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Smoothing functional data by least
squares

4.1 Introduction

In this chapter and the next we turn to a discussion of specific smoothing
methods. Our goal is to give enough information to those new to the topic
of smoothing to launch a functional data analysis. Here we focus on the
more familiar technique of fitting models to data by minimizing the sum of
squared errors, or least squares estimation. This approach ties in functional
data analysis with the machinery of multiple regression analysis. A number
of tools taken from this classical field are reviewed here, and especially those
that arise because least squares fitting defines a model whose estimate is a
linear transformation of the data.

The treatment is far from comprehensive, however, and primarily because
we will tend to favor the more powerful methods using roughness penalties
to be taken up in the next chapter. Rather, notions such as degrees of
freedom, sampling variance, and confidence intervals are introduced here
as a first exposure to topics that will be developed in greater detail in
Chapter 5.

4.2 Fitting data using a basis system by least
squares

Recall that our goal is to fit the discrete observations y;,j = 1,...,n using
the model y; = x(t;) +¢;, and that we are using a basis function expansion
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for z(t) of the form

x(t) = ch¢k(t) =c'¢.

The vector c of length K contains the coefficients ci. Let us define the n
by K matrix ® as containing the values ¢x(¢;).

4.2.1  Ordinary or unweighted least squares fits

A simple linear smoother is obtained if we determine the coefficients of the
expansion ¢, by minimizing the least squares criterion

n K
SMSSE(y[c) = > [y; — > cxdi(t))]*. (4.1)
k

j=1
The criterion is expressed more cleanly in matrix terms as
SMSSE(y|c) = (y — ®c)'(y — ®c) . (4.2)

The right side is also often written in functional notation as |y — ®c||?.
Taking the derivative of criterion SMSSE(y|c) with respect to ¢ yields the
equation

20P'c — 28’y =0

and solving this for ¢ provides the estimate ¢ that minimizes the least
squares solution,

c=(9'®) '@y (4.3)
The vector y of fitted values is
y=dc=(d'D) Dy . (4.4)

Simple least squares approximation is appropriate in situations where
we assume that the residuals €; about the true curve are independently
and identically distributed with mean zero and constant variance 0. That
is, we prefer this approach when we assume the standard model for error
discussed in Section 3.2.4.

As an example, Figure 4.1 shows the daily temperatures in Montreal
averaged over 34 years, 1960-1994, for 101 days in the summer and 101
days in the winter. There is some higher frequency variation that seems to
require fitting in addition to the smooth quasi-sinusoidal long-term trend.
For example, there is a notable warming period from about January 16 to
January 31 that is present in the majority of Canadian weather stations.
The smooth fit shown in the figure was obtained with 109 Fourier basis
functions, which would permit 108/2 = 54 cycles per year, or roughly one
per week. The curve seems to track nicely these shorter-term variations in
temperature.
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Figure 4.1. The upper panel shows the average daily temperatures for 101 days
over the summer in Montreal, and the lower panel covers 101 winter days, with
the day values extended into the following year. The solid curves are unweighted
least squares smooths of the data using 109 Fourier basis functions.

4.2.2  Weighted least squares fits

As we noted in Section 3.2.4, the standard model for error will often not
be realistic. To deal with nonstationary and/or autocorrelated errors, we
may need to bring in a differential weighting of residuals by extending the
least squares criterion to the form

SMSSE(y|c) = (y — ®c)W(y — ®c) (4.5)

where W is a symmetric positive definite matrix that allows for unequal
weighting of squares and products of residuals.

Where do we get W? If the variance-covariance matrix ¥, for the
residuals €; is known, then

wW=x 1.

In applications where an estimate of the complete 3. is not feasible, the
covariances among errors are often assumed to be zero, and then W is
diagonal with, preferably, reciprocals of the error variance associated with
the y;’s in the diagonal. We will consider various ways of estimating 3.
in Section 4.6.2. But in the meantime, we will not lose anything if we
always include the weight matrix W in results derived from least squares
estimation; we can always set it to I if the standard model is assumed.
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The weighted least squares estimate ¢ of the coefficient vector c is
¢=(PWe) o'Wy . (4.6)

Whether the approximation is by simple least squares or by weighted least
squares, we can express what is to be minimized in the more universal
functional notation SMSSE(y|c) = ||y — ®c||?.

