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Tools for exploring functional data

2.1 Introduction

This chapter reviews topics that are notational and conceptual background
to our main development of functional data analysis beginning in Chapter 3.

Our notation will already be familiar to many readers, but some will
welcome a review, and others will encounter the notation that we use here
for the first time. We have tried hard to avoid using notation other than
what is familiar to statisticians and routine in calculus courses.

We will draw rather heavily on your expertise in matrix analysis and
multivariate statistics, and you may want to consult Section A.7, which
reviews some matrix algebra tools that we will need within framework of
the multivariate linear model. This brief account is relevant here because, in
fact, most of our functional data analyses and models will be converted to
equivalent matrix formulations through the device of representing functions
by basis function expansions, a topic that comes up in the next chapter.
Also discussed in the Appendix are matrix decompositions, projections,
and the constrained maximization of quadratic forms.

After some remarks on notation in Section 2.2, we consider the basic
anatomy of a function in Section 2.4. What features in a function might be
of interest? How are functions different from vectors? How do we quantify
the amount of information that is needed to specify a function? What does
it mean to say that a function is “smooth”?
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2.2 Some notation

2.2.1 Scalars, vectors, functions and matrices
The reader should be warned that we try to use notation that brings out
the basic structure of what is being done, and that this may entail the use
of conventions that are at first sight a little unfamiliar. For example, we do
not usually bother to distinguish in our notation between scalar quantities
(numbers) and functions. This means that a single symbol x can refer to
a scalar or to a function. The nervous reader should be assured that this
convention is only used to clarify, rather than confuse, the discussion! In
general, the context should always make clear when a symbol refers to a
scalar or function. This emphasizes our guiding intuition that a function
is to be considered as single unitary entity. The perhaps more familiar
notation x(t) refers to the value of function x at argument value t rather
to the entire function.

On the other hand, in this edition we adhere to the usual practice of
showing vectors as boldface lower case letters such as x, and matrices in
boldface upper case. We always use the notation x′ for the transpose of a
vector x. We need matrix algebra at every turn, and it seems better not to
ask readers used to bold symbols to do without this device.

If x is a vector or function, its elements or values xi or x(t) are usually
scalars, but sometimes it is appropriate for the individual xi or x(t) to be
a vector, and then we use boldface. Also, it is handy to use the notation
x(t) to denote the vector containing the values of function x at each of the
argument values in vector t.

It is often clearer to use longer strings of letters in a distinctive font
to denote quantities more evocatively than standard notation allows. For
example, we use names such as

• Temp for a temperature record,

• Knee for a knee angle

• LMSSE for a squared error fitting criterion for a linear model, and

• RSQ for a squared correlation measure.

2.2.2 Derivatives and integrals
Our notation for the derivative of order m of a function x is Dmx; this
produces cleaner formulas than dmx/dtm. It stresses that differentiation is
an operator that acts on a function x to produce another function Dx. Of
course, D0x refers to x itself. The superscript method works neatly when
we consider derivatives of derivatives, and also when we use D−1x to refer
to the indefinite integral of x, since D1D−1x = D0x = x as expected. We
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also use operators that act on functions in other ways, and it is convenient
to use a consistent notation.

The definite integral
∫ b

a
x(t) dt will often be shortened to

∫
x when the

context makes clear both the limits of integration a and b and the variable
t over which the integration takes place.

2.2.3 Inner products
Inner product notation for functions, as in

〈x, y〉 =
∫

x(t)y(t) dt, (2.1)

was used much more frequently in the first edition than in this. We found
that many readers had difficulty coping with the notation, and we also
found that we could do without it nearly everywhere. Nevertheless, inner
product notation is a powerful tool, and if a reader wishes to learn more,
the Appendix offers a summary and some illustrations. We will use rather
more frequently the notation ‖x‖ for the norm of x, a measure of its size.
The most common type of norm, called the L2 norm, is related to the inner
product through the relation

‖x‖2 = 〈x, x〉 =
∫

x2(t) dt .

The Appendix contains additional material on inner product notation.

2.2.4 Functions of functions
Functions are often themselves arguments for other functions. For example,
in Chapter 7 we will consider a nonlinear transformation h(t) of argument
t that maps t on to the same interval that it occupies. That is, for example,
time is transformed nonlinearly into time. We then need the function whose
values are x[h(t)], which we can indicate by x∗. In this case, we use the
functional composition notation x∗ = x ◦ h. The function value x∗(t) is
indicated by (x ◦ h)(t).

