
10
Predicting Lip Acceleration from
Electromyography

10.1 The neural control of speech

Physiologists and psychologists who study motor control aim to understand
how the brain controls movement. We know that waves of neural activation
cascade down complex neural pathways to the motoneurons that activate
muscle tissue, and that the contraction of these muscles applies forces to
limbs. We know, too, from elementary physics that force is proportional to
acceleration, and that if we study the acceleration of some body part, we
are getting close to seeing how this remarkable control mechanism produces
the movement that we see and feel.

Our capacity for speech is remarkable. In conversation, we can easily
pronounce 14 phonemes per second, and this rate appears to be limited
by the cognitive aspects of language rather than by the physical ability
to perform the articulatory movements. Considering the muscles of the
thoracic and abdominal walls, the neck and face, the larynx and pharynx,
and the oral cavity, there are over 100 muscles that must be controlled
centrally.

Does the brain plan sequences of speech movements as a group, or does it
just control each movement in turn without regard to preceding or following
phonemes? In speech production, the concept of coarticulation implies that
the characteristics of each phoneme are adjusted to accommodate aspects
of what is coming up ahead.

We can gain some insight into coarticulation by studying the lower lip.
The lower lip plays a modest role in speech articulation, but is easily acces-
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Figure 10.1. The top panel displays the position of the center of the lower lip
of a speaker pronouncing the syllable “bob” for 32 replications. The middle
panel displays the corresponding accelerations. The bottom panel contains elec-
tromyogram (EMG) recordings from a facial muscle that depresses the lower lip,
the depressor labii inferior. The dotted lines indicate distinct phases in the ar-
ticulation of the syllable. The EMG recordings are shifted to the right by 50
milliseconds, the time lag of the direct effect of a neural excitation as a muscle
contraction.

sible, and is controlled by only three muscles. We can investigate how these
muscles work together to control the lip, and how their contractions are
determined by neural activation. We focus on the most important of the
three, the depressor labii inferior (DLI) muscle that depresses the lower lip.
To produce each /b/, the lip moves up to close the mouth, and then down.
During these movements the DLI muscle plays specific roles: one, referred
to as agonist, when it accelerates the lip during the descending phases,
and the other, called antagonist, when it brakes the movement during the
ascending phases.

Implanting electrodes to observe neural activity directly would involve
more heroism than most subjects would consider worthwhile, but we can
measure a byproduct of this activity through electromyographical (EMG)
recording. Recordings are taken from the surface of the skin, and do not
seriously perturb normal movement.
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However, there are some issues with EMG recordings as indicators of
neural activity. A muscle that is stretched in the absence of neural activa-
tion will also generate an EMG signal. Where muscles are overlapping or
even just close together, the recording may not cleanly separate activity in
different muscles. Finally, there is a period of about 50 msec following the
onset of neural excitation, and the associated EMG signal, before muscle
contraction begins.

Even if there is some imprecision in whatever EMG reflects, it cannot
exert an influence backward in time on lip acceleration, since neural ac-
tivity shows up in EMG signals with essentially no delay. Consequently
we are interested in a feedforward model for the influence of EMG on lip
acceleration. However, because of the 50 msec lag between neural activa-
tion onset and muscle contraction, only associations at delays substantially
larger than 50 msec are evidence for coarticulation effects.

10.2 The lip and EMG curves

A subject was repeatedly required to say the syllable “bob,” embedded in
the phrase, “Say bob again.” Because of the delay in muscle contraction
indicated above, the records have been shifted in time, dropping the first
50 msec from the observed lip acceleration curves, and the last 50 msec
from the raw EMG records. The duration of “bob” in each original record
was time-normalized to 690 msec, but because of this time shift, only 640
msec is displayed in Figure 10.1.

The top panel of Figure 10.1 shows a sample of N = 32 trajectories of the
lower lip. In the middle panel, the acceleration functions Yi(t) estimated
from these original observations are shown. The bottom panel of Figure
10.1 shows the EMG records. The value Zi(s) plotted at any particular
time s is the recording actually made at time s msec, but the values of lip
position and lip acceleration plotted for the same time are those actually
observed at time s + 50 msec, when any muscle contraction associated
with activation at s msec is beginning to take place. Thus, for example,
the last EMG observation plotted is for 640 msec, but the actual time for
the corresponding lip observations is really 690 msec. For simplicity, we
specify lip times from here on as the actual time less 50 msec. However, it
is sometimes important to consider the real time of the observations, as we
see below.

