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Zooming in on Human Growth

6.1 Introduction

The careful documentation of human growth is essential in order to define
what we call normal growth, so that we can detect as early as possible
when something is going wrong with the growth process. Auxologists, the
scientists that specialize in the study of growth, also need high quality data
to advance our understanding of how the body regulates its own growth.
It may come as a surprise to learn that human growth at the macro level
that we see in our children is not that well understood.

Growth data are exceedingly expensive to collect since children must be
brought into the laboratory at preassigned ages over about a 20-year span.
Meeting this observational regime requires great dedication and persistence
by the parents, and the dropout rate is understandably high, even taking
for granted the long-term commitment of maintaining a growth labora-
tory. The Fels Institute in Ohio, for example, has been collecting growth
data since 1929, and is now measuring the third generation for some of its
original cases.

The accurate measurement of height is also difficult, and requires con-
siderable training. Height diminishes throughout the day as the spine
compresses, but it also depends on other factors. Infants must be measured
lying down, and when the transition is made to measuring their standing
height, measurements shrink by around one centimeter. The most careful
procedures still exhibit standard deviations over repeated measurements of
about three millimeters.
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Records of a child’s height over 20 years display features, described below,
that are difficult for a data analyst to model. The classic approach has been
to use mathematical functions depending on a limited number of unknown
constants, and auxologists have shown much ingenuity in developing these
parametric models to capture these features. The best models have eight
or more parameters, and are still viewed as possibly missing some aspects
of actual growth.

Nonparametric modeling techniques developed over the last three
decades, such as kernel and spline smoothing methods, have been applied
to growth data. These methods have been successful at detecting new fea-
tures missed by parametric models, but they are not guaranteed to produce
smoothing curves that are monotonic, or strictly increasing. Even a small
failure of monotonicity in a height curve can have serious consequences
for the corresponding growth velocity, and even more so for acceleration
curves, which are especially important in identifying processes regulating
growth.

In this chapter we look at some new developments in growth data anal-
ysis. A recently developed method for monotonic smoothing is applied to
some old and new data. This method is used for all the curves estimated
below, and is described in Section 6.8.3. Another aspect of the analysis is
the introduction of curve registration methods, which allow the separation
of amplitude and phase variation.

6.2 Height measurements at three scales

Figure 6.1 shows, for each of 10 girls, the height function H(t) as esti-
mated from 31 observations taken between 1 and 18 years. These data
were collected as part of the Berkeley Growth Study; for more details of
these data, and the other data analyzed in detail in this chapter, see Sec-
tion 6.8.2. Growth is the most rapid in the earliest years, but we note the
increase in slope during the pubertal growth spurt (PGS) that occurs at
ages ranging from about 9 to 15 years. One girl is tall for all ages, but some
girls can be tall during childhood, but end up with a comparatively small
adult stature. The intervals between height measurements are six months
or more, and the picture from this long-term perspective is of a relatively
smooth growth process.

Figure 6.2 zooms in on growth by using measurements of a boy’s height
at 83 days over one school year, with gaps corresponding to the school
vacations. The measurement noise in the data, of standard deviation about
3 mm, is apparent. The trend is also noticeably more bumpy, with height
increasing more rapidly over some weeks than others.

To zoom in further, more accurate measurements are essential. The
length of the tibia of a baby measured to within about 0.1 mm is graphed
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Figure 6.1. The heights of the first 10 females in the Berkeley Growth Study.
Circles indicate the ages at which measurements were taken.
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Figure 6.2. The circles are 83 measurements of height of a 10-year-old boy, and
the solid curve is a smooth monotone fit to the data, as described in Section 6.8.3.
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Figure 6.3. The dots indicate lengths of the tibia in the lower leg of a newborn
infant, and the solid curve is a smooth monotone estimate of height.

in Figure 6.3. The jumps, or saltations, that we saw in the boy’s growth are
now much more visible. These data demand that we find a way to estimate
just how much bone length changes over, say, a 24-hour period. Since bone
length can only increase, it is essential that any smooth line, such as that
in the figure, also be everywhere increasing, and this is one of the features
of the smoothing method we use.

