
11
The Dynamics of Handwriting Printed
Characters

11.1 Recording handwriting in real time

The way we handwrite characters is a deeply individual matter, as bank
tellers who ask for your signature and graphologists who claim to be able to
study your personality from your handwriting know well. The handwriting
samples that they work with are static, in the sense that they consider
the trace left behind well after the signature is formed, and thus are at one
remove from the person who actually did the original writing. In this sense,
any attempts to identify an individual, let alone to claim to reconstruct
aspects of their personalities, have the flavor of archaeological digs.

What if we could use the online time course of the formation of a signa-
ture? Would we not see things as the signature unfolds in time that could
not be observed in the static image? Could we see, for example, when a
person was nervous, in a hurry, suffering from the onset of Parkinsonism,
or rejoicing in a state of profound tranquillity and peace? Surely we could
discover new ways by which a handwriting sample characterizes a specific
individual, and perhaps use this to make forgery harder than it is now.

In this chapter we use what we call a dynamic model for handwriting.
We demonstrate how the model can be fitted to the writing of a particular
individual using repeated samples of their printing. We also investigate how
well the model separates one person from another.

Our first task, however, is a brief and nontechnical account of some simple
dynamic models. Those familiar with differential equations may well be
happy to skip ahead, but many readers will find this next section important.
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11.2 An introduction to dynamic models

The term dynamic implies change. When we speak of the dynamics of a
function of time, we are discussing some aspect of the change in curve
values over small changes in time, and we therefore focus on one or more of
the derivatives of the curve. Chapter 6 described the dynamics of growth,
and indeed we defined growth there as the rate of change of height.

A dynamic model therefore involves one or more derivatives with respect
to time. Because a number of orders of derivatives may be involved, we
use the notation Dmx(t) to denote the mth derivative of the function x(t).
This is more convenient than using a separate symbol for each derivative,
as we did in Chapter 6, or the classic notation

dmx

dtm
,

which is too typographically bulky to perpetuate here.
The most common form of dynamic model is an equation linking two

or more orders of derivatives. In our present notation, the fundamental
equation of growth that we developed in Chapter 6 is

D2x(t) = β(t)Dx(t), (11.1)

and this equation links the first derivative to the second by the functional
factor β(t). It is an example of a linear differential equation and has the
structure of a standard regression model, albeit one expressed in functional
terms:

• the acceleration D2x(t) is the dependent variable,

• the velocity Dx(t) is the independent variable,

• β(t) is the regression coefficient, and

• the residual or error, not shown in the model (11.1), is zero.

The regression model is functional in that the variables and the coefficient
β(t) all depend on t. But if we fix time t, and we have in hand N replications
xi(t) of the curve, you can well imagine that ordinary regression analysis
would be one practical way to estimate the value of β(t) at a fixed time
tj . As the dependent variable in a standard regression, you would use the
N values yi = D2xi(tj) for i = 1, . . . , N. The corresponding independent
variable values would be zi = Dxi(tj), and so you would estimate the
constant β(tj) as the coefficient b =

∑
yizi/

∑
z2

i resulting from regressing
y on z without an intercept. And you would be quite right!

We briefly review how a differential equation determines the behavior
of a function, by considering a second-order linear differential equation,
restricted to having constant coefficients:

D2x(t) = β0x(t) + β1Dx(t). (11.2)
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Table 11.1. Some processes defined by a second-order linear differential equation
with constant coefficients

Process Equation Coefficients
β0 β1

Linear motion x(t) = a + bt 0 0
Exponential growth/decay x(t) = a + beγt 0 γ
Harmonic motion x(t) = a sin ωt + b cos ωt −ω2 0
Damped harmonic motion x(t) = eγt(a sin ωt + b cos ωt) −ω2 γ

Table 11.1 relates some special cases of the equation to some familiar
functional models and physical processes.

The constants a and b in the table are arbitrary. We see that equation
(11.2) covers three basic dynamic processes of science. If both coefficients
are zero, we have the linear motion exhibited by bodies that are free of any
external force. But if −β0 is a positive number, we see the other type of sta-
tionary motion, that of perpetual oscillation.1 Introducing a nonzero value
for β1, however, results in exponential growth or decay, without oscillation
if β0 = 0, and superimposed on harmonic motion otherwise.

