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Time Warping Handwriting and
Weather Records

7.1 Introduction

In Chapter 6 we encountered what is almost always a fact of life in func-
tional data. Curves vary in two ways: vertically, so that certain oscillations
and levels are larger in some curves than others; and horizontally, so that
the timings or locations of prominent features in curves vary from curve
to curve. We call these two types of variation amplitude and phase, respec-
tively. You might want to glance back at Figure 6.9 to see a schematic
diagram illustrating this concept.

We now look more closely at amplitude and phase variation in the context
of two rather different sets of data. The first is a sample of the printing
(by hand) of the characters “fda.” Each observation is a series of strokes
separated by gaps where the pen is lifted off the paper, along with the
clock times associated with these events. The timing of strokes and cusps
varies from sample to sample, and we consider how to register these curves
by transforming time so that, as nearly as possible, each stroke occurs at
the same time for all curves. The aim of registration is to yield a sample
of curves that vary only in terms of amplitude. The phase variation does
not disappear, though; it is captured in the time transformations that we
estimate for each curve.

Our second example is a single long time series, daily temperature mea-
surements for the 34 years spanning 1961 through 1994. Naturally these
data have a strong annual pattern, but one has only to appeal to personal
experience to know that winter, for example, arrives late in some years
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and early in others. Therefore, we want to speed up and slow down time
within each year so that the seasons will change at the same time across all
years. We do this for many reasons, among them to get a better estimate
of the average annual temperature curve, and to get tighter estimates of
long-term trends such as might be associated with global warming.

We reserve the discussion of the more technical aspects of just how reg-
istration is achieved to Section 7.6, but it will first be helpful to spell out
more formally a model for how curves vary.

7.2 Formulating the registration problem

Curve registration can be expressed formally as follows. We have a sample
of N functions xi. Each curve is defined over an interval, and the length of
the interval may vary from curve to curve. For simplicity, let us assume a
common origin but a variable end point, and make the intervals [0, Ti].

A basic form of registration is to preprocess each curve by rescaling its
argument range to a common standard interval [0, T0]. This standard time
interval [0, T0] may, for example, be the average interval [0, T̄ ]. Although
we assume the existence of a standard interval, we do not require that the
data have necessarily been scaled to fit this interval.

Now let hi(t) be a transformation of time t for curve i, which we call
a time warping function. The argument t varies over [0, T0]. The values
of hi(t), however, range over the curve i’s interval [0, Ti], and satisfy the
constraint hi(0) = 0 and hi(T0) = Ti. Thus the time warping function maps
the standard interval [0, T0] to the interval on which the function xi lives.

The fact that the timings of events retain the same order regardless of
the time scale implies that the time warping function hi should be strictly
increasing, so that hi(t1) > hi(t2) if and only if t1 > t2. In fact, hi(t) is just
a growth curve of the kind that we studied in Chapter 6. We can think of
clock time t as growing linearly with a constant velocity of one second per
second. We can think of curve i’s “system time” as evolving at a rate that
can change slightly from one clock unit to another. We show that printing
is running ahead of itself at some times, and late at others; winter comes
early some years, and late at others.

This strict monotonicity condition ensures that the function hi is invert-
ible, so that for each y in the interval [0, Ti] there is a unique t for which
h(t) = y. We use the notation h−1

i to denote the inverse function,1 for
which h−1

i (y) = h−1
i [hi(t)] = t. The invertibility of hi means that it defines

a one-to-one correspondence between the time points on the two different
time scales.

1Not to be confused with the reciprocal of h, a concept which we do not use in this
discussion.
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Let x0(t) be a fixed function defined over [0, T0] that provides a template
for the individual curves xi in the sense that after registration, the features
of xi will be aligned in some sense to those of x0. The following is a model for
two functions x0(t) and xi(t) differing primarily in terms of phase variation,

xi[hi(t)] = x0(t) + εi(t) , (7.1)

where the residual or disturbance function ε is small relative to xi and
roughly centered about 0. Because we assume that ε is small relative to
xi, this model postulates that major differences in shape between target
function x0 and specific function xi are due only to phase variation. Having
identified the N warping functions hi(t), we can then calculate the registered
functions xi[hi(t)]. Methods for fitting the model (7.1) are developed later
in this chapter.