The lower lip trajectory can be segmented roughly into these epochs,
separated by dotted lines in Figure 10.1:

1. close mouth for the first /b/;

2. lower the lip after utterance of first /b/;

3. central part of /o/, lip relatively stationary;
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4. raise the lip for second /b/; and

5. lower the lip after the second /b/.

As we noted above, we can expect substantial EMG activity whenever the
DLI muscle is active, whether the lip is descending or ascending. The point
of least EMG activity is at about 330 milliseconds, at the end of the period
when the lip is at its lowest point during the utterance of /o/.

How is the variability across observations of the EMG recording Z(s)
reflected in the behavior of the lip acceleration Y (t)? It is implausible to
suppose that Z(s) acts backward in time to influence Y (t). Examination
of Figure 10.1 may suggest that there is some forward influence of EMG
activity on lip acceleration, but there is clearly statistical work to be done
in investigating this possibility.

As a first step in studying the possible forward influence of EMG activity,
we look at the correlation over the 32 replications of the electromyogram
at times s and the acceleration at times t ≥ s. The results are plotted in
Figure 10.2. The light and dark patches on or very close to the diagonal
of the image indicate a substantial amount of simultaneous relationship of
both positive and negative polarity.

We can check for feedforward influence by scanning horizontally, to the
left of the diagonal, for a fixed time t. For example, the dashed lines in
the figure correspond to about 425 msec, when the lip is closed for the
second /b/. We see a patch of positive correlation at about 350 msec; EMG
activity 50 msec before this time, during the full opening of the mouth,
is correlated with later acceleration. Further back, however, we see some
negative correlation at about 175 msec, corresponding to EMG activity
during the closure for the first /b/. As we scan parallel to the diagonal,
we see a slightly curved band of positive correlation at a lag somewhere
around 150 msec, and another band, but of negative correlation, further
back at around 200 msec.

10.3 The linear model for the data

Let T = 640 indicate the final time of the complete utterance, and let δ be
the time lag beyond which we conjecture that there is no influence of EMG
activity Z(s) on the lip acceleration Y (t). With this in mind, we model
Z(s) as influencing Y (t) according to the model:

Yi(t) = α(t) +
∫ t

t−δ

Zi(s)β(s, t) ds + εi(t) . (10.1)

Here α(t) is a fixed intercept function that allows for the relationship
between the mean lip and EMG curves, but cannot accommodate their
covariation effects. The model presumes that EMG affects lip acceleration
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Figure 10.2. The correlations between the accelerations, functions of t, and the
electromyogram recordings, functions of s, for all pairs of time values s ≤ t.
White regions correspond to positive correlations and dark regions to negative
correlations. The gray level below the diagonal corresponds to a value of zero.

in a linear fashion, and the residual function εi(t) reflects the inability of
the linear prediction model to fit the data completely. We might call this
the historical linear model in the sense that the influence of Z(s) feeds
forward in time for a time lag of up to δ, and therefore is a relevant part of
the history of Y (t) for s ≤ t ≤ s + δ. Since s ≤ t, the regression coefficient
function β(s, t) is defined on a subset of the triangular domain used in
Figure 10.2.

By contrast, the pointwise model

Yi(t) = α(t) + Zi(t)β(t) + εi(t) , (10.2)

could be called contemporary, because the influence of EMG on lip accel-
eration is only instantaneous. In the contemporary model the regression
function β(t) depends only on t. The model can be viewed as a limiting
version of the historical model as δ → 0.

The central question is, then, whether the contemporary model provides
an adequate fit, or whether we should use a model in which β depends on
both s and t. If we do fit a historical linear model, then we would also hope
to gain some insight into the appropriate value of the lag δ.
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Figure 10.3. The domain of definition of the regression function β(s, t) discretized
into 16 triangular elements. Element boundaries are indicated by dotted lines and
nodes by circled numbers. As an illustration, the horizontal dashed line at t = 430
represents the line of integration for Yr(430).