Note, too, the models in Table 11.1 also define the simultaneous behav-
ior of a certain number of derivatives. In fact, the characteristics of both
the first and second derivatives are essentially specialized versions of the
behaviors of the functions themselves. In this sense, then, these models are
really about the dynamics of the processes.

In (11.2) we considered the special case of constant coefficients. What
difference does it make if the coefficients β0(t) and β1(t) also change with
time? If the change is not rapid, we can consider the corresponding differen-
tial equation as describing a system that has an evolving dynamics, in the
sense that its frequency of oscillation and its rate of exponential growth
or decay are themselves changing through time. The larger the value of
−β0(t) the more rapidly the system will oscillate near time t.

In this chapter and subsequently, we use linear differential equation
models of order m in the general form

Dmx(t) = α(t) +
m−1∑
j=0

βj(t)Djx(t). (11.3)

There are m coefficient functions βj(t) that define the equations, but in
specific applications we may want to fix the values of some of these. In
particular we may set one or more to zero.

1Coefficient −β0 can also be negative, of course, and in this case the sines and cosines
in the last two rows of Table 11.1 must be replaced by their hyperbolic counterparts.
But the positive case is seen much more often in applications.
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Figure 11.1. Twenty registered printings of the characters “fda.”

In addition to the coefficients βj(t), the form (11.3) contains the func-
tion α(t), called the forcing function in many fields that use differential
equations. The function α(t) often reflects external or exogenous influences
on the system not captured by the main part of the equation, or that part
of the derivative Dmx(t) not captured by the simultaneous variation in
the lower-order derivatives. From a regression analysis perspective, we may
regard α(t) as the constant or intercept term. If α(t) = 0, the differential
equation is said to be homogeneous, and otherwise is nonhomogeneous.

11.3 One subject’s printing data

The data are the X-, Y - and Z-coordinates of the tip of the pen captured
200 times a second while one subject, designated “JR,” prints the characters
“fda” N = 20 times. The X-coordinate is the left-to-right position on the
writing surface. Coordinate Y is the up-and-down position on the writing
surface, and Z is the position upward from the writing surface. Of course,
static records give very little information about Z at all—we can only see
the X and Y values corresponding to times when Z is zero, and at times
when Z is nonzero we have no data at all. The additional richness of a
dynamic record is considerable.

Extensive preprocessing is required before we are ready to fit a differen-
tial equation. The times of the beginning of “f” and the end of “a” for each



11.3. One subject’s printing data 161

Meters

M
et

er
s

-0.05 0.0 0.05 0.10

-0
.0

5
0.

0
0.

05
0.

10

Figure 11.2. The average of 20 registered printings of “fda.” The average position
of the pen was on or very near the writing surface for the solid lines, and lifted
off for the dotted lines.

record must be identified, and the coordinate system in which measure-
ments were taken must be rotated and translated to the (X, Y, Z) system
that we described above. In addition we register, or time-warp, the records
[xi(t), yi(t), zi(t)], i = 1, . . . , N to a common template [x0(t), y0(t), z0(t)].
The details of the registration step are described in Chapter 7, and we
assume that we can take off from where we left the handwriting problem
there. Figure 11.1 shows the trace in the X–Y plane of the 20 functional
records, after registration.

Figure 11.2 displays the mean characters for this subject. Most of the
registration process does not affect the individual static records plotted
in Figure 11.1, but, as we saw in Chapter 6, registration is crucial in the
estimation of the mean. The regions where the average position of the pen
is clearly above the writing surface are shown in Figure 11.2 as dotted lines,
and we see that there are four such intervals. The characters are formed
from five strokes on the writing surface (two for “f,” two for “d,” and one
for “a”) along with the four off the surface. The average time taken to
print these characters was 2.345 seconds, and corresponds to an average of
0.26 seconds per stroke. Note the two sudden changes of direction or cusps
between the main part of the “f” and its cross-stroke, and at the beginning
and end of the downstroke for “d.” There is a lot of energy in such sudden
events, and they may be hard for a dynamic model to capture.
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11.4 A differential equation for handwriting

We now want to estimate a linear differential equation for each of the three
coordinate functions. We use a third-order equation, m = 3. The third
derivative is sometimes called “jerk.”