Moreover, in the same chapter, we will use the inverse function which
results from solving the relation h(g) = t for g given t. This function,
having values g(t), is denoted by h−1. This does not mean, of course, the
reciprocal of h, which we simply indicate as 1/h on the rare occasion that
we need it. In fact, the functional compositions h ◦ h−1 and h−1 ◦ h satisfy

(h ◦ h−1)(t) = (h−1 ◦ h)(t) = t

and, in functional composition sense, therefore h and h−1 cancel one
another.

Another type of function transforms one function into another; that is,
takes an entire function as its argument rather than a function value. The
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most important example is the transform D that transforms function x
into its derivative Dx. The indefinite integral is another example, and as
are the arithmetic operations applied to functions. We call such functional
transformations operations or operators.

2.3 Summary statistics for functional data

2.3.1 Functional means and variances
The classical summary statistics for univariate data familiar to students in
introductory statistics classes apply equally to functional data. The mean
function with values

x̄(t) = N−1
N∑

i=1

xi(t)

is the average of the functions point-wise across replications. Similarly the
variance function var has values

varX(t) = (N − 1)−1
N∑

i=1

[xi(t) − x̄(t)]2,

and the standard deviation function is the square root of the variance
function.

Figure 2.1 displays the mean and standard deviation functions for the
aligned pinch force data. We see that the mean force looks remarkably like
a number of probability density functions well known to statisticians, and
in fact the relationship to the lognormal distribution has been explored by
Ramsay, Wang and Flanagan (1995). The standard deviation of force seems
to be about 8% of the mean force over most of the range of the data.

2.3.2 Covariance and correlation functions
The covariance function summarizes the dependence of records across
different argument values, and is computed for all t1 and t2 by

covX(t1, t2) = (N − 1)−1
N∑

i=1

{xi(t1) − x̄(t1)}{xi(t2) − x̄(t2)}.

The associated correlation function is

corrX(t1, t2) =
covX(t1, t2)√

varX(t1)varX(t2)
.

These are the functional analogues of the variance–covariance and
correlation matrices, respectively, in multivariate data analysis.
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Figure 2.1. The mean and standard deviation functions for the 20 pinch force
observations in Figure 1.11 after they were aligned or registered.
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Figure 2.2. The left panel is a perspective plot of the bivariate correlation function
values r(t1, t2) for the pinch force data. The right panel shows the same surface
by contour plotting. Time is measured in seconds.

Figure 2.2 displays the correlation function of the pinch force data, both
as a surface over the plane of possible pairs of times (t1, t2) and also as a
set of level contours.

Our experience with perspective and contour displays of correlation sug-
gests that not everyone encountering them for the first time finds them
easy to understand. Here is one strategy: The diagonal running from lower
left to upper right in the contour or from front to back in the perspective
plot of the surface contains the unit values that are the correlations be-
tween identical or very close time values. Directions perpendicular to this
ridge of unit correlation indicate how rapidly the correlation falls off as two
argument values separate. For example, one might locate a position along
the unit ridge associated with argument value t, and then moving perpen-
dicularly from this point shows what happens to the correlation between
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values at time pair (t − δ, t + δ) as the perpendicular distance δ increases.
In the case of the pinch force data, we note that the correlation falls off
slowly for values on either side of the time 0.1 of maximum force, but de-
clines much more rapidly in the periods before and after the impulse. This
suggests a two-phase system, with fairly erratic uncoupled forces in the
constant background force phase, but with tightly connected forces during
the actual impulse. In fact, it is common to observe low correlations or
rapid fall-off when a system is in a resting or ballistic state free from any
outside input, but to show strong correlations, either positive and negative,
when exogenous influences apply.

2.3.3 Cross-covariance and cross-correlation functions
In the case of the gait data discussed in Section 1.3, we had both hip and
knee angles measured through time. In general, if we have pairs of observed
functions (xi, yi), the way in which these depend on one another can be
quantified by the cross-covariance function

covX,Y (t1, t2) = (N − 1)−1
N∑

i=1

{xi(t1) − x̄(t1)}{yi(t2) − ȳ(t2)}.

or the cross-correlation function

corrX,Y (t1, t2) =
covX,Y (t1, t2)√
varX(t1)varY (t2)

.

