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How Do Bone Shapes Indicate
Arthritis?

8.1 Introduction

In this chapter we return to the analysis of the bone shape data discussed
in Chapter 4. The intercondylar notch, the inside of the inverted U-shape
shown in Figure 1.5, is considered important by medical specialists. The
anterior cruciate ligament runs through the intercondylar notch, and dam-
age to this ligament is known to be a risk factor for osteoarthritis of the
knee. Although other studies have examined large-scale features of the in-
tercondylar notch, there has not been very much examination of its detailed
shape, nor of its direct relationship to the incidence of osteoarthritis.

In Chapter 4 we studied the shape of the bone outline by considering a
number of landmarks and interpolating between them. In this chapter we
look much more closely at the shape of the intercondylar notch, by taking
a more subtle approach to the detailed representation of the shapes.

We consider a set of 96 notch outlines, on each of which we have some
concomitant information, such as the age of the individual and whether
there is evidence of arthritic bone change. Our concentration on the notch
alone allows us to include a number of partly damaged bones that could
not be considered in Chapter 4; as long as any damage does not affect the
notch it is no longer a problem. In the sample we consider there are 21
femora from arthritic individuals and 75 from individuals showing no signs
of arthritic bone change. We use the data to demonstrate three aspects of
functional data analysis.
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Table 8.1. The coordinates of the lateral and medial edges of the intercondylar
notch for one particular femur. The values Y give the pixel rows, numbered from
top to bottom of the image. The values XL and XM give the lateral and medial
positions within row Y of the edges of the intercondylar notch.

Y XL XM Y XL XM Y XL XM Y XL XM

80 59 61 92 49 83 104 45 87 116 41 85
81 54 61 93 48 84 105 45 87 117 40 85
82 52 63 94 48 85 106 45 87 118 40 85
83 52 64 95 48 86 107 45 86 119 39 86
84 52 66 96 47 87 108 44 86 120 37 87
85 52 68 97 47 87 109 44 86 121 36 87
86 52 73 98 47 87 110 43 86 122 35 88
87 51 77 99 46 87 111 43 86 123 35 89
88 51 78 100 46 87 112 44 86 124 33 90
89 51 79 101 46 87 113 43 86 125 30 91
90 50 80 102 46 87 114 42 86 — — —
91 49 82 103 46 87 115 41 86 — — —

1. How do we handle curves and shapes without making use of
landmarks?

2. What does principal components analysis tell us about the variability
of these data?

3. What are the issues involved in developing a functional analogue of
discriminant analysis?

Part of the object of the study is to understand the way in which arthritic
and nonarthritic bones differ. We have information on this aspect in that
some bones display eburnation, which is a consequence of arthritis. In this
chapter we take eburnation to be synonymous with arthritis, but it could
well be that some of the noneburnated bones are from individuals with
arthritis that is mild or in its early stages. This means that any conclusions
we reach about the differences between arthritic and nonarthritic bones are
conservative.

8.2 Analyzing shapes without landmarks

The bone shapes are stored as 128 × 128 pixel images, obtained by pro-
cessing pictures such as that in Figure 1.5. The pixels are numbered from
the top to the bottom of the picture in the vertical direction, and from the
lateral to the medial (the outside to the inside) in the horizontal direction.
To record the shape of the notch, we move row by row up the pixel image,
starting with the first row of pixels that touches the notch, and for each
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Figure 8.1. The raw data for the intercondylar notch for a particular individual.
The lateral side is on the left and the medial on the right.

row find the pixel positions at either side of the notch. A specific example
is given in Table 8.1 and plotted in Figure 8.1.

It can be seen from the figure that Y cannot be written as a simple
function of X. For instance, as we move down the notch on the medial
side, we first move out to pixel 87, then back to 85, and finally out to 91
again. Furthermore, a large part of this edge is vertical or nearly so. Merely
considering Y as a function of X will not work; instead we will have to find
a better way of parameterizing the shape of the notch.

A fruitful approach is parameterization by arc length. We define functions
x(t) and y(t) such that as t increases from 0 to 1 the point {x(t), y(t)} moves
at a constant speed along the curve. We then regard the two-dimensional
function z(t) = {x(t), y(t)} as being our functional datum. Landmarks are
not required; instead the distance along the curve is used to yield the points
whose coordinates are used for the subsequent analysis. Distance measured
along a curve is called arc length.