4.3 A performance assessment of least squares
smoothing

It may be helpful to see what happens when we apply least squares smooth-
ing to a situation where we know what the right answer is, and can therefore
check the quality of various aspects of the fit to the data, as well as the
accuracy of data-driven bandwidth selection methods.

We turn now to the growth data, where a central issue was obtaining a
good estimate of the acceleration or second derivative of the height function.
For example, can we trust the acceleration curves displayed in Figure 1.17

The parametric growth curve proposed by Jolicoeur (1992) has the
following form:

Sioalbelt +e)]
1+ 35 [be(t + €)]e

Jolicoeur’s model is now known to be a bit too smooth, and especially in
the period before the pubertal growth spurt, but it does offer a reasonable
account of most growth records for the comparatively modest investment of
estimating eight parameters, namely a, e and (by, ¢/), ¢ = 1,2, 3. The model
has been fit to the Fels growth data (Roche, 1992) by R. D. Bock (2000),
and from these fits it has been possible to summarize the variation of pa-
rameter values for both genders reasonably well using a multivariate normal
distribution. The average parameter values are a = 164.7,e = 1.474,b =
(0.3071,0.1106,0.0816)", c = (3.683,16.665,1.474)". By sampling from this
distribution, we can simulate the smooth part of as many records as we
choose.

The standard error of measurement has also been estimated for the Fels
data as a function of age by one of the authors, and Figure 4.2 summarizes
this relation. We see height measurements are noisier during infancy, where
the standard error is about eight millimeters, but by age six or so, the error
settles down to about five millimeters. Simulated noisy data were generated
from the smooth curves by adding independent random errors having a
mean of zero and standard deviation defined by this curve to the smooth
values at the sampling points. The reciprocal of the square of this function
was used to define the entries of the weight matrix W, which in this case
was diagonal. The sampling ages were those of the Berkeley data, namely

h(t) =a (4.7)
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Figure 4.2. The estimated relation between the standard error of height
measurements and age for females based on the Fels growth data.

quarterly between one and two years, annually between two to eight years,
and twice a year after that to eighteen years of age.

We estimated the growth acceleration function by fitting a single set of
data for a female. For the analysis, a set of 12 B-spline basis functions were
used of order six and with equally spaced knots. We chose order six splines
so that the acceleration estimate would be a cubic spline and hence smooth.
A weighted least squares analysis was used with W being diagonal and with
diagonal entries being the reciprocals of the squares of the standard errors
shown in Figure 4.2.

Figure 4.3 shows how well we did. The maximum and minimum for the
pubertal growth spurt are a little underestimated, and there are some peaks
and valleys during childhood that aren’t in the true curve. However, the
estimate is much less successful at the lower and upper boundaries, and
this example is a warning that we will have to look for ways to get better
performance in these regions. On the whole, though, the important features
in the true acceleration curve are reasonably reflected in the estimate.

4.4 Least squares fits as linear transformations of
the data

The smoothing methods described in this chapter all have the property
of being linear. Linearity simplifies computational issues considerably, and
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Figure 4.3. The solid curve is the estimated growth acceleration for a single set of
simulated data, and the dashed curve is the errorless curve. The circles indicate
the ages at which simulated observations were generated.

is convenient in a number of other ways. Most smoothing in practice gets
done by linear procedures. Consequently, before we turn to other smoothing
methods, we need to consider what linearity in a smoothing procedure
means.

4.4.1 How linear smoothers work

A linear smoother estimates the function value g; = &(¢;) by a linear
combination of the discrete observations

B(t;) = S(t)ye (4.8)
/=1

where S;(t;) weights the ¢th discrete data value in order to generate the
fit to Yj-
In matrix terms,

z(t) = Sy, (4.9)

where #(t) is a column vector containing the values of the estimate of
function x at each sampling point ¢;.
In the unweighted least squares case, for example, we see in (4.4) that

S=o(®'®) P (4.10)
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In regression analysis, this matrix is often called the “hat matrix” because
it converts the dependent variable vector y into its fit y.

In the context of least squares estimation, the smoothing matrix has the
property of being a projection matriz. This means that it creates an image
of data vector y on the space spanned by the columns of matrix ® such
that the residual vector e = y — y is orthogonal to the fit vector ¢,

(y-39)y=0.
This in turn implies that the smoothing matrix has the property SS = S,
a relation called idempotency. In the next chapter on roughness-penalized
least squares smoothing, we shall see that property does not hold.
The corresponding smoothing matrix for weighted least squares smooth-
ing is
S=®(@Wo) '¢W. (4.11)

Matrix S is still an orthogonal projection matrix, except that now the
residual and fit vectors are orthogonal in the sense that

(y=3)Wy=0.