6.3 Velocity and acceleration

Although we commonly refer to data and curves such as shown in these
figures as “growth curves,” the term growth really means change. Hence, it
is the velocity function V (t), the instantaneous rate of change in height at
time t, that is the real growth curve, and we should use the term “growth”
to mean V (t). Because height does not decrease (at least during the grow-
ing years), velocity or growth is necessarily positive. The height data only
indirectly reflect growth, because they are measures of the consequences of
growth.

If height observations are taken at time points ti, we might consider
estimating velocity by the difference ratio,

V (ti) = [H(ti+1) − H(ti)]/(ti+1 − ti),
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Figure 6.4. The estimated growth velocity, or rate of growth, of the first girl
whose data are in Figure 6.1.

but this a bad idea from a statistical perspective, since even a small amount
of noise in the height measurements will have a huge effect on the ratio,
and this problem only gets worse as the time points get closer together.
It is much better to fit the height data with an appropriate smooth curve,
and then estimate velocity by finding the slope of this smooth curve.

Figures 6.4 through 6.6 display estimated velocity curves for the long-,
medium-, and short-term growth examples considered above. Now we can
see much more clearly what is happening. The pubertal spurt in Figure 6.4
is certainly more obvious, but even more impressive are the velocity surges
for the 10-year-old boy. The peaks in velocity for the baby, exceeding two
millimeters per day, are simply astonishing. We now know that we need
to work hard to get good methods for estimating velocity, which at least
during infancy is revealed to be a very intricate process.

We can get more understanding of the growth process by studying the
rate of change in velocity; this is the acceleration in height, denoted by
A(t). Estimated acceleration curves for the 10 girls in the Berkeley data
are given in Figure 6.7. Now we can see even more clearly what happens
in the pubertal growth spurt. Naturally there is a big positive surge in
velocity at the beginning of the PGS, followed by a return to zero when
the velocity is no longer increasing, and finally a negative change in velocity
in the final phase. It can be seen that the timing of the pubertal growth
spurt varies a great deal from one girl to another, a feature we return to in
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Figure 6.5. The estimated growth velocity of the boy whose data are in Figure 6.2.
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Figure 6.6. The estimated growth velocity of the baby whose data are in
Figure 6.3.
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Figure 6.7. The estimated growth acceleration curves for the 10 girls whose data
are shown in Figure 6.1. The heavy solid line is the average of these 10 curves.

Section 6.5. But what can also be seen, for several girls, are one or more
smaller oscillations in acceleration before the pubertal growth spurt. The
capacity to detect these so-called midspurts was one of the important early
achievements of nonparametric curve estimation technology in this area.

6.4 An equation for growth

What causes the velocity V (ti) at age ti to change to V (ti+1) for the next
observation time ti+1? The question can be formulated by the following
equation,

V (ti+1) − V (ti) = wiV (ti)(ti+1 − ti). (6.1)

This equation is not a model for growth, but merely a way of looking at it.
It relates the velocity change over the interval ti+1 − ti to three factors.

• ti+1 − ti itself. The smaller this time interval, the less change there
will be, and in the limit ∆t → 0, velocity will not change. This
says that over very small time scales growth is essentially a smooth
process, an assertion that seems beyond question since a jump in
the rate of growth over an arbitrarily small time interval would seem
inconceivable in terms of the body’s physiology.
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• V (ti), a term that measures growth changes on a percentage or rel-
ative basis. This is particularly useful in allowing for variations in
height over the population, and, for instance, allows for comparison
of growth patterns independently of people’s ultimate adult height.

• wi, a factor that determines the change in velocity. We make this
factor depend on ti because we imagine that this factor itself will
change with time. This is the factor that really specifies how growth
varies.