What does h(t) mean? Let’s assume that the ice breaks up on the St.
Lawrence River at Montreal on the average on April 7th, day 97 for nonleap
years. But in 1975 spring is late and the ice goes out on April 14th, or day
104. We want, therefore, that h1975(97) = 104, so that x1975[h1975(97)] =
x1975(104), and therefore that, from a clock perspective, the ice is breaking
up simultaneously in both the standard year and in 1975 when time is
running a week late. In effect, in this case, the warping function speeds up
time to compensate for its being tardy in 1975.

On the other hand, imagine that in the same year the leaves on Mont
Royal in the city change color on September 15th (day 258) instead of
September 30 (day 303) as is normal. Then h1975(303) = 258, and the
warping function is slowing down system time at a point when it is running
ahead to conform to clock time. Thus, h(t) > t corresponds to a process
running slow, and h(t) < t to one running fast.

In most of the examples we consider, the target function x0 is not given.
Instead we have to construct it from the data. Typically, we begin by
mapping each interval linearly to the standard interval [0, T0], and set x0
initially to be the sample mean x of the functions xi after this scaling. We
then register the individual functions to x, and update the estimate of x0
to be the mean of the registered functions. We now update the warping
functions by registering the individual functions to this new estimate of
x0. In principle, it is possible to iterate the process of updating x0 then
reestimating the warping functions, but this is rarely necessary in practice.

The functions xi(t) that we are discussing here may be derivatives as,
for example, the velocity curves in Chapter 6. It can be better to register
derivatives instead of the original functions because derivatives tend to
oscillate more, and therefore have more distinctive features to align. In
addition, in phenomena such as human growth, features in the derivative
are the true aspects of interest in the problem.
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Figure 7.1. The tangential acceleration (7.2) on the X–Y plane for 20 samples of
the printing of the characters “fda” by a single individual.

7.3 Registering the printing data

These data are recordings of the X-, Y -, and Z-coordinates 200 times per
second of the tip of the pen during the printing by hand of the charac-
ters “fda.” In the experiment, there were a number of subjects, and each
repeated the printing 20 times. Because this is printing instead of cursive
writing, the vertical Z-coordinate is important.

The registration problem is illustrated by plotting the magnitude of the
tangential acceleration vector,

TA(t) = [X ′′(t) + Y ′′(t)]1/2 (7.2)

on the X–Y plane for each curve for one of our subjects. Tangential accel-
eration is an important property in the study of the dynamics of printing.
To simplify the plot, the time taken to draw each record in Figure 7.1 was
first normalized to the average time, 2.3 seconds. We see that the timings
of the acceleration peaks vary noticeably from replication to replication.
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Figure 7.2. The tangential acceleration curves for the registered printing samples.

The registered results are shown in Figure 7.2, and we see that the accel-
eration peaks are now much more cleanly aligned. Moreover, when we look
at the mean tangential acceleration calculated before and after registration,
as shown in Figure 7.3, we see that the registration has also improved the
amount of detail in the mean function. The peaks are higher, more sharply
defined, the valleys are closer to zero, and some small peaks emerge that
were washed out in the unregistered mean function.

We return to these data in Chapter 11, where we consider whether we
can identify someone by using a differential equation that describes that
person’s printing.

7.4 Registering the weather data

Functional data often come to us as a single long time series spanning many
days, months, years, or other time units. The variation in data such as these
is usually multilevel in nature. There is usually a clear annual, diurnal, or
other cycle over the basic time unit called the season of the data, combined
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Figure 7.3. The mean tangential acceleration curve for the registered printing
samples is plotted as a solid line, and the mean for the unregistered data as a
dashed line.

with longer-term trends that span many time units. Moreover, the seasonal
cycle may also show some evolution over the time spanned by the series.