In this case y = Sy is often said to be a projection in the metric W.

Figure 4.4 shows the weights associated with estimating the growth ac-
celeration curve in Figure 4.3 for ages six, twelve, and eighteen. For ages
away from the boundaries, the weights have a positive peak centered on
the age being estimated, and two negative side-lobes. For age twelve in the
middle of the pubertal growth spurt for females, the observations receiving
substantial weight, of either sign, range from ages seven to seventeen. This
is in marked contrast to second difference estimates

Yi+1 — Y Y —Yj—1
D?x(t;) = (3 L ) (b — ),
tig1—t; b —ti

which would only use three adjacent ages.

At the upper boundary, we see why there is likely to be considerable
instability in the estimate. The final observation receives much more weight
than any other value, and only observations back to age fifteen are used at
all. The boundary estimate pools much less information than do interior
estimates, and is especially sensitive to the boundary observations.

Many widely used smoothers are linear. The linearity of a smoother is a
desirable feature for various reasons: The linearity property

S(ay + bz) = aSy + bSz

is important for working out various properties of the smooth representa-
tion, and the simplicity of the smoother implies relatively fast computation.
On the other hand, some nonlinear smoothers may be more adaptive
to different behavior in different parts of the range of observation, and
may be robust to outlying observations. Smoothing by the thresholded
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Figure 4.4. The top panel indicates how observations are weighted in order to
estimate growth acceleration at age six in figure 4.3. The central panel shows the
weights for age twelve, and the bottom for age eighteen. The dots indicate the
ages at which simulated observations were generated.

wavelet transform, discussed in Section 3.6.1, is an important example of
a nonlinear smoothing method.

Speed of computation can be critical; a smoother that is useful for a
few hundred data points can be completely impractical for thousands.
Smoothers that require a number of operations that is proportional to
n to compute n smoothed values #(s;), abbreviated O(n) operations, are
virtually essential for large n. If S is band-structured, meaning that only
a small number K of values on either side of its diagonal in any row are
nonzero, then O(n) computation is assured.

4.4.2  The degrees of freedom of a linear smooth

We are familiar with the idea that the model for observed data offers an
image of the data that has fewer degrees of freedom than are present in the
original data. In most textbook situations, the concept of the degrees of
freedom of a fit means simply the number of parameters estimated from
the data that are required to define the model.

The notion of degrees of freedom applies without modification to data
smoothing using least squares, where the number of parameters is the
length K of the coefficient vector c. The number of degrees of freedom
for error is therefore n — K.
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When we begin to use roughness penalty methods in Chapter 5, how-
ever, things will not be so simple, and we will need a more general way of
computing the effective degrees of freedom of a smooth fit to the data, and
consequently the corresponding degrees of freedom for error. We do this by
using the “hat” matrix S by defining the degrees of freedom of the smooth
fit to be

df = traceS (4.12)

where the trace of a square matrix means the sum of its diagonal elements.
This more general definition yields exactly K for least squares fits, and
therefore does not represent anything new. But this definition will prove
invaluable in our later chapters.

There are also situations in which it may be more appropriate to use the
alternative definition

df = trace (SS’) (4.13)

but most of the time (4.12) is employed. In any case, the two definitions
give the same answer for least squares estimation.

4.5 Choosing the number K of basis functions

How do we choose the order of the expansion K7 The larger K, the better
the fit to the data, but of course we then risk also fitting noise or variation
that we wish to ignore. On the other hand, if we make K too small, we may
miss some important aspects of the smooth function x that we are trying
to estimate.

4.5.1 The bias/variance trade-off

This trade-off can be expressed in another way. For large values of K, n
the bias in estimating x(t), that is

Bias[2(t)] = z(t) — E[#(t)], (4.14)

is small. In fact, if the notion of additive errors having expectation zero
expressed in (3.1) holds, then we know that the bias will be zero for K = n.

But of course, that is only half of the story. One of the main reasons that
we do smoothing is to reduce the influence of noise or ignorable variation
on the estimate z. Consequently we are also interested in the wvariance of
estimate

var[i(t)] = E[{z(t) - E[z(t)]}’] - (4.15)

If K = n, this is almost certainly going to be unacceptably high. Reducing
variance leads us to look for smaller values of K, but of course not so small
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as to make the bias unacceptable. The worse the signal-to-noise ratio in the
data, the more reducing sampling variance will outweigh controlling bias.