Asking a question in the right way is everything in science, and the
formulation in (6.1) focuses our attention on the size of the factor wi,
which will be positive if velocity is increasing at age ti, zero if there is no
change, and negative if velocity is decreasing.

Here is a rearrangement of equation (6.1):

V (ti+1) − V (ti)
ti+1 − ti

= wiV (ti). (6.2)

The left side of this equation is just an estimate of the instantaneous rate
of change of V (t), and becomes the acceleration A(t) when ti+1 − ti → 0.
Therefore, rather than defining wi to satisfy (6.1) and (6.2) exactly, we
replace it by a function w(t) defined by

A(t) = w(t)V (t) or w(t) =
A(t)
V (t)

. (6.3)

The continuously defined function w(t) is now the ratio of acceleration to
velocity, or what we can call relative acceleration, meaning acceleration
of height measured as a fraction of velocity. We can rewrite (6.3) as the
differential equation

d2H

dt2
= w(t)

dH

dt
. (6.4)

The general solution to this equation is

H(t) = C0 + C1

∫ t

0
[exp

∫ u

0
w(v) dv] du. (6.5)

In this expression, C0 and C1 are arbitrary constants that will need to be
estimated from data.

Equation (6.4) may be described as the fundamental equation of growth,
in the sense that any intrinsically smooth growth process may be expressed
in this way. The relative acceleration w(t) is the functional parameter of
growth. Our approach to thinking about growth is to model this function,
rather than the height function itself. Once we have a way of estimating
w(t), we can check it against the data by using equation (6.5). To see how
we estimate w(t), go to Section 6.8.3.
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Figure 6.8. The left panel shows the relative acceleration function w(t), and the
right panel its integral W (t).

For the 10 girls we have been studying, Figure 6.8 displays the functions
w(t), as well as their integrals

W (t) =
∫ t

0
w(u)du . (6.6)

It can be shown from (6.5) that W (t) is proportional to log H ′(t), the loga-
rithm of the instantaneous growth rate. We see that w(t) looks rather like
the acceleration curves in Figure 6.7 except at the end in late adolescence.
This is a consequence of w(t) being relative acceleration, as expressed in
equation (6.3).

6.5 Timing or phase variation in growth

As in any data analysis, important aims for the long-term growth data are
to estimate the average features of growth, and to get an impression of their
variability across individuals. However, Figure 6.7 shows that these tasks,
which are straightforward for univariate and multivariate data, present a
new challenge. The heavy line, which is the mean of the 10 acceleration
curves, does not have the characteristics of any of the observed curves. The
PGS peak and valley for the average are much too small, but on the other
hand the duration of the PGS for the average curve is longer than that of
any single observed curve.

The problem is that the growth curves exhibit two types of variability.
Amplitude variability pertains to the sizes of particular features such as the
velocity peak in the pubertal growth spurt, ignoring their timings. Phase
variability is variation in the timings of the features without considering
their sizes. Before we can get a useful measure of a typical growth curve,
we must separate these two types of variation, so that features such as the
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Figure 6.9. The left panel shows three height acceleration curves varying only in
amplitude. The right panel shows three curves varying only in phase.

pubertal spurt occur at roughly the same “times” for all girls. The problem
is expressed in schematic terms in Figure 6.9, where we see in the left panel
two acceleration curves that differ only in amplitude, and in the right panel
two curves with the same amplitude, but differing in phase.

By “time” here we now mean something like physiological time, which
need not unfold at the same rate as physical or clock time. We mean that
two girls in the middle of the pubertal spurt are, effectively, at the same
physiological age, whatever their respective chronological ages. What we
need is some way of mapping clock time t into its physiological counterpart.
That is, we want a function hi(t) for girl i such that at physiological time t
this girl has a chronological age of hi(t). For example, if h(t) > t, we have
someone who is growing late, and if t is the physiological age at which the
growth spurt takes place, then this person is having the PGS at a clock
age that is later. The curve h(t) is often called a time warping function.
Figure 6.10 displays these functions h(t) for our 10 girls. Remember that
curves above the diagonal correspond to late growth, and curves below the
diagonal to early growth.