To apply this approach to the data given in Table 8.1, first we connect the
dots to obtain a continuous outline, as shown in Figure 8.2. In this figure,
there is some rapid variation in the part of the curve on the lateral side,
partly due to the pixelation of the image. We are not interested in variation
on this scale. However, we wish to calculate distances along the curve in
order to define the functions x(t) and y(t), and small scale variations will
increase such arc lengths in a spurious way. Therefore we perform some
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Figure 8.2. Joining the centers of the boundary pixels: the first step in producing
a curve parameterized by arc length.
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Figure 8.3. Smoothing by joining the midpoints of the line segments in Figure
8.2: the next step in producing a curve parameterized by arc length.



8.2. Analyzing shapes without landmarks 119

Rescaled X coordinate

R
es

ca
le

d 
Y

 c
oo

rd
in

at
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

Figure 8.4. Fifty points equally spaced along the curve shown in Figure 8.3 with
the curve rescaled to start and finish at standard positions. Interpolating these
positions linearly is the final step in producing a curve parameterized by arc
length.

very light smoothing, joining the midpoints between the dots, instead of
the dots themselves. The effect, shown in Figure 8.3, is to reduce the local
variability noticeably without changing the structure in any substantial
way.

Only the shape of the notch is of interest, so we rescale the curve equally
in both coordinate directions, and also shift it, to make it run from (0,0) to
(1,0) in the X–Y plane. By calculating the distance along all the small line
segments that make up Figure 8.3 we find 50 points (xk, yk) at equal arc
length along the curve, as plotted in Figure 8.4. This process has yielded
a fine grid of 50 points evenly spaced along the notch outline, capturing
all the essential features of the shape of the intercondylar notch. Let t1 =
0, t2 = 1/49, t3 = 2/49, . . . , t50 = 1. To complete the specification of the
shape as a curve parameterized by arc length, define the functions x(t) and
y(t) by setting x(tk) = xk and y(tk) = yk for each k, and interpolating
linearly between these points.

This process is applied to each of the N = 96 outlines in the sample. For
each j = 1, 2, . . . , N we obtain a pair of functions {Xj(t), Yj(t)}, written
as the vector function Zj(t). Each Xj and Yj is held in discretized form, so
the actual data are held in an N × 50 × 2 array, recording the coordinates
of the 50 points picked out along each curve. The (j, k, 1) element of this
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array is the X-coordinate of the kth point on the jth curve, and the (j, k, 2)
element the corresponding Y -coordinate. The choice of the number 50 is
somewhat arbitrary, and our analyses are not particularly sensitive to this
choice; because of the original pixelation of the data there is no point in
trying to recover information on any smaller scale.

8.3 Investigating shape variation

8.3.1 Looking at means alone
We can define the notion of a mean shape, by finding the functions

X̄(t) = N−1
∑

i

Xi(t) and Ȳ (t) = N−1
∑

i

Yi(t),

and letting the mean shape be the curve traced out by the two-dimensional
function Z(t) = {X̄(t), Ȳ (t)}. In practice, we average over the first dimen-
sion of the data array to yield a 50 × 2 matrix giving the coordinates of
50 points along the mean curve; joining these points gives the mean curve
Z(t) plotted in Figure 8.5. The halfway point along this curve, for instance,
is the average of all the halfway points on the individual curves.1

The means of the eburnated and noneburnated groups are plotted in
Figure 8.6. It might appear that the distinguishing feature of the arthritic
bones is that they have a shallower notch, because this is the way that
the mean shapes differ. However, we show that a more careful statistical
analysis does not yield the same conclusion, and that the mode of variability
that best distinguishes the two groups is quite different.