Figure 2.3 displays the correlation and cross-correlation functions for
the gait data. In each of the four panels, t1 is plotted along the horizon-
tal axis and t2 along the vertical axis. The top left panel shows a contour
plot of the correlation function corrHip(t1, t2) for the hip angles alone,
and the bottom right panel shows the corresponding plot for the knee
angles. The cross-correlation functions corrHip,Knee and corrKnee,Hip are
plotted in the top right and bottom left panels respectively; since, in gen-
eral, corrX,Y (t1, t2) = corrY,X(t2, t1), these are transposes of one another,
in that each is the reflection of the other about the main diagonal t1 = t2.
Note that each axis is labelled by the generic name of relevant data function,
Hip or Knee, rather than by the argument value t1 or t2.

In this figure, different patterns of variability are demonstrated by the
individual correlation functions corrHip and corrKnee for the hip and knee
angles considered separately. The hips show positive correlation through-
out, so that if the hip angle is larger than average at one point in the cycle
it will have a tendency to be larger than average everywhere. The contours
on this plot are more or less parallel to the main diagonal, implying that
the correlation is approximately a function of t1 − t2 and that the variation
of the hip angles can be considered as an approximately stationary process.
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Figure 2.3. Contour plots of the correlation and cross-correlation functions for
the gait data. In each panel t1 is plotted on one axis and t2 on the other; the
legends indicate which observations are being correlated against each other.

On the other hand, the knee angles show behavior that is clearly nonsta-
tionary; the correlation between the angle at time 0.0 and time 0.3 is about
0.4, while that between times 0.3 and 0.6 is actually negative. In the middle
of the cycle the correlation falls away rapidly as one moves away from the
main diagonal, while at the ends of the cycle there is much longer range
correlation. The hip angles show a slight, but much less marked, departure
from stationarity of the same kind. These features may be related to the
greater effect on the knee of external factors such as the heel strike and
the associated weight placed on the joint, whereas the hip acts under much
more even muscular control throughout the cycle.

The ridge along the main diagonal of the cross-correlation plots indicates
that Hip(t1) and Knee(t2) are most strongly correlated when t1 and t2
are approximately equal, though the main ridge shows a slight reverse S
shape (in the orientation of the top right panel). The analysis developed
in Chapter 11 will elucidate the delays in the dependence of one joint on
the other. Apart from this, there are differences in the way that the cross-
correlations behave at different points of the cycle, but the cross-correlation
function does not make it clear what these mean in terms of dependence
between the functions.

Another example is provided by the Canadian weather data. Contour
plotting in Figure 2.4 shows the correlation functions between tempera-
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Figure 2.4. Contour plots of the correlation and cross-correlation functions
for 35 Canadian weather stations for temperature and log precipitation. The
cross-correlation functions are those in the upper right and lower left panels.

ture and log precipitation based on monthly data. The correlation is high
for both temperature and precipitation on either side of the midsummer
period, so that autumn weather tends to be highly correlated with spring
weather. By contrast, winter and summer weather have a weaker correlation
of around 0.5. The cross-correlations show that midsummer precipitation
has a near zero correlation with temperature at any point in the year,
but that midwinter temperature and midwinter precipitation are highly
correlated. This is due to the fact that, in continental weather stations,
both measures tend to be especially low in midwinter, whereas in ma-
rine stations, the tendency is for both temperature and precipitation to be
higher.

2.4 The anatomy of a function

2.4.1 Functional features
What interests us when we consider functions such as the height accel-
eration curves in Figure 1.2? Certainly the peak and valley defining the
pubertal growth spurt, as well as the smaller peaks at age 6 for most girls.
Crossings of specified levels can also be important markers, such as the
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age at which acceleration is zero in the middle of the pubertal growth
spurt, marking out the point of peak growth velocity. Levels are function
values that we consider significant, such as the zero level that a growth
acceleration reaches after growth has stopped.

We can consider each of these functional features as events that are
associated with a specific value of the argument t. That is, most features
are characterized by a location. Many are also defined by amplitude, a
measure of their size. For example, the height or depth of a peak or valley,
respectively, is a matter of amplitude, as is the steepness with which a
line crosses a specified level. Finally, events like peaks and valleys are also
characterized by widths; the first peak in the knee angle curves in Figure 1.8
is narrower than the second peak.

In this sense, levels are one-dimensional events, crossings are two-
dimensional, and peaks and valleys are three-dimensional. That is, in ideal
errorless circumstances, we would need three pieces of information to fully
define a peak, namely location, amplitude, and width. This corresponds
to the fact that peaks look somewhat like parabolas, which are defined by
three parameters; crossings look like lines, requiring two parameters; and
levels are like points.