One way of expressing what we really want to achieve is mean-squared
error

MSE[#(t)] = E[{#(t) — 2(t)}?] , (4.16)

also called the £ loss function. In most applications we can’t actually
minimize this since we have no way of knowing what z(t) is without using
the data. However, one of the most important equations in statistics links
mean squared error to bias and sampling variance by the simple additive
decomposition

MSE[%(t)] = Bias?[Z(t)] + Var[Z(t)] . (4.17)

What this relation tells us is that it would be worthwhile to tolerate a little
bias if the result is a big reduction in sampling variance. In fact, this is
almost always the case, and is the fundamental reason for smoothing data
in order to estimate functions. We will return to this matter in Chapter 5.

Figure 4.5 shows some total squared error measures as a function of var-
ious numbers of basis functions. The measures were computed by summing
mean squared error, sampling variance and squared bias across the ages
ranging from three to sixteen. This range was used to avoid ages near the
boundaries, where the curve estimates tend to have much greater error lev-
els. The results are based on smoothing 10,000 random samples constructed
in the same manner as that in Figure 4.3.

Notice that the measures for sampling variance and squared bias sum
to those for mean squared error, as in (4.17). Sampling variance increases
rapidly when we use too many basis functions, but squared bias tends to
decay more gently to zero at the same time. We see there that the best
results for totaled mean squared error are obtained with ten and twelve
basis functions, and we broke the tie by opting for the result with the least
bias.

It may see surprising that increasing K does not always decrease bias.
If so, recall that, when the order of a spline is fixed and knots are equally
spaced, K B-splines do not span a space that lies within that defined by K+
1 B-splines. Complicated effects due to knot spacing relative to sampling
points can result in a lower-dimensional B-spline system actually producing
better results than a higher-dimensional system.

Although the decomposition mean squared error (4.17) is helpful for
expressing the bias/variance tradeoff in a neat way, the principle applies
more widely. In fact, there are many situations where it is preferable to use
other loss functions. For example, minimizing E[|Z(¢) — 2(t)|], called the
£ norm, is more effective if the data contain outliers. For this and nearly
any fitting criterion or loss function for smoothing, we can assume that
when bias goes down, sampling variance goes up, and some bias must be
tolerated to achieve a stable estimate of the smooth trend in the data.
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Figure 4.5. The heavy solid line indicates mean squared error totaled across the
ages of observation between three and sixteen. The dashed line shows the totaled
sampling variance, and the dotted-dashed line shows the totaled squared bias.

4.5.2  Algorithms for choosing K

The vast literature on multiple regression contains many ideas for deciding
how many basis functions to use. For example, stepwise variable selection
would proceed in a step-up fashion by adding basis functions one after
another, testing at each step whether the added function significantly im-
proves fit, and also checking that the functions already added continue to
play a significant role. Conversely, variable-pruning methods are often used
for high-dimensional models, and work by starting with a generous choice
of K and dropping a basis function on each step that seems to not account
for a substantial amount of variation.

These methods all have their limitations, and are often abused by users
who do not appreciate these problems. The fact that there is no one gold
standard method for the variable selection problem should warn us at this
point that we face a difficult task in attempting to fix model dimensionality.
The discrete character of the K-choice problem is partly to blame, and the
methods described in Chapter 5 providing a continuum of smoothing levels
will prove helpful.
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4.6 Computing sampling variances and confidence
limits

4.6.1 Sampling variance estimates

The estimation of the coefficient vector ¢ of the basis function expansion
x = ¢'¢ by minimizing least squares defines a linear mapping (4.6) from
the raw data vector y to the estimate. With this mapping in hand, it is a
relatively simple matter to compute the sampling variance of the coefficient
vector, and of anything that is linearly related to it.

We begin with the fact that if a random variable y is normally distributed
with a variance-covariance matrix 3, then the random variable Ay defined
by any matrix A has the variance-covariance matrix

Var[Ay] = AX A" . (4.18)

Now in this and other linear modelling situations that we will encounter,
the model for the data vector y, in this case z(t), is regarded as a fixed
effect having zero variance. Consequently, the variance-covariance matrix of
y using the model y = z(t) + € is the variance-covariance matrix 3. of the
residual vector €. We must in some way use the information in the actual
residuals to replace the population quantity 3. by a reasonable sample
estimate Efe.