8.3.2 Principal components analysis
Before considering further the subdivision into arthritic and nonarthritic
bones, we investigate the ways in which the data set as a whole varies.
Regarding the two-dimensional functions Zi(t) as our functional data,
functional PCA yields an expansion in terms of two-dimensional functions
ξj(t) = {ξX

j (t), ξY
j (t)}. There are coefficients zij such that the observations

can be expanded as

Zi(t) =
∑
j≥1

zijξj(t). (8.1)

1There is an interesting wrinkle here that is not relevant to our particular application:
the points along the mean curve need not actually be themselves equally spaced, and in
some cases it may be a good idea to go back and reparameterize the individual curves
by reference to the way that the mean curve turns out. In our case this is not a problem.
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Figure 8.5. The mean notch shape curve.
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Figure 8.6. Solid: the mean curve for arthritic bones; dashed: the mean curve for
nonarthritic bones.
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PC 1 PC 2
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Figure 8.7. The first four principal components of variability of the notch shapes.
The solid curves are the outlines corresponding to adding a multiple of the rel-
evant weight function to the mean, and the dashed curves those obtained by
subtracting the same multiple. The percentages of variability explained by these
components are, respectively, 72.5, 13.9, 5.9, and 3.9%.

The actual PCA is performed by carrying out a standard PCA of the 100-
vectors giving the coordinates of the points along the curves. It turns out
that no smoothing is necessary.

To understand the principal component weight functions ξj(t), we can,
as usual, plot Z(t) ± cξj(t) for some suitable multiple c. In this case the
perturbed functions Z(t) ± cξj(t) are two-dimensional functions, and we
plot their path in X–Y space as t varies. In Figure 8.7 the effects of the first
four principal components of variability are displayed. These components
together explain 96% of the variability in the data, with no other component
explaining more than about 1% of the variability.

The displayed components all have simple interpretations. The first com-
ponent corresponds to the depth of the notch, and the second to the shift of
the notch relative to the bottom points of the condyles. The third compo-
nent gives information about the width of the notch, and the fourth shows
how convex the medial part of the notch tends to be.

The depth of the notch accounts for a great deal of the variability in the
sample, and so in plotting Figure 8.7 the size of the perturbation shown in
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each part of the plot is not chosen by reference to the amount of variability
in the original sample. Instead, the same multiple c of the principal com-
ponent curve is used in each case, the multiple being chosen to make the
mode of variability clear without grossly exaggerating it. Further details
are given in the Web page associated with this chapter.

Thus far, the use of functional PCA for functions parameterized by arc
length has no particular relation to the concomitant information that some
of the bones are arthritic and some are not. In order to explore this aspect,
we consider a different functional data analysis method, an extension of
discriminant analysis. Apart from the way in which it identifies particu-
lar modes of variability within the population, the principal components
analysis provides a convenient basis for the expression of the shapes in the
sample and of other notch shapes.

8.4 The shape of arthritic bones

8.4.1 Linear discriminant analysis
Suppose that δi is a sequence of numbers such that δi = 1 if the ith bone is
arthritic and −1 if it is not. In the present context, the object of functional
discriminant analysis is to find a vector function α(t) = (αX(t), αY (t)) such
that we can predict δ for any given bone (drawn either from the sample or
from a new set of data) by calculating the discriminant values

δ̂i =
∫ 1

0
{Xi(t)αX(t)dt + Yi(t)αY (t)}dt, (8.2)

and checking whether it lies above or below some critical value C.
The function α(t) characterizes the mode of variability that best dis-

criminates between the two populations. Moving away from the mean in
the direction of α(t) is the way of increasing the integral in (8.2) as fast as
possible. But how is α to be found?

Suppose the data were vectors Zi rather than functions Zi(t). The corre-
sponding problem would be to find a vector a and a constant C such that
we could predict the population from which a vector Z was drawn by cal-
culating whether a′Z > C. The classical method called linear discriminant
analysis finds the vector a that minimizes the ratio of the within-group
sum of squares to the between-group sum of squares. Let Z̄(1) and Z̄(2) be
the means of the two populations and let Ŝ be the pooled estimate of the
variance matrix. Then the linear discriminant method yields

a = Ŝ−1(Z̄(2) − Z̄(1))

and

C = 1
2a′(Z̄(2) + Z̄(1)).
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Figure 8.8. The mode of variability corresponding to a linear discriminant analysis
carried out directly on the matrix of coordinates defining the notch shapes. The
arrows show how the 50 defining points on the mean curve are perturbed in the
direction defined by the discriminant vector. The way to increase the discriminant
score most quickly is to move away from the mean shape in the direction of the
arrows.