The dimensionality of a functional feature tells us a great deal about how
much information we will need to estimate it. For example, even a tiny bit
of observational error in the data will force us to provide five rather than
three function values at locations within a peak, and for data with error
levels common in functional data analyses, seven to eleven values per peak
would be wise.

2.4.2 Data resolution and functional dimensionality
This suggests the notation of the resolving power or resolution of a set of
data. This is inversely related to the width of the narrowest event that can
be estimated to our satisfaction. We mean by the phrase “high resolution
data” that they can pin down small events. The resolution of a set of data
can be a rather more useful concept than simply the number of observations
taken.

Resolution leads in turn to the notion of the dimensionality of a func-
tion. Expertise in the mathematical area of functional analysis is necessary
to understand this concept in depth, but it is easy to say some common
sensical things about the dimension of a curve. Roughly speaking, it is the
sum across functional “features” of the numbers of pieces of information
that are required to define each feature or event.

We can say that the practical dimensionality of a function is the total
amount of information required to define it to some required level. This
notion inevitably depends on the goals of the functional data analysis,
since it supposes that we ignore error and other sources of high frequency
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variation that would increase the actual dimensionality of the function
greatly.

Functions are potentially infinite dimensional. That is, a complete spec-
ification of a function x could conceivably require us to know its value x(t)
at each possible argument value t, and since there are an infinity of these,
the dimensionality of a function can be arbitrarily large. Or, put another
way, if a function can pack an infinite number of peaks and valleys within
any interval, no matter how small, we will need infinite resolving power in
any set of data concerning this curve. For example, the terms like “Brow-
nian motion” and “white noise” are used to describe functions so erratic
that no information is contained in x(t) about the value x(t+δ), no matter
how small δ is. This is somewhat depressing, because it implies that we can
never collect enough data to estimate functions like these exactly.

However, in practice we work with functions that do not display so much
complexity. It is more or less accepted, for example, that from 12 to 16
pieces of information, in a sense to be made precise in the next chapter, are
required to describe growth curves like those in Figure 1.1. Almost always
there are several ways in which we can use this much information to get
about the same result, and in the growth curve literature there are several
competing parametric models. But what matters is that all of the successful
growth curve models seem to need at least this much information.

2.4.3 The size of a function
Something like energy tends govern the behavior of many functional vari-
ables, just as it does in physics. By this we mean that change requires effort
or work, and typically the systems that we study can only muster a lim-
ited amount of whatever brings change per unit time. For example, even a
process as seemingly chaotic as the stock market reflects, on a time scale
small enough, the effort required to move money and information from one
place to another. Biological systems like growing children likewise cannot
make very rapid changes to their status due to the need to burn calories to
bring this change about. Because on a short time scale the energy available
in a system is essentially conserved, we can expect to see smooth changes,
just as we will not see extremely large accelerations in mechanical systems
with substantial mass.

Consequently, the dimensionality of a function is actually a measure of
its size in the same way that its amplitude is. That is, both amplitude
and dimensionality require energy to produce. For example, white noise
is an infinitely large function, even if its values are always within spec-
ified limits such as [−1, 1], because it would take an infinite amount of
energy to produce this much variability. Similarly, what mathematicians
refer to as Brownian motion is an abstraction inspired by the seemingly
chaotic but actually limited movements of small particles due to collision
with molecules in the medium in which they are suspended. One learns in
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functional analysis, for example, that an infinite dimensional hyper-sphere
of radius one is infinitely large. Statisticians are referring to something like
this by the colorful phrase “the curse of dimensionality.”

Dimensionality matters a great deal as a size indicator in functional data
analysis. We will return to this important theme in the next chapter when
we consider what the terms “noise” and “observational error” might mean
in a functional sense, and when we take up the notion multi-resolution
analysis.

2.5 Phase-plane plots of periodic effects

The two concepts of energy and of functional data having variation on more
than one time scale lead to the graphical technique of plotting one deriva-
tive against another, something that we will call phase-plane plotting. We
saw an example in Figure 1.13, and we now return to the U.S. nondurable
goods manufacturing index to illustrate these ideas.

Like most economic indicators, the nondurable goods index tends to ex-
hibit exponential increase, corresponding to percentage increases over fixed
time periods. Moreover, the index tends to increase in size and volatility
at the same time, so that the large relative effects surrounding the Second
World War seem to be small relative to the large changes in the 1970s and
1980s, and seasonal variation in recent years dwarfs that in early years.