The data in this example are 12,410 daily temperatures at Montreal over
the 34 years from 1961 to 1994 (in leap years temperatures for February
28 and 29 were averaged). Because these are 24-hour averages, the actual
daily lows and highs were more extreme. The minimum and maximum
temperatures recorded in this period were −30◦C and 30◦C, respectively.
All our analyses are conducted on the entire series, but we do not plot
the results for the entire time interval, since this is too much detail to put
in a graph. Figure 7.4 focuses on 1989, when a severe cold snap came at
Christmas, and was followed by a strong thaw.

We now smooth the temperatures in two ways. We smooth merely to
remove the day-to-day variation, which from our perspective is too short-
range to be interesting, although we are reluctant to call it error or noise.
When we are done, we are left with an estimate of the smooth part of tem-
perature variation. We achieved this by using 500 B-spline basis functions
of order 6. The knots were equally spaced, and occurred at about every 25
days. This smooth, which we denote x(t), is shown in Figure 7.4 as a solid
line.

The second smooth x0(t) is designed to estimate the strictly periodic
component of the sequence. This was achieved by expanding the series in
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Figure 7.4. Temperature data for Montreal from mid-1988 to mid-1990. Daily
mean temperatures are plotted as points, a smooth of the data as a solid line,
and a strictly periodic trend as a dashed line. The horizontal dashed line indicates
the mean temperature over the 34 years of data.

terms of nine Fourier basis functions with base period 365.25 days. In signal
analysis jargon, we applied a high-pass filter. Now the standard deviation
of the residuals from this trend was 4.74◦C, which is necessarily higher than
the unconstrained B-spline smooth, but we were surprised at how small the
increase actually was. This periodic trend is shown as the dashed line in
Figure 7.4.

We now subtract the strictly periodic curve x0(t) from the smooth curve
x(t) to highlight trends and events unexplained by seasonal variation. The
result is shown in Figure 7.5, and the standard deviation of these differences
is 2.15◦C. We see the cold snap of 1989 as the strongest negative spike, and
we also see a number of episodes where the smooth trend is either above
or below zero for comparatively long periods. The temperature was higher
than average for a long period after 1990, for example.

Some of this longer-term trend can be viewed as phase variation, due
to the early or late arrival of some seasons. For example, the cold snap
of 1989 would not have been so dramatic if it had come around January
15, 1990, when temperatures approaching −30◦C happen more often, and
indeed were seen a year earlier. We need to remove our estimate of the
phase variation to get a better sense of just how extreme this event was.



108 7. Time Warping Handwriting and Weather Records

1960 1965 1970 1975 1980 1985 1990

−10

−5

0

5

10

 Year

 D
eg

re
es

 C
el

si
us

Figure 7.5. The difference between the smooth trend and the strictly periodic
trend for the Montreal temperature data.

Figure 7.6 shows what happens around 1989 when we register the smooth
trend x(t) to the strictly periodic target x0(t). We used 140 B-spline basis
functions of order 5 to define the relative acceleration function w(t) defining
time warping function h(t) as described in Section 7.6, yielding a spacing
between knots of three months. This seemed to give enough flexibility to
capture some of the within-year phase variation, but not enough to distort
fine features in the curves. Now we see that the cold snap at Christmas 1989
is positioned after registration in January 1990. The standard deviation of
the differences between the registered temperature curve and the strictly
periodic has now dropped to 1.73◦C. We can now estimate the proportion
of the variation of the unconstrained smooth around the strictly periodic
smooth due to phase variation by the squared multiple correlation R2 =
(2.152 − 1.732)/2.152 = 0.35. Thus, about a third of the smooth variation
in temperature is due to phase.

To get some idea of how much shift in time is required to achieve the
results in Figure 7.6, we can plot the difference between the warped and
actual time functions h(t) − t, called the time deformation function. This
is shown in Figure 7.7, and we see that midwinter in 1989/1990 arrived
about 25 days early.