To make our task a bit easier, we simplify our equation by fixing β0(t) =
0. Without this constraint, the equation would have to be recalibrated for
any translation of the coordinate values. The resulting equation is, in the
case of the X-coordinate for record i,

D3xi(t) = αx(t) + βx1(t)Dxi(t) + βx2(t)D2xi(t) + εxi(t). (11.4)

There are two coefficient functions βx1(t) and βx2(t), as well as the forcing
or intercept function αx(t). In effect, this is a second-order nonhomogeneous
linear differential equation in pen velocity, so we can think of velocity as our
basic observed variable. The residual function εxi(t) varies from replicate
to replicate, and represents variation in the third derivative in each curve
that is not accounted for by the model. There are, of course, corresponding
coefficient, forcing, and residual functions associated with coordinates Y
and Z. In particular, the forcing function for coordinate Z is the aspect
that allows the pen to lift off the paper, because when the pen is in contact
with the paper zi and all its derivatives are zero.

We carry out one additional preprocessing step, by removing the linear
trend in the X-coordinate as the hand moves from left to right. In effect,
this positions the origin for X in a moving coordinate frame that can be
thought of as at the center of the wrist. If the slope of the linear trend is v,
the adjusted X-coordinate will satisfy the same model as the original, with
a multiple of vβx1 added to the forcing function. So this linear correction
will only have an important effect on the model if there is substantial
variability in the rate of moving from left to right, which in practice there
is not.

How do we estimate an equation such as (11.4)? Our first task is to
find a good nonparametric estimate of the derivative functions using the
20 replications. These function estimates are then used to estimate the
two coefficient functions βx1(t) and βx2(t) and the forcing function αx(t).
Returning to the regression perspective, a successful equation will mean
that the residual function εxi(t) is relatively small for all records and all t.
The natural approach will be ordinary least squares in the sense that we
choose to minimize, in the X-coordinate case,

SSEX =
N∑

i=1

∫ T

0
ε2xi(t) dt.

The adequacy of the fit can be assessed by comparing the residuals to the
third derivative, which acts as the dependent variable in the regression anal-
ysis. The technique for minimizing SSEX with respect to αx(t), βx1(t), and
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Figure 11.3. The top panel shows the function −βx1(t) for the differential equa-
tion describing the motion of the pen in the horizontal or X direction. The
dashed-dotted line indicates the average value, and corresponds to a horizontal
oscillation every 0.58 seconds. The bottom panel shows the corresponding func-
tion βx2(t), and this tends to oscillate about zero. It controls the instantaneous
exponential growth or decay in the instantaneous oscillation. The shaded areas
correspond to periods when the pen is lifted off the paper.

βx2(t) was developed by Ramsay (1996b), who called the method principal
differential analysis because of its close conceptual relationship to principal
component analysis.

Figure 11.3 displays the two estimated coefficient functions for the X-
coordinate. Although it is hard to see much to interpret in these functions,
one can compare them to the equation for harmonic motion in Table 11.1.
We notice immediately that there is considerable variability in both func-
tions about the average value, also displayed in the plot. This variability
is due to the control of the hand by the contracting and relaxing muscles,
and these in turn are controlled by neural activation arriving from the mo-
tor cortex of the brain. The rapid local variations in the plots are easily
ignored “by eye,” but perhaps suggest that a regularization term could be
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Figure 11.4. The forcing function αx(t) for the differential equation describing
the motion of the pen in the horizontal or X direction. The dashed-dotted line
indicates the average value of the third derivative, to give an idea of the relative
size of αx(t). Episodes of forcing occur when αx(t) deviates strongly from zero.
The shaded areas correspond to periods when the pen is lifted off the paper.

added to the criterion SSEX . The formal inclusion of regularization is an
interesting topic for future investigation.