2.5.1 The log nondurable goods index
We prefer, therefore, to study the logarithm of this index, displayed in Fig-
ure 2.5. The log index has a linear trend with a slope of 0.016, corresponding
to an annual rate of increase of 1.6%, and the sizes of the seasonal cycles
are also more comparable across time. We now see that the changes in the
depression and war periods are now much more substantial and abrupt
than those in recent times. The growth rate is especially high from 1960 to
1975, when the baby boom was in the years of peak consumption; but in
subsequent years seems to be substantially lower, perhaps because middle-
aged “boomers” consume less, or possibly because the nature of the index
itself has changed.

The goods index exhibits variation on four time scales:

• The longest scale is the century-long nearly linear increase in the log
index, or exponential trend in the index itself.

• There are events that last a decade or more, such as the depression,
the unusually rapid growth in the 1960s, and the slower growth in
the last two decades.
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Figure 2.5. The monthly nondurable goods production of the United States shown
in Figure 1.3 plotted on a logarithmic scale. The dotted straight line is estimated
by least squares regression, and has a slope of 0.016, corresponding to a 1.6%
increase in the index per year.

• Shorter term perturbations are also visible, such as World War II and
the end of the Vietnam War in 1974.

• On the shortest scale there is seasonal variation over an annual cycle
that tends to repeat itself.

A closer look at a comparatively stable period, 1964 to 1967 shown in
Figure 2.6, suggests that the index varies fairly smoothly and regularly
within each year. The solid line is a smooth of these data using the rough-
ness penalty method described in Chapter 5. We now see that the variation
within this year is more complex than Figure 2.5 can possibly reveal. This
curve oscillates three times during the year, with the size of the oscillation
being smallest in spring, larger in the summer, and largest in the autumn.
In fact each year shows smooth variation with a similar amount of detail,
and we now consider how we can explore these within-year patterns.

2.5.2 Phase–plane plots show energy transfer
Now that we have derivatives at our disposal, we can learn new things
by studying how derivatives relate to each other. Our tool is a plot of
acceleration against velocity. To see how this might be useful, consider the
phase-plane plot of the function sin(2πt), shown in Figure 2.7. This simple
function describes a basic harmonic process, such as the vertical position
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Figure 2.6. The log nondurable goods index for 1964 to 1967, a period of com-
parative stability. The solid line is a fit to the data using a polynomial smoothing
spline. The circles indicate the value of the log index at the first of the month.

of the end of a suspended spring bouncing with a period of one time unit
and starting at position zero at time t = 0.

The spring oscillates because energy is exchanged between two states:
potential and kinetic. At times π, 3π, . . . the spring is at one or the other end
of its trajectory, and the restorative force due to its stretching has brought
it to a standstill. At that point, its potential energy is maximized, and so
is the force, which is acting either upward (positively) or downward. Since
force is proportional to acceleration, the second derivative of the spring
position, −(2π)2 sin(2πt), is also at its highest absolute value, in this case
about ±40. On the other hand, when the spring is passing through the
position 0, its velocity, 2π cos(2πt), is at its greatest, about ±8, but its
acceleration is zero. Since kinetic energy is proportional to the square of
velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized
at the extremes of Y and kinetic energy at the extremes of X.

Now harmonic processes and energy exchange are found in many situ-
ations besides mechanics. In economics, potential energy corresponds to
available capital, human resources, raw material, and other resources that
are at hand to bring about some economic activity, in this case the manufac-
ture of nondurable goods. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly
line, and the goods are being shipped out the factory door.
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Figure 2.7. A phase-plane plot of the simple harmonic function sin(2πt). Kinetic
energy is maximized when acceleration is 0, and potential energy is maximized
when velocity is 0.

The process moves from strong kinetic to strong potential energy when
the rate of change in production goes to zero. We see this, for example, after
a period of rapid increase in production when labor supply and raw mate-
rial stocks become depleted, and consequently potential energy is actually
in a negative state. Or it happens when management winds down produc-
tion because targets have been achieved, so that personnel and material
resources are piling up and waiting to be used anew.

After a period of intense production, or at certain periods of crisis that
we examine shortly, we may see that both potential and kinetic energy are
low. This corresponds to a period when the phase-plane curve is closer to
zero than is otherwise the case.