What about global warming? The smaller residuals for the registered
data fit by strictly linear trend should help us to detect any long-term
linear trend in the data. The slope for the regression of these residuals
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Figure 7.6. Temperature data for Montreal from mid-1988 to mid-1990 registered
to the strictly periodic trend. The registered smooth of the data is the solid line,
the unregistered smooth is the dashed line, and the strictly periodic trend is the
dashed-dotted line. The horizontal dashed line indicates the mean temperature
over the 34 years of data.
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Figure 7.7. The time deformation function h(t) − t for the registration results in
Figure 7.6.
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on time is 0.0024◦C per year, a total of 0.08◦C for the 34-year period of
observation. The standard error of the regression coefficient, however, is
0.0016◦C, and we cannot conclude that this amount of trend is significant.

7.5 What have we seen?

Although we have already seen the registration problem in Chapter 6, the
two examples here introduce some new aspects. For the printing data we
had to register the three coordinates simultaneously, that is, with a com-
mon time warping function h(t). The amount of registration involved was
substantially less than for the growth data, but we saw some rather dra-
matic improvements in the coherence of the tangential amplitude curves in
Figure 7.2, and this turns out to be important when we analyze these data
later.

Not all functional data involve multiple samples of curves. Rather, a
long time series such as the temperature data also contains in a certain
sense replicated data. There are 34 repetitions of the annual variation in
temperature, and our strictly periodic smooth using the Fourier basis was,
in fact, a type of averaging over these repetitions. When we registered
the entire series to this periodic template, we discovered that the amount
of phase variation was rather substantial, and required in certain years
nearly a month of adjustment. Removing phase variation also led to a
rather substantial reduction in the total variation of the smooth trend. This
discovery seriously challenges most of the methods now used to analyze time
series such as this, because they do not provide for phase variation.

7.6 Notes and references

In this section, we generally achieve some simplification of notation by
dropping the subscript on the function xi(t) to be registered as well as the
warping function hi(t).

7.6.1 Continuous registration
We may also register two curves by optimizing some measure of similarity
of their shapes, and thus use the entire curves in the process. Put another
way, the timings of a fixed set of landmarks provide one way of describing
how similar the shapes of two curves are, but we can also choose measures
that use the whole curves.

Silverman (1995) optimized a global fitting criterion with respect to a
restricted parametric family of transformations of time shifts, and applied
this approach to estimating a shift in time for each of the temperature
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Figure 7.8. In the left panel the values of the unconstrained smooth from mid-1988
to mid-1990 are plotted against the corresponding values of the periodic smooth.
In the right panel the registered smooth values are plotted against the periodic
smooth values. We see that the values are now closer to the diagonal dashed line.

functions in 35 Canadian weather stations. He also incorporated this shift
into a principal components analysis of the variation among curves, thus
explicitly partitioning variation into range and domain components. His
measure of shape similarity was the total squared error, cast into functional
terms as

FSSE(h) =
∫ T0

0
{x[h(t)] − x0(t)}2 dt . (7.3)

This measure works well enough provided that the amount of amplitude
variation is small, so that the pure phase variation model (7.1) is about
right. However, the measure can run into trouble when x(t) and x0(t) have
the same shape but differ in amplitude. Ramsay and Li (1998) offer an
example in which it is shown that this criterion has a tendency to “pinch
in” the sides of the larger of the two curves in order to make it look more
like the smaller.

To evolve an alternative fitting criterion, we could allow a scale factor
A, which may depend on i, to yield

FSSE(h, A) =
∫ T0

0
{x[h(t)] − Ax0(t)}2 dt . (7.4)

This would be zero if x0(t) and x[h(t)] differ only by a scale factor, so
that x(t) = Ax0(t) for some positive constant A. This means that the two
functions have essentially the same shape, and that the values of x(t) are
proportional to those of x0(t). If the curves are exactly proportional, then
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the matrix [ ∫ {x0(t)}2 dt
∫

x0(t)x[h(t)] dt∫
x0(t)x[h(t)] dt

∫ {x[h(t)]}2 dt

]
(7.5)

is singular, so only one of its eigenvalues is nonzero. This is also the case if
we replace the integrals in the matrix by sums over a mesh of values tj .