Function −βx1(t) plays the role of ω2 in the harmonic equation and, since
the period of oscillation in a harmonic system is 2π/ω, the larger the value
of βx1(t) at some time point t, the faster the velocity is oscillating at that
time. The average value of −βx1(t) is 259, corresponding to an oscillation
every 2π/

√
259 = 0.39 seconds. This means that the hand is producing

a horizontal stroke once each 0.20 seconds, on the average, which agrees
closely with what we observed in Figure 11.2.

On the other hand, coefficient function β2(t) varies about a value rel-
atively close to zero. It determines the instantaneous exponential growth
(βx2(t) > 0) or decay (βx2(t) < 0) in the oscillations.

Corresponding analyses were performed for the other two coordinates.
The dynamics of the Y -coordinate resemble those of the X-coordinate, in
that the average value of −βy2(t) is 277, and this also corresponds to a
period of about 0.38 seconds. The Z-coordinate, however, has an average
period of 0.29 seconds.

Figure 11.4 shows the estimated forcing function αx(t) for the X-
coordinate. We focus our attention on times when αx(t) deviates strongly
from zero, indicating times when the homogeneous version of the equation
will not capture the intensity of the dynamics. The first peak is in the
curved part of the “f” downstroke, when the pen is changing direction and
probably accelerating. The next substantial deviation coincides with the
pen leaving the paper to cross over to begin the “d” downstroke. There is
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Figure 11.5. The residual functions εxi(t) for the X-coordinate. Shaded areas
indicate periods when the pen is off the writing surface.

another forced point at the cusp at the end of the “d” downstroke, again
just as the pen leaves the writing surface to begin the loop part of “d.”
We see the largest deviation as the pen leaves the writing surface to cross
over to begin “a.” In summary, forcing events coincide either with points
of sharp curvature or cusps, or with the pen leaving the writing surface.
The change in the frictional forces as the pen leaves the surface seems to
be an important part of the dynamics.

11.5 Assessing the fit of the equation

Now we want to see how well this equation fits the data. One way to do this
is to work with the regression concept, and calculate the squared multiple
correlation measure, or proportion of variability explained,

R2
X = 1 −

∑N
i=1

∫ T

0 ε2xi(t) dt∑N
i=1

∫ T

0 D3x2
i (t) dt

. (11.5)

The values we obtain are 0.991, 0.994, and 0.994 for the X-, Y -, and Z-
coordinates, respectively, indicating a very good fit in all three cases.

As the value of R2
X indicates, the residual functions are much smaller

overall than the original third derivatives D3xi. However, integrating across
time in (11.5) risks missing something interesting that might occur at some
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specific points in time. Figure 11.5 plots the 20 residual functions for the
X-coordinate, and we see that these are small relative to the size of the
third derivative, and that they are concentrated around zero. They seem
to behave as random “noise” functions that do not contain any system-
atic variability that we have failed to fit. This investigation shows that the
dynamic model generally fits the data extremely well, and invites the sug-
gestion that the coefficient functions characterize the particular subject in
some way, and hence can be used as the basis of a classification method
in preference to direct consideration of the handwriting itself. This is the
theme of our next section.

However, we do notice that there are some sharp excursions in the forcing
functions, with a couple of the largest being associated with the beginnings
of intervals when the pen is off the paper. It may be that the change in
frictional forces plus the effect of raising the pen can have a noticeable effect
on printing dynamics in the X–Y plane. Maybe things would be simpler if
we only used cursive handwriting, and you can consult Ramsay (2000) to
compare these results with that situation.

11.6 Classifying writers by using their dynamic
equations

We can now estimate a linear differential equation to describe the data of
different people printing the same characters. How well does one person’s
equation model another person’s data? We now introduce a second subject,
called “CC,” and consider a set of 20 replications of CC’s printing of the
characters “fda.” In order to ensure that both dynamic models are defined
on compatible time scales, CC’s data are preprocessed by being registered
to the mean curve of the registered JR data. Thus all the data are registered
to the same template. After this preprocessing step, a dynamic model for
CC’s printing is estimated in the way set out above. We now apply the
equation for subjects JR and CC to the data for themselves2 and for each
other.