In the functional case, we have observations on 100 variables, the X-
and Y -coordinates of the points around the notch, for each of the N in-
dividuals in the sample. Naively, we could apply the linear discriminant
method to these high-dimensional vectors. The resulting 100-vector a can
be translated back into a 50×2 matrix of weights corresponding to a mode
of variability in the space of possible notch shapes.

Unfortunately this approach does not give a meaningful result. See Fig-
ure 8.8 for the mode of variability that it yields. This mode of variability
clearly cannot be associated with any genuine feature of the problem in
hand. Furthermore, this discriminant has the property that it classifies ev-
ery bone in the sample perfectly; every arthritic bone has a′Z > C and
every nonarthritic bone has a′Z < C. However superficially attractive such
performance may be, it is scarcely credible as a result of the study.

This phenomenon—gross overfitting combined with an apparently mean-
ingless discriminant function—is an intrinsic feature of the naive approach,
and has nothing to do with the arthritis data in particular. It has a mathe-
matical explanation touched upon in Chapter 12 of Ramsay and Silverman
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(1997) and discussed in more detail in references given there. In the present
context a more informal explanation is given in Section 8.6.2 below.

8.4.2 Regularizing the discriminant analysis
We have to apply some regularization in order to give meaningful answers.
A simple method is to expand the data in terms of some suitable basis, and
only to consider a finite number of terms in this basis, both in the expansion
of the data themselves and in the specification of the discriminant weight
function (αX(t), αY (t)).

In the present case, the principal components analysis gives a low-
dimensional representation of the data that preserves as much as possible
of the sample variability. For this reason we use as our basis expansion
the harmonics provided by the functional PCA of the data themselves. Fix
some fairly small integer J and consider only the first J terms in the princi-
pal components expansion (8.1) of each of the functions. For concreteness
we choose J = 6. For each bone, we then have six principal component
scores on which to base our linear discriminant, and we apply standard
discriminant analysis to the N × 6 matrix (zij , i = 1, . . . , N ; j = 1, . . . , 6).
This yields a vector a of length 6, giving a linear discriminant in terms of
the principal component scores,

δ̂i =
6∑

j=1

ajzij . (8.3)

We can express the discriminant value in terms of the notch curves
themselves. By standard properties of principal component expansions,

zij =
∫ 1

0
{Xi(t)ξX

j (t) + Yi(t)ξY
j (t)}dt

for each i and j. Substituting into (8.3), the linear discriminant value δ̂i

satisfies

δ̂i =
6∑

j=1

aj

∫ 1

0
{Xi(t)ξX

j (t) + Yi(t)ξY
j (t)}dt

=
∫ 1

0
{αX(t)Xi(t) + αY (t)Yi(t)}dt,

where [
αX(t)
αY (t)

]
=

6∑
j=1

aj

[
ξX
j (t)

ξY
j (t)

]
. (8.4)

Comparing with equation (8.2), we can consider the two-dimensional func-
tion α(t) = {αX(t), αY (t)} as defining the functional linear discriminant
between the two groups of bones.
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Figure 8.9. The mode of variability corresponding to a functional linear discrim-
inant α(t) based on the first six principal components of the notch shape data.
The solid curve is the mean shape, and the arrows show the direction in which
the discriminant score increases most rapidly.

The mode of variability corresponding to the resulting α(t) is displayed in
Figure 8.9. Bones with a higher discriminant score will have an intercondyle
notch twisted to the left in the way that the figure is plotted. Because the
mean is somewhat twisted to the right, this will tend to make the notch
more symmetrical and to have a right edge that is less concave. The arthritic
bones will tend to be in this category, and the average difference between
the two groups of bones is approximately that corresponding to the lengths
of the arrows in Figure 8.9.