But isn’t time, too, a positive growth process? It always increases because
days and years accumulate, and its velocity is defined by the time units
that we use. Or at least, that is so for clock time, which increases linearly,
corresponding to relative acceleration w(t) = 0. But physiological time,
which is driven by factors such as hormonal secretions that are not constant
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Figure 6.10. The time warping functions h(t) for the 10 Berkeley girls. Curves
above the diagonals indicate girls with a physiological age consistently earlier
than chronological age, and therefore growing late.

across individuals, need not unfold in this elementary way. Even in Figure
6.1 we can see clearly that some girls are outstripping clock time, and
maturing early, while other girls are lagging behind the clock, being late
maturers.

Therefore, the warping function h(t), which must be always increasing,
reflects simply another type of growth curve, and may be characterized
by the same mathematical representation that we have in equation (6.4),
and therefore corresponds to its own relative acceleration wh(t). We defer
further details on how we estimate h(t) to Chapter 7, where registration is
the main topic, and pass to what we see when the growth curves have been
registered.

6.6 Amplitude and phase variation in growth

What do we do with warping functions hi(t) once we have estimated them?
Recalling that for a late grower, h(t) > t, we see that we can think of h(t)
in such a case as “speeding up” clock time to make it match physiological
time. This means that if we calculate the function

V ∗(t) = V [h(t)] (6.7)
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Figure 6.11. The solid curve is the average acceleration for the registered data
from the boys, and the dashed curve is the registered acceleration average for the
girls.

we now have a new velocity function V ∗(t) that shows the pubertal
growth spurt, for example, as occurring at the “right time.” Similarly, for
h(t) < t, we can use the warping function to slow down clock time for an
early grower. We also define the registered height and acceleration curves
H∗(t) = H[h(t)] and A∗(t) = A[h(t)], respectively.

With these registered curves in hand, we can now carry out averaging
and other analyses more meaningfully, since registered curves no longer
have the phase variation that affected the average in Figure 6.7. Figure
6.11 superimposes the mean registered acceleration curves of girls and boys.
Some new features now emerge. We see that the pubertal spurt is not the
only spurt visible in long-term growth data, and we already know that
there are even more spurts within medium- and short-term data.

We see in Figure 6.11 that girls and boys seem to go through the same
pubertal growth cycles, but differ in two ways: the PGS is earlier in girls,
but more intense in boys. The time shift prompts us to warp time for
one gender in order to render its growth equivalent to the other. The left
panel of Figure 6.12 displays the warping function h(t) that registers the
boys’ data to the girls’, and the right panel shows the registered average
acceleration curves. We can see two major gender differences. The left panel
demonstrates that male growth essentially lags behind female growth, with
a gap that increases steadily until growth is finally finished. The right panel
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Figure 6.12. The left panel displays the warping function for registering the boys’
average velocity to that of the girls. Because boys mature more slowly, the warping
function is above the diagonal, shown as a dashed line. The right panel shows the
registered average acceleration curves. The solid curve corresponds to the boys
and the dashed curve to the girls.

shows that the intensity of the acceleration function during the pubertal
spurt is greater for boys than for girls. These are the two main contributors
to the gender difference in mean adult heights: boys grow over a longer
period, and grow more intensely during the pubertal growth spurt.

The right panel of Figure 6.12 also shows some gender difference in ear-
lier childhood. Closer examination of these data, and also of other larger
data sets on growth such as the Fels Institute data, reveals that many chil-
dren have more than one midspurt. Furthermore, both the number and
the registered position of these midspurts is more variable in boys than in
girls. This is partly because boys have a longer prepubertal period. It is
the averaging out of this greater intergender variability that causes boys to
have a flatter average registered acceleration curve.