For example, to compute the sampling variances and covariances of the
coefficients themselves in ¢, we use that fact that in this instance

A=(dWo) o'W .
to obtain
Var[c] = (P'W®) '@ WIS WP (d'Wd) ! . (4.19)

When the standard model is assumed, X, = oI, and if unweighted least
squares is used, then we obtain the simpler result that appears in textbooks
on regression analysis

Var[c] = o%(®'®) ! . (4.20)

However, in our functional data analysis context there will seldom be
much interest in interpreting the coefficient vector c itself. Rather, we will
want to know the sampling variance of some quantity computed from these
coefficients. For example, we might want to know the sampling variance of
the the fit to the data defined by z(t) = ¢(t)’c. Since we now have in hand
the sampling variance of ¢ through (4.19) or (4.20), we can simply apply
result (4.18) again to get

Var[Z(t)] = ¢(t)'Var|c]p(t) (4.21)
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and the variances of all the fitted values corresponding to the sampling
values t; are in the diagonal of the matrix

Var[y] = ®Var[c|®’

which, in the standard model/unweighted least squares case, and using
(4.10), reduces to

Var[y] = o*®(®'®) '®' = o°S .

4.6.2  Estimating 3.

Clearly our estimates of sampling variances are only as good as our
estimates of the variances and covariances among the residuals ¢;.

When we are smoothing a single curve, the total amount of informa-
tion involved is insufficient for much more than estimating either a single
constant variance o2 assuming the standard model for error, or at most a
variance function with values o2(t), that has fairly mild variation over ¢. It
is important to use methods which produce relatively unbiased estimate of
variance in order to avoid underestimating sampling variance. For example,
if the standard model for error is accepted,

1 n
= e >y ) (.22
J

is much preferred as an estimate of o2 than the maximum likelihood esti-
mate that involves dividing by n. In fact, we shall see in the next chapter
that this estimate is related to a popular more general method for choosing
smoothing level called generalized cross-validation.

One reasonable strategy for choosing K is to add basis functions until s2
fails to decrease substantially. Figure 4.6 shows how s decreases to a value
of about 0.56 degrees Celsius by the time we use 109 Fourier basis functions
for smoothing the Montreal temperature data shown in Figure 4.1. There
are places where s? is even lower, but we worried that the minimum at 240
basis functions corresponded to over-fitting the data.

A common strategy for estimating at least a limited number of covari-
ances in ¥, given a small N, or even N = 1, is to assume an autoregressive
(AR) structure for the residuals. This is often realistic, since adjacent resid-
uals are frequently correlated because they are mutually influenced by
unobserved variables. For example, the weather on one day is naturally
likely to be related to the weather on the previous day because of the in-
fluence of large slow-moving low or high pressure zones. An intermediate
level text on regression analysis such as Draper and Smith (1998) can be
consulted for details on how to estimate AR structures among residuals.

When a substantial number N of replicated curves are available, as in
the growth curve data and Canadian weather data, we can attempt more
sophisticated and detailed estimates of 3.. For example, we may opt for
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Figure 4.6. The relation between the number of Fourier basis functions and
the unbiased estimate of the residual variance (4.22) in fitting the Montreal
temperature data.

estimating the entire variance-covariance matrix from the N by n matrix
E of residuals by

Y. =(N-1)"'EE.

However, even then, an estimate of a completely unrestricted X, requires
the estimation of n(n—1)/2 variances and covariances from N replications,
and it is unlikely that data with the complexity of the daily weather records
would ever have N sufficiently large to do this accurately.

4.6.3  Confidence limits

Confidence limits are typically computed by adding and subtracting a
multiple of the standard errors, that is, the square root of the sampling
variances, to the actual fit. For example, 95% limits correspond to about
two standard errors up and down from a smooth fit. These standard errors
are estimated using (4.21). Confidence limits on fits computed in this way
are called point-wise because they reflect confidence regions for fized values
of t rather than regions for the curve as a whole.

Figure 4.7 shows the temperatures during the 16 days over which the
January thaw takes place in Montreal, along with the smooth to the data
and 95% point-wise confidence limits on the fit. The standard error of the
estimated fit was 0.26 degrees Celsius.
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Figure 4.7. The temperatures over the mid-winter thaw for the Montreal temper-
ature data. The solid line is the smooth curve estimated in Figure 4.1 and the
lower and upper dashed lines are estimated 95% point-wise confidence limits for
this fit.