10.4 The estimated regression function

A practical approach to the estimation of the regression function β(s, t)
is to seek an expansion in terms of a fixed number of known basis func-
tions. We use the finite element method, often used in engineering to solve
partial differential equation systems. This approach involves subdividing
the domain (s, t), s ≤ t, into triangular regions in the manner shown in
Figure 10.3. The triangles are called the elements and the vertices of the
triangles are called the nodes of the system. Sixteen triangles are shown
in the figure, corresponding to four intervals along each axis; but our final
triangulation involved 169 elements and 105 nodes, resulting from using 13
intervals along each axis, each interval being of length 640/13 = 49.2 msec.

The next step is to define basis functions over each of these regions. Each
basis function φk(s, t) is a linear bivariate function having the value one at
a specific node and falling off to zero at the remote edges of each triangle
that has that node as a vertex. A typical basis function for a node inside
the triangular domain is shown in Figure 10.4.

The triangular basis has an important advantage in considering how large
the lag δ should be in modeling the feedforward influence of Z(s). Triangles
falling more than δ units from the diagonal are simply eliminated, so that
the manipulation of δ corresponds to selecting subsets of the basis functions.
Of course, we can only set δ at discrete values, but this is not a problem if
we make the triangular mesh reasonably fine. Letting ∆ indicate the width
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Figure 10.4. A typical piecewise linear basis function used to construct a finite
element approximation of the regression function β(s, t).

of a single triangle, we are permitted to use lag values δ = m∆ for integers
m ≥ 1.

The contemporary model (10.2) can be thought of as the case m = 0.
In this case, the elements are intervals along the diagonal line. The basis
functions are functions of only one variable t, and are piecewise linear
functions, in other words, B-splines of order 2, as shown in Figure 2.14.

Once we have estimated the coefficients bk, we have a piecewise linear
approximation to the regression function β(s, t). The process of estimating
the coefficients of the expansion can be set up as a matrix computation;
for further details, see Malfait, Ramsay, and Froda (2001).

Figure 10.5 shows the full bivariate regression function β(s, t), effectively
setting δ = T , as a grayscale image. For what values of t is lip acceleration
most influenced by current and previous EMG activity? We see that the
patterns of relationship that we already observed in Figure 10.2 are also
found here, but the regression function surface is much better at picking out
specific intervals where the influence is important. The peaks and dips in
β(s, t) indicate that the lip activity is most influenced by measured EMG
in the time interval from about t = 350 to about t = 480, the time of
the second lip closure. By scanning along the line corresponding to 425
msec, we note that there is also some indication that EMG activity at time
t = 250, at the beginning of /o/, influences the second /b/ closure.
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Figure 10.5. The regression function β(s, t) estimated using 105 nodes. Dark
regions correspond to negative values and white regions to positive values. The
gray level plotted below the diagonal corresponds to the value zero.

10.5 How far back should the historical model go?

What lag δ seems to be supported by the data? To answer this, we need
to compare a fit for a specific lag to that offered by a simpler, and more
restricted, model. Two simpler models are the mean computed across the
32 replications,

Ȳ (t) = N−1
32∑

i=1

Yi(t) ,

and the contemporary model (10.2).
For a specific δ = m∆, we can define the error sum of squares function

at any time t by

SSEm(t) =
N∑

i=1

{Yi(t) − Ŷi(t)}2, (10.3)

where Ŷi(t) is the fit of the current model to the observed curve Yi(t). For
any given value of m, the squared multiple correlation measure of fit R2

m
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Figure 10.6. The squared correlation R2
m as a function of lag δ = m∆ for a

triangulation into 169 elements and 105 nodes. The points plotted correspond to
the discrete values of δ given by integers m.
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Figure 10.7. The estimated regression function β(s, t) for lag δ = 5∆.
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Figure 10.8. The error function RMSE(t) for the models with lag δ = 5∆ ≈ 250
(solid line) and δ = 0 (dashed line). The vertical dotted lines indicate the positions
on the axis of the nodes of the finite element basis.

is defined by

R2
m = 1 −

∫ T

0 SSEm(t) dt∫ T

0 SSY(t) dt
, (10.4)

where SSY(t) refers to the fit using the mean curve.
We consider R2

m as a function of δ = m∆, that is, as a function of the
width of the domain of integration in the model (10.1). From Figure 10.6,
we see that the fit improves as we enlarge the domain of integration up to
δ = 5∆, but does not increase substantially with larger values of δ. Thus,
it seems to be worth modeling lip acceleration at time t to be influenced by
EMG values up to about 250 msec before t. The estimate of β(s, t) using
this lag is shown in Figure 10.7.