What of the amplitude variation among the girls? A functional principal
components analysis of the registered acceleration reveals that three prin-
cipal components or harmonics account for 72% of their variation about
the mean acceleration curve. After varimax rotation of these components,
we get the three components displayed in Figure 6.13, and they account
for nearly equal proportions of variance. Varimax harmonic 1 has to do
only with variation during the pubertal spurt, and therefore captures the
intensity of this event. The second and third harmonics, on the other
hand, reflect variation only in the prepubertal years, but rather differ-
ently. The second harmonic shows an intensification of the two prepubertal
spurts relative to the mean curve, but the third is more complex, capturing
phase variation in these two earlier spurts that was not taken out by the
registration process.
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Figure 6.13. The varimax-rotated harmonics of registered acceleration for the
girls. The amount of variation accounted for is indicated at the top of each har-
monic. The solid curve is the mean acceleration, and the plus and minus symbols
show the effects of adding and subtracting a multiple of the harmonic to the
mean.
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Figure 6.14. Results of a PCA of the warping functions, regarded as functional
data in their own right. The dashed curves show the mean acceleration curve
without time transformation, and the solid curves show what the mean accelera-
tion curve would look like under the influence of each harmonic. The underlying
data are the growth data for the 10 females in the Berkeley growth study.

We can also study phase variation by carrying out a PCA of the warp-
ing functions in Figure 6.10. The harmonics are displayed in Figure 6.14
by showing what the mean acceleration would look like if a multiple of
the harmonic were added to clock time. In this case, the first three com-
ponents explain 99% variation. The first harmonic corresponds to growth
that is consistently late. The second shows early growth up to the deceler-
ation phase of the PGS, and then slow recovery. The third indicates late
prepubertal growth and early onset of puberty.

6.7 What we have seen?

Growth is not at all smooth over a short time scale. Our results hint that
growth takes place by turning on and off the velocity function periodically.
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In an infant the period is three or four days, but later the period seems
to lengthen, until by 10 years it is of the order of a number of weeks. The
discovery of these jumps or saltations is new, and we need much more data
of the quality that we have for the baby before we can understand this
process better. But perhaps what counts for growth is what turns it off;
growth at the rate displayed in Figure 6.6 could actually be dangerous if
sustained for much longer than a day or so.

On the methodological side, a formulation of the growth process in terms
of the difference equation (6.1) or the differential equation (6.4) leads to a
smoothing technology for growth data that respects the monotonicity of the
height function H(t) and the positivity of velocity V (t), and also yields in
the form of relative acceleration w(t) a curve with a natural interpretation.
An added bonus was the appreciation that the time warping function h(t)
that takes clock time into physiological time is also a growth process, and
this story is taken up further in Chapter 7. The time warping functions for
each individual can themselves be considered as functional data.

Finally, once we have teased apart, at least to some extent, amplitude
and phase variation, we see that boys and girls do not differ strikingly in
the shapes of their acceleration amplitudes, but that they do show a large
amount of phase variation. Among the girls (and boys as well), amplitude
variation seems to be primarily three-dimensional, and separable into com-
ponents that reflect variation in the pubertal growth spurt, and others that
show variation in prepubertal growth.

6.8 Notes and further issues

6.8.1 Bibliography
The work of this chapter is discussed in more detail in Ramsay and Bock
(2002). They provide extensions and more details of the analyses presented
here, apply the methods to the larger Fels Institute data set, and give fur-
ther discussion and bibliographic references. The formulation of the growth
process as a second-order linear differential equation, and the analysis of
the growth data for the 10-year-old boy, are given in Ramsay (1998). The
companion paper, Ramsay and Li (1998), applies this formulation to the
registration problem, which is examined in more detail in Chapter 7.

There is already a large literature containing functional data analyses of
growth data. Indeed, this field has provided one of the most important test
beds for the development of curve estimation and analysis. The many con-
tributions of T. Gasser and his collaborators, of which Gasser et al. (1990)
is only one example, are especially important. A good deal of the research
in this fascinating field appears in Annals of Human Biology.