Figure 11.6 shows the X-coordinate residual functions εxi(t) resulting
from applying the equation for subjects JR and CC to both sets of data.
Corresponding results for the Y -coordinate are shown in Figure 11.7. What
we see in the figures is that the residual functions are much larger, and

2In the case where the equation is applied to the subject’s own data, we reestimated
the equation 20 times by dropping each record out in turn, estimating the equation for
the remainder of the data, and then applying the equation to the excluded record. This
standard leaving-one-out procedure gives a more honest estimate of how the equation will
work in practice than the approach where the test record is included in the estimating
set.
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Figure 11.6. The residual functions for the X-coordinate resulting from applying
both JR’s and CC’s differential operators to both sets of data.

also have strong systematic patterns, when they result from applying the
equation estimated for one person to the data of the other. The self-applied
residual functions for JR are rather smaller than those for CC, and two
of the CC curves yield self-applied residual functions that are considerably
larger in places. Subject CC seems to have altered his printing style in some
important respect in these two anomalous cases. Thus, this technology also
may be useful for detecting when people alter in some fundamental way
how they print or write a sequence of characters.
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Figure 11.7. The residual functions for the Y -coordinate resulting from applying
both JR’s and CC’s differential operators to both sets of data.

Figure 11.8 investigates a simple numerical summary based on these re-
sults. We assessed the magnitude of the residual functions by computing
the square root of their average squared values. As well as averaging across
time, we average across all three coordinates in order to obtain a single
number quantifying the residuals in Figures 11.6 and 11.7 and the corre-
sponding residuals for the Z-coordinate. The figure uses box plots to show
the distribution of these magnitudes for the four situations. We see that
the JR operators decisively separate the magnitudes for the two subjects’
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Figure 11.8. Box plots of the root mean square magnitudes of the residual func-
tions resulting from applying both JR’s and CC’s differential operators to both
sets of data. For each replication, the root mean square is calculated taking the
average over time and all three coordinates.

printing. The largest value for JR’s own data is about 12, and the smallest
value for CC’s data is about 45.

When the CC operators are used, the subtlety of the data becomes
clearer. Using a cutoff value of 20, say, the 18 nonanomalous CC print-
ings are clearly separated from the JR printings. On the other hand, the
two anomalous printings are very badly modeled by the CC operators (es-
timated each time leaving out the individual datum in question). If we
were using this simple numerical summary to classify the data, we would
presumably categorize these two data as being written by neither CC or
JR. If we look back to Figure 11.7, however, we can see that even the two
anomalous curves yield residual curves that are near zero over the part of
the range [0.3, 1.2]. We do not pursue this further in the present study, but
it demonstrates that attempts to fool the dynamic model may not always
be totally successful on closer examination.



170 11. The Dynamics of Handwriting Printed Characters

11.7 What have we seen?

The methods of functional data analysis are especially well suited to study-
ing the dynamics of processes that interest us. We saw this previously in our
phase-plane plotting of the nondurable goods index, and now we see that
a differential equation is a useful means of modeling this time-varying be-
havior. Of course, this is already well known in the natural sciences, where
differential equations, such as Maxwell’s equations for electromagnetic phe-
nomena, emerge as the most elegant and natural means of expressing the
laws of physics and chemistry.

But in the natural sciences differential equations emerged painstakingly
after much experimentation and observation, and finally some deep think-
ing about the way the interplay of forces along with the law of conservation
of energy might determine the results of these experiments. Now, however,
we are evolving methods for estimating these equations directly from often
noisy data, and in situations such as economics and biomechanics where
fundamental laws will not be straightforward and may not even be possible.
In this chapter we have put our empirically estimated differential equations
to work to investigate an interesting practical problem, the identification
of an individual by the dynamic characteristics of a sample of his or her
behavior. The next chapter applies this idea to some rather more complex
biomechanical data.