The number J may be thought of as a regularization parameter, which
determines how far we regularize the problem in order to produce our esti-
mate. If we set J very small, equal to 1, for example, then the discrimination
can only be based on a single principal component and important informa-
tion may be lost. On the other hand, if J is chosen too large, then we will
get the kind of spurious results discussed in Section 8.4.1 above. As in many
smoothing and regularization contexts it is often sufficient to experiment
with different values of the regularization parameter and choose between
them by inspection, and in this case such inspection will immediately rule
out values of J greater than about 12. However, it is also helpful to have cri-
teria to help make this choice, and one of these is a cross-validation method
described further in Section 8.6.3. This method confirms our choice J = 6.
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Figure 8.10. Box plots of discriminant scores. The two plots on the left give
linear discriminant scores based on the first six principal components. Those on
the right give scores based on the difference between the group means. The scores
are scaled so that the arthritic bones have mean 1 and the nonarthritic mean −1.
Note that the boxes in the first two plots do not overlap at all, whereas there is
considerable overlap between the boxes in the last two plots. In every case the
box covers the middle 50% of the relevant sample.

8.4.3 Why not just look at the group means?
The mode of variability that best discriminates between the arthritic and
nonarthritic bones picks out features that are not at all apparent in the
simple comparison of the means in Figure 8.6. Is this a contradiction?

The two curves in Figure 8.6 differ almost entirely along the lines of the
first principal component of variability of the population as a whole, shown
in Figure 8.7 to correspond to the depth of the notch. There is considerable
population variation in this component, and hence in the notch depth, and
this general variation is reflected in the differences in the mean notch depths
for the two subpopulations. If we project all the data on the direction of
the difference between the mean curves, the t-statistic for the difference
between the two subpopulations is about 3.1.

On the other hand, if we consider the linear discriminant scores based on
the first six principal components, the t-statistic for the difference between
the two groups is 4.8. The regularized linear discriminant is much better
at separating the two groups than is the direction of variability defined by
the group means. Figure 8.10 gives a graphic presentation of this: the two
scores are each rescaled so that the mean of the arthritic bones is +1 and
the mean of the controls is −1. The box plots show that the “six principal
component linear discriminant” approach separates the subpopulations far
better than the “mean difference projection direction.”
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8.5 What have we seen?

The right way to express shapes in functional form may not always be obvi-
ous. If our object is a curve in two dimensions then parameterization by arc
length can be a convenient way of representing the functional observations
as vector-valued functions {x(t), y(t)} of a scalar parameter t. Standard
methods such as functional PCA can then be used to analyze the data.
Without such a parameterization even the notion of a mean curve has no
obvious definition.

Linear discriminant analysis can be extended to the functional context,
but regularization is necessary to give meaningful results. Intuitively, if an
entire function is used to predict a single quantity, such as the class to
which the function belongs, then a totally spurious feature of the function
may give perfect prediction for the particular data set observed. One pos-
sible regularization approach is to concentrate on the first few principal
components, or some other finite-dimensional representation of the data.
Whatever method of regularization is used, the regularization parameter
can be chosen by inspection or by an approach like cross-validation.

Functional discriminant analysis can distinguish groups better than con-
sideration of the group mean curves alone. The group means may differ in
ways that reflect modes of variability in the population generally, rather
than those that specifically separate the groups within the population. The
means of the two subpopulations might suggest that it is the depth of
the notch that is associated with the symptoms of arthritis. However, the
functional discriminant analysis indicates that the best discriminating char-
acteristic is the differing amout of “twist” in the notch shape. This aspect
of the shape could affect the way that the anterior cruciate ligament lies
in the intercondylar notch, with a possible link to arthritis as discussed in
Section 8.1. Within the present study, we cannot disentangle the influence
of bone shape on arthritis from the possibility that arthritis causes a change
in bone shape. However, our results give clues and pointers for future work
in the fields of rheumatology and biomechanics.