Consider, for example, the relation of the smooth variation in the tem-
perature data to their periodic trend over 1989, shown in the left panel of
Figure (7.8). Note the large loop in the lower left of this plot, due to the
early arrival of winter in this year. The eigenvalues of the matrix (7.5) are
2.380 and 0.032. The smaller eigenvalue is positive because these two sets
of curve values are not proportional to each other.

This line of reasoning suggests that we might choose the warping function
h(t) to minimize the logarithm of the smallest eigenvalue of the cross-
product matrix (7.5). Denote this quantity by MINEIG(h). In cases like
the printing data, where the functions are multivariate, we can form a
composite criterion by adding the criterion across functions. The criterion
often works even better if we use the first derivative values, or even a higher
derivative if it can be estimated stably. This is because derivatives tend to
oscillate more rapidly than functions, and also to vary about zero, so that
the smallest eigenvalue measure is even more sensitive to whether functions
differ only by amplitude variation.

We can see how these two techniques work on an artificial example. Let
the target function be x0(t) = sin 2πt, and let the function to be registered
be x(t) =

√
2(sin 2πt+cos 2πt). These two functions have a phase difference

of 1/8, and x(t) has a maximum of 2 as compared to the maximum of x0(t)
of 1. Otherwise, the two functions have the same shape. The results are
shown in the upper two panels of Figure 7.9, where we see that the regis-
tered function is a lateral shift by 0.125 of the unregistered function. In the
upper-right panel, we see as expected that h(t) ≈ t. The problem with the
least squares criterion (7.3) can be seen in the bottom two panels. We see
that this criterion is minimized in the presence of considerable amplitude
differences by pinching in the larger curve over amplitudes where both the
smaller and larger curve have values. The resulting warping function is far
from diagonal, and even the lateral shift is poorly estimated, with a value
of 0.117.

Returning to the registration of the temperature data, the right panel
of Figure 7.8 shows that the registered smooth trend is more tightly re-
lated to a proportional relationship. The two eigenvalues are now 2.388 and
0.018, and, although the first eigenvalues hardly change at all, the second
eigenvalue is now 57% of the corresponding value before registration.

A generalization, investigated by Kneip, Li, MacGibbon, and Ram-
say (2000), is to replace the constant A by a smooth positive function
Ai(t) which does not vary too quickly. This allows local features of xi to be
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Figure 7.9. The upper two panels show results for an artificial registration problem
using the minimum eigenvalue criterion. The dotted curve in the upper-left panel
is the curve to be registered to the curve indicated by the dashed line. The solid
line is the registered curve. The upper-right panel contains the warping function
for this case, h(t) = t. The lower panels show the same results using the least
squares criterion.

registered to those of x0 even if the overall scale of variation is not constant
across the whole range.

7.6.2 Estimation of the warping function
The software on the Web site associated with this chapter offers a choice
between the two fitting criteria defined above: least squared error and min-
imum smallest eigenvalue of the cross-product matrix. Since the warping
function h(t) is strictly increasing, it can be represented using the method-
ology of Chapter 6 in terms of its relative acceleration w(t) = h′′(t)/h′(t).
We can then permit a roughness penalty based on the mth derivative of
w(t), by minimizing

MINEIGλ(h) = MINEIG(h) + λ

∫
{w(m)(t)}2 dt, (7.6)
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or the corresponding criterion based on FSSE. In the analyses we have
presented, the MINEIG criterion was used. For either criterion, if m = 0,
larger values of the smoothing parameter λ shrink the relative acceleration
w to zero, and therefore shrink h(t) to t. In practice, it is satisfactory to
choose the smoothing parameter λ subjectively.

If we need to estimate derivatives of h(t), it may be better to work
with higher values of m. This can happen, for example, if we want to use
derivatives of the registered functions with respect to t, in which case the
chain rule will require the corresponding derivatives of h(t).

Our software represents the function w in terms of a B-spline expansion.
Ramsay and Li (1998) use order 1 (piecewise linear) B-splines for w since
this permits the expression of h in a closed form and leads to relatively
fast computation. Higher-order splines can be used at the expense of some
numerical integration.


