see in Figure 5.5. Figure 5.6 indicates that the first three log
eigenvalues are noticeably larger than the linear trend in the remainder.
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Figure 5.6. The logarithms of the eigenvalues for the weighted principal com-
ponents analysis of the log-density derivative functions w;(z) for the ADHD
children. The dotted line shows the linear trend for the log eigenvalues from
4 to 11.

Because of the density estimation context, we display the principal com-
ponents or harmonics as effects on the mean density for the group by adding
a multiple of the harmonic to the mean log density, and then converting
this perturbed function to a density. The results for the first three principal
components for the ADHD sample after varimax rotation are given in Fig-
ure 5.7. In each panel the density corresponding to the mean log-density
derivative function w(z) is plotted as a dashed line for reference purposes.

The first harmonic mainly affects the height of the central peak of the
distribution at the expense of moderate deviations from the peak. The sec-
ond harmonic adds weight in the part of the distribution corresponding to
very fast reaction times. The third harmonic corresponds to a density very
much like the mean, but with the isolation of the three modes more sharply
defined. This harmonic quantifies the strength of the quasiperiodic effect
induced by the instrumentation in the experiment. These three harmonics
all account for nearly equal amounts of variation.
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Figure 5.7. The effects of the first three varimax-rotated harmonics for the
weighted principal components analysis of the log-density derivative functions
w;(z) for the ADHD children. The solid line in each panel is the density resulting
from adding a multiple of a harmonic to the mean function w(z) for the entire
sample, and the dashed line is the density corresponding to the mean function
w(z) itself.

5.5 What have we seen?

The effects of a disorder such as ADHD on a marker variable such as
reaction time can be complex. These may go beyond a simple change of
their central tendency to change the shape of the distribution itself. If we
only use distributions that can change in simple ways, such as the normal
which can change in location and scale only, we may miss some of these
important distributional shape changes, and may at the same time get a
distorted picture of simple shifts in distribution. In this case, we see that
ADHD seems to create a long positive tail in addition to shifting the mode.
Indeed, the strength of this tail seems to be an important component of
variation, suggesting that perhaps the upper tail is the true marker for the
severity of the ADHD condition.

An additional feature of our analysis was its ability to highlight the
quasiperiodic behavior caused by the instrumentation; not only was this
visible in the mean curves for the two populations, but one of the principal
components was able to quantify the strength of the effect.

The statistical technology that makes our analyses possible is the non-
parametric estimation of a density function, whether p(t) for the reaction
times, p(z) for the log-shifted reaction times, or p(u) for the residuals in
model (5.3). Our method is not the only one available, and kernel den-
sity estimation is an alternative approach that is better known. However,
our method of estimating the log density leads naturally into using the
derivatives of the log densities as functional data for further analysis.
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5.6 Technical details

When studying a density function like p(t), we expand the function W (t) =
constant + log p(t) in a B-spline basis, as described in Section 2.5, to give
the expansion

K
W(x) = cxBi(w). (5.4)
k=1

There is no restriction on the values of the coefficients ¢;. In the work
described in this chapter, we used 34 B-spline basis functions of order 5,
with equally spaced knots. Splines of order 5 were used so we would be able
to define roughness penalties based on high derivatives, and to ensure that
the derivative of W (x) was itself smooth.

Given a sample t1,...,tNy modeled by the density function p(t), the den-
sity is estimated using a penalized maximum likelihood method proposed
by Silverman (1982). The method applies a penalty on the roughness of
W (t) by maximizing the penalized log likelihood criterion

tu
PENMLE = > "Inp(t;) + A / W (u)? du . (5.5)

tr

There are two reasons for penalizing the integrated squared third derivative
of the function W (t). We use the derivative w(t) = W'(t) for further analy-
sis, and the penalty expressed in terms of w is the more familiar integrated
squared second derivative. In addition, the penalty will be zero if and only
if W(t) is a quadratic function, which corresponds to p(t) being a normal
density (truncated over the interval of interest). Thus, if the smoothing A
increased without limit, it would force W (t) to be quadratic and conse-
quently p(t) to be the normal density, which is the standard “parametric”
density estimate.

To carry out the procedure numerically, the function W (t) is expanded
in terms of coefficients ¢y as in (5.4), and the log likelihood,

InL= Z lnp(t;)

and its first two derivatives are expressed in terms of the function W (t) as
N
L = > W(t) —Nln/exp[W(u)]du
i=1

N
D.InL = ZDCW(L‘,»)—NE[DCW]
=1

N
D?InL > D2W(t:) — NE[D2W] — N Var[D.W],
i=1
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where the notations D, and D? mean taking the first and second partial
derivatives with respect to ¢, respectively. Also, E[W] = [ W (u)g(u) du,
and similarly for E[D.W] and E[D?W]. The values of the integrals in
these expressions were approximated using numerical methods rather than
analytically.

We use the method of scoring, which is defined by replacing the second
derivative matrix in the Newton—Raphson method by —N Var[D.W(¢)].
Convergence is rapid and stable in our experience. The computation is
made simpler if W (t1,) is zero, a condition that is easily assured if we fix
the coefficient ¢; to zero for the first B-spline basis function, which is the
only basis function that is nonzero at tj,.

When applying the method, the smoothing parameter values were chosen
subjectively. Where the data are pooled across children, as in Figure 5.2,
we used the value A = 10%. Where individual children are considered, and
the sample size is smaller, the variability is larger and so a larger value of
the smoothing parameter is appropriate. For example, in Figure 5.3, the
value was A = 107,

Software and further details are available from the Web page correspond-
ing to this chapter.