8.6 Notes and further issues

8.6.1 Bibliography
The notch shape study discussed is a reworking of Shepstone, Rogers, Kir-
wan, and Silverman (2001), which deals with the same data and the same
clinical issues, but uses a somewhat different approach to the parameter-
ization of the notch shapes and to the subsequent analysis. That paper
contains full details of the medical background, including key references to
work in the rheumatological, biomechanical, and veterinary literature.
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Functional discriminant analysis is a particular example of the use of
functions as predictors, as discussed broadly by Ramsay and Silverman
(1997, Chapter 10). They treat in detail the general necessity for regular-
ization in such problems, and consider various approaches to regularization,
including roughness penalty methods. An early paper in the FDA literature
dealing with these issues is Leurgans, Moyeed, and Silverman (1993), who
demonstrate and investigate the need for regularization in another func-
tional context, canonical correlation analysis. Hastie, Buja and Tibshirani
(1995) set out the general idea of functional discriminant analysis making
use of a roughness penalty approach to regularization. They apply their
methods to a problem in speech recognition and to the classification of
digits in handwritten postal addresses. Both functional canonical correla-
tion analysis and functional discriminant analysis are treated in detail in
Ramsay and Silverman (1997, Chapter 12).

8.6.2 Why is regularization necessary?
We can give an intuitive argument for the necessity of regularization for
the bone shape discriminant problem. The discretized coordinates of the
data provide N points in 100-dimensional space. Four of the coordinates
are fixed, because the notches are all scaled to start at (0, 1) and end at
(1, 1), so the points are essentially in 96-dimensional space. We set the
elements of a corresponding to these four fixed coordinates to zero. Now
consider any division of the points into two groups, red and blue, say, and
suppose that we want to find a vector a such that a′Zi = 1 if Zi is a
red point, and a′Zi = −1 if Zi is a blue point. These are N equations in
the 96 unknowns in a, and so, because N = 96, there is a solution that
gives perfect discrimination between the populations. If we had used a finer
discretization of the notches then there would have been N equations in
even more unknowns, and hence an infinite set of such solutions. To put it
less precisely, there is so much freedom in the choice of the vector a that it
is not surprising that some completely uninteresting direction happens to
give a discriminant function that works excellently on the given data but
is in fact spurious—of course it will not have any value for classifying any
new data collected.

This intuitive argument points to the qualitative difference between the
regularization of functional discriminant analysis and roughness penalty
smoothing as applied to PCA (as discussed in Chapter 2). For discriminant
analysis, regularization is a mathematical necessity, however well behaved
the original data—indeed, for mathematical reasons we do not go into here,
the smoother the data the more acute the need for regularization. On the
other hand, for functional PCA, smoothing is only important when we have
data of high intrinsic variability, as we did in Chapter 2; an unsmoothed
analysis will often suffice.
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8.6.3 Cross-validation in classification problems
The best approach to assessing the quality of a discriminant is to go out
and collect completely new data and to see how well the discriminant rule
based on the original data works on these new data. Unfortunately, in many
contexts there are no new data available, and so we have to make use of the
data we have. The simplest assessment of the discriminant is the resubsti-
tution approach: feed the original data back through the discriminant, and
see how well classified they are. This approach will usually be optimistic.
The leave-one-out cross-validation method attempts to avoid the use of
the same data both to train and to test the discriminant as follows: classify
each data point using a discriminant constructed from all the data except
that particular point. This requires a separate discriminant function for
each data point in the sample and so may be computationally intensive,
although there are some computational shortcuts that can be used. The
approach is reminiscent of the cross-validation method when estimating
the mean in the way described in Section 2.6.

Table 8.2. The cross-validation counts of false positives and false negatives for
various values of the number J of principal components used in the discriminant
algorithm. To get misclassification rates, divide the first row by 75 and the second
row by 21.

J 1 2 3 4 5 6 7 8 9 10 11 12
False pos 26 27 22 22 23 19 23 21 21 22 22 22
False neg 10 8 8 8 8 7 7 7 7 7 8 9

Because the cross-validation approach gives a classification for each point
individually, we can count both the number of false positives (nonarthritic
bones that are classified as arthritic) and the number of false negatives
(arthritic bones that fail to be so classified). The results are tabulated for
various values of J in Table 8.2. In some circumstances we might need to
combine false positive and false negative rates into a single score, but the
choice J = 6 is the unique value that minimizes both scores, and so would
be the minimum whatever linear combination of the two scores we were to
choose.

A final comparison relevant to the discussion of Section 8.4.3 can be
obtained by calculating the leave-one-out cross-validation scores for the
approach of projecting on the difference between the two group means. This
yields false positive and negative rates of 25 and 9, respectively, noticeably
worse than the values of 19 and 7 yielded by the discriminant based on the
first six principal components.