The shape of the estimate of β(s, t) indicates, as expected from the re-
gression function already considered, that the muscle activation is the most
influential in the period leading up to the second lip closure times. Also,
there is a ridge of influence along the diagonal continuing for a short pe-
riod after the closure; in this short interval it is only contemporary EMG
signals that matter. This suggests that the system plans the closure, but
the recovery after the closure is not planned for in advance.

Figure 10.8 compares the standard deviation function RMSE(t) =√
SSEm(t)/N for the historical model with m = 5 with that for the contem-

porary model m = 0. We see that the main improvement for the historical
model is in the articulation of the second /b/ between 400 and 500 msec,



10.6. What have we seen? 155

and also more briefly at about 200 msec, in the transition from the first
/b/ to the /o/ phoneme.

Is the fit of the historical model with m = 5 significantly better than that
of the contemporary model? Because different finite element bases are used
to approximate the two models, the finite element contemporary model is
not exactly nested within the finite element historical model, even though
the exact models can be regarded as nested. In order to compare nested
models, therefore, we approximate the contemporary model by the histor-
ical model with m = 1, and construct an F -test of significance. Results
reported in full in Malfait, Ramsay, and Froda (2001) then demonstrate
that the fit of the model with m = 5 is indeed significantly better than the
approximate contemporary model m = 1.

10.6 What have we seen?

It now seems fairly clear from these results that the timing and intensity of
phonemes do have a covariation with EMG activity that is reflected both
in the simple correlation plot in Figure 10.2, and in the feedforward linear
model (10.1). The time lag over which this feedforward influence is evident
is not unlimited, and in this case corresponds to two phonemes. Of this 250
msec lag, we are able to account for 45% of the variation in Y (t) by its
covariation with Z(s). This is a substantial effect, considering how volatile
EMG data tend to be, as well as their tentative connection with neural
activity. The pointwise or contemporary linear model only explains about
27% of the variability, and Figure 10.8 indicates that its deficiency as a
model seems mainly concentrated on the second “b,” where the feedforward
influence is especially strong.

Ramsay and Silverman (1997, Chapters 9 to 11) give a general introduc-
tion to functional linear models, and discuss various aspects in more detail.
However, their treatment does not go as far as the restriction of the influ-
ence to a finite lag, and the present case study exemplifies the way that
functional data analysis methods often have to be tailored to the particu-
lar problem under consideration. The finite element method adopted was
particularly appropriate to the restriction to finite lag on the triangular
domain over which β(s, t) is defined. This approach also allowed a simple
control of the size of the lag δ so that we could explore the role of this
parameter.

10.7 Notes and bibliography

The data were collected at the Haskins Speech Laboratories at Yale Uni-
versity by V. Gracco. The analyses of the data were carried out by N.
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Nicole during a Masters of Science program at the Université du Québec
at Montréal, and reported in more detail in Malfait, Ramsay, and Froda
(2001).

The raw lip position data consisted of two-dimensional positions in
the sagittal plane sampled 625 times per second. Jaw position was also
recorded, and subtracted from lip position. Although two-dimensional po-
sition measurements were taken, in fact the trajectory of the lower lip was
nearly linear, and consequently the data were reduced to one-dimensional
coordinates by principal components analysis.

A considerable amount of preliminary processing was required before
satisfactory acceleration curves could be produced. The data were first
smoothed by a robust method, the LOWESS smoother (Cleveland, 1979) in
the S-PLUS package to eliminate the occasional outlying recording. These
smoothed data were in turn approximated using 100 B-spline basis func-
tions. The spline basis was of order 6 in order to assure that the second
derivative of the expansion would be reasonably smooth. A light roughness
penalty on the fourth derivative was applied in order to smooth the second
derivative further.

The EMG data were sampled at 1250 hertz, and were much noisier than
position records, showing very high frequency oscillations about zero as
well as the slower trends that interest us. As is usual for EMG measures,
the raw data were replaced by values of a linear envelope of the absolute
values. These values were then further smoothed.

The contemporary model (10.2) can be viewed as a functional extension
of the varying coefficient model of Hastie and Tibshirani (1993).