To summarize, here’s what we are looking for:

• a substantial cycle;

• the size of the radius: the larger it is, the more energy transfer there
is in the event;

• the horizontal location of the center: if it is to the right, there is net
positive velocity, and if to the left, there is net negative velocity;

• the vertical location of the center: if it is above zero, there is a net
velocity increase; if below zero, there is velocity decrease; and

• changes in the shapes of the cycles from year to year.
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Figure 2.8. A phase-plane plot of the first derivative or velocity and the second
derivative or acceleration of the smoothed log nondurable goods index for 1964.
Letters indicate mid–months, with lowercase letters used for January and March.
For clarity, the first half of the year is plotted as a dashed line, and the second
half as a solid line.

2.5.3 The nondurable goods cycles
We use the phase-plane plot, therefore, to study the energy transfer within
the economic system. We can examine the cycle within individual years,
and also see more clearly how the structure of the transfer has changed
throughout the twentieth century. Figure 2.8, a reproduction here of Fig-
ure 1.13, phase-plane plots the year 1964, a year in a relatively stable period
for the index. To read the plot, find the lower-case “j” in the middle right
of the plot, and move around the diagram clockwise, noting the letters in-
dicating the months as you go. You will see that there are two large cycles
surrounding zero, plus some small cycles that are much closer to the origin.

The largest cycle begins in mid-May (M), with positive velocity but near
zero acceleration. Production is increasing linearly or steadily at this point.
The cycle moves clockwise through June (first J) and passes the horizontal
zero acceleration line at the end of the month, when production is now
decreasing linearly. By mid-July (second J) kinetic energy or velocity is
near zero because vacation season is in full swing. But potential energy
or acceleration is high, and production returns to the positive kinetic/zero
potential phase in early August (A), and finally concludes with a cusp at
summer’s end (S). At this point the process looks like it has run out of
both potential and kinetic energy.
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The cusp, near where both derivatives are zero, corresponds to the start
of school in September, and to the beginning of the next big production
cycle passing through the autumn months of October through November.
Again this large cycle terminates in a small cycle with little potential and
kinetic energy. This takes up the months of February and March (F and
m). The tiny subcycle during April and May seems to be due to the spring
holidays, since the summer and fall cycles, as well as the cusp, don’t change
much over the next two years, but the spring cycle cusp moves around,
reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles
swinging widely around zero, each terminating in a small cusp–like cycle.
This suggests that each large cycle is like a balloon that runs out of air,
the first at the beginning of school, and the second at the end of winter.
At the end of each cycle, it may be that new resources must be marshalled
before the next production cycle can begin.

2.6 Further reading and notes

These notes on other sources of information are intended only if you have
some need to go beyond what is in this book. Otherwise, please push on to
the following chapters, where we have tried to provide introductions to any
concepts that you need to deal with at least the core topics for functional
data analysis.

We find that inner product notation is appearing more and more often
in statistics, and that it is already routinely used in engineering in fields
such as signal analysis. Moore (1985) is an example of a reference oriented
to applications of functional analysis that can be consulted for further
information on many topics in this and subsequent chapters.

There have been many books that have used the notation of functional
analysis to describe multivariate statistics, with a view to generalizing that
methodology and synthesizing results within a common notational frame-
work, but unfortunately not many that would be readable by anyone except
mathematics specialists. Two references, however, have landmark qualities.
Cailliez and Pagès (1976) attempted to write a text that combined high
mathematics with an applied data analysis orientation, and the result was
a unique and exciting approach that still merits attention for those able to
read French. Our treatment of summary statistics in Section 2.3 is extended
in many ways in their work. Grenander (1980) is a much more advanced
book that we think of as dealing with many of the topics covered in this
volume.

To see more of phase–plane plotting in action, consult Ramsay and Sil-
verman (2002), where the method is used to show changes in the seasonal
trend over longer time scales. The idea is taken directly from elementary
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physics, where conservation of energy is used in so many ways. This graph-
ical tool links naturally to differential equation models that are considered
Chapter 17 and subsequently.

Since observed curves are often complex objects requiring large numbers
of parameters to describe adequately, as we shall see in the next three
chapters, finding ways to summarize their distribution can be a challenge.
In fact, it is relatively routine to have the number of curves N rather less
than the number of parameters n that must be estimated per curve. We
will use principal components analysis in Chapters 8 to 10 to capture at
least a few dimensions of the variation across curves. Hall and Heckman
(2002) propose an ingenious technique using what they call density ascent
lines to provide interesting summaries of the probability density function
for curve data.