Growth curve analysis has also inspired many contributions to the curve
registration problem, and statistical issues in the use of features or land-
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marks to register growth curves has been studied by Kneip and Gasser
(1992) and Gasser and Kneip (1995).

6.8.2 The growth data
The Berkeley Growth Study (Tuddenham and Snyder, 1954) recorded the
heights of 54 girls and 39 boys between the ages of 1 and 18 years. Although
larger studies of growth have since been completed, notably the Fels (Roche,
1992) and Zurich (Falkner, 1960) data, the Berkeley data have been pub-
lished and are therefore freely available. Heights were measured at 31 ages
for each child, and the standard error of these measurements was about 3
mm, tending to be larger in early childhood and lower in later years.

The data on the growth of the 10-year-old boy were collected as part of a
study reported in Thalange et al. (1996), and generously made available to
us by P. J. Foster at the University of Manchester. The short-term data on
the growth of the tibia in a newborn infant are described in Hermanussen
et al. (1998), and we thank Prof. Hermanussen for supplying them. This
paper is one in a series of papers that provide details on the experimental
procedure, and which report similar results in the growth of rats.

6.8.3 Estimating a smooth monotone curve to fit data
In this section, the monotone smoothing method is described briefly; for
more details, see Ramsay (1998). Relevant software is available from the
Web site corresponding to this chapter. We use the differential equation for
growth A(t) = w(t)V (t) to transform the problem of estimating the height
function H(t) that actually fits the height observations yj observed at ages
tj , j = 1, . . . , n to one of estimating the relative acceleration function w(t).
Our task is made simpler by the fact that w(t) is unconstrained in any way,
unlike V (t) which must be positive, or H(t) which must always increase.

Our approach to estimating w(t) is to express it as a linear combination
of basis functions φk(t), as we already have done in previous chapters, so
that

w(t) =
K∑

k=1

ckφk(t). (6.8)

We can then fit the data by numerically minimizing the error sum of squares

SSE =
n∑

j=1

[yj − H(tj)]2 (6.9)

with respect to the coefficients ck defining the basis function expansion
(6.8).

Our choice of basis is the B-spline basis φk(t) = Bk(t) described briefly
in Section 2.5 and in detail in Ramsay and Silverman (1997, Chapters 3
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and 4). We tend to choose this basis for any function that is not periodic
and that has no other restrictions on its shape. A B-spline basis is defined
by a set of knots, and our strategy is to place a knot at each age tj at which
height is observed.

Putting knots at every data point allows considerable flexibility, but
results in more basis functions than there are observations. We compensate
for this overly rich basis by adding a roughness penalty to the error sum
of squares criterion (6.9) and then minimizing the following penalized least
squares criterion

PENSSE =
n∑

j=1

[yj − H(tj)]2 + λ

∫ T

0
[w′′(t)]2dt. (6.10)

In this expression, T is the largest age at which we wish to estimate
H(t), V (t), and A(t). Roughness in this expression is defined as the in-
tegral of the square of the second derivative w′′(t) of w(t). Because of the
nonlinear dependence of H(t) on w(t), the minimization of PENSSE will
involve a numerical optimization over the vector of B-spline coefficients ck.

The effect of varying the smoothing parameter λ in (6.10) is as follows.
The closer λ is to zero, the less the roughness of w(t) is penalized, and in
the limit H(t) will become a monotone curve that comes as close as any
monotone curve can come to fitting the data, which, of course, may not
be themselves strictly increasing. Such a curve is bound to have plateaus
and points of very rapid increase, and would be unacceptable even for
data as rough as those in Figure 6.3. At the other extreme, if λ were
to increase without limit, w(t) would approach a straight line, and H(t)
would become much too smooth to fit the data acceptably. In particular,
A(t) would become linear, and would not offer a plausible account of events
such as the PGS. In the present context, we have found it satisfactory to
choose subjectively the smallest value of λ that still provided a smooth and
interpretable estimate of A(t).