We will have much to say in the next chapter and elsewhere about the
hazards of placing too much faith in sampling variances and confidence
limits estimated in these ways. But we should at least note two important
ways in which confidence limits computed in this way may be problematic.
First, it is implicitly assumed that K is a fixed constant, but the reality is
that K for smoothing problems is more like a parameter estimated from the
data, and consequently the size of these confidence limits does not reflect
the uncertainty in our knowledge of K. Secondly, the smooth curve to which
we add and subtract multiples of the standard error to get point-wise limits
is itself subject to bias, and especially in regions of high curvature. We can
bet, for example, that the solid curve in Figure 4.7 is too low on January
23rd, the center of the January thaw. Thus, the confidence limits calculated
in this way are themselves biassed, and the region covered by them may
not be quite as advertised.

4.7 Fitting data by localized least squares

For a smoothing method to make any sense at all, the value of the function
estimate at a point ¢ must be influenced mostly by the observations near
t. This feature is an implicit property of the estimators we have considered
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so far. In this section, we consider estimators where the local dependence
is made more explicit by means of local weight functions.

Keeping within the domain of linear smoothing means that our estimate
of the value of function = at argument ¢; is of the form

w(t;) =) weye -
¢

It seems intuitively reasonable that the weights wy will only be relatively
large for sampling values t; fairly close to the target value ¢;. And, indeed,
this tends to hold for the basis function smoothers (4.10) and (4.11).

We now look at smoothing methods that make this localized weighting
principle explicit. The localizing weights w; are simply constructed by a
location and scale change of a kernel function with values Kern(u). This
kernel function is designed to have most of its mass concentrated close
to 0, and to either decay rapidly or disappear entirely for |u| > 1. Three
commonly used kernels are

Uniform: Kern(u) = 0.5 for |u| < 1, 0 otherwise
Quadratic:  Kern(u) = 0.75(1 — u?) for |u| <1, 0 otherwise
Gaussian:  Kern(u) = (27r)~Y/2 exp(—u?/2).

If we then define weight values to be

wi(t) = Kern (“ - tj) , (4.23)

then substantially large values wy(t) as a function of ¢ are now concentrated
for t; in the vicinity of ¢;. The degree of concentration is controlled by the
size of h. The concentration parameter h is usually called the bandwidth
parameter, and small values imply that only observations close to t receive
any weight, while large h means that a wide-sweeping average uses values
that are a considerable distance from ¢.

4.7.1 Kernel smoothing

The simplest and classic case of an estimator that makes use of local weights
is the kernel estimator. The estimate at a given point is a linear combination
of local observations,

2(t) = Si(t)y; (4.24)

for some suitably defined weight functions S;. Probably the most popular
kernel estimator the Nadaraya-Watson estimator (Nadaraya, 1964; Watson,
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1964) is constructed by using the weights

Kern[(t; —t)/h]
>, Kern|(t, —t)/h]’
Although the weight values w;(t) for the Nadaraya-Watson method are

normalized to have a unit sum, this is not essential. The weights developed
by Gasser and Miiller (1979, 1984) are constructed as follows:

S;(t) = (4.25)

tj —

S;(t) = }IL/t‘_1 Kern(u t) du, (4.26)
J

where t; = (tj41+1t;)/2,1 < j < n,ty =t; and t,, = t,,. These weights are

faster to compute, deal more sensibly with unequally spaced arguments,

and have good asymptotic properties.

The need for fast computation favors the compact support uniform and
quadratic kernels, and the latter is the most efficient when only function val-
ues are required and the true underlying function x is twice-differentiable.
The Gasser-Miiller weights using the quadratic kernel are

55(6) = 7103r1(0) = 1 () — B3r(6) — r0)]
for [t; —t| < h and 0 otherwise, and where
r(t) = 2. (4.27)

We need to take special steps if ¢ is within A units of either ¢; or ¢,.
These measures can consist of simply extending the data beyond this range
in some reasonable way, making h progressively smaller as these limits
are approached, or sophisticated modifications of the basic kernel function
Kern. The problem that all kernel smoothing algorithms have of what to do
near the limits of the data is one of their major weaknesses, and especially
when £ is large relative to the sampling rate.

Estimating the derivative just by taking the derivative of the kernel
smooth is not usually a good idea, and in any case kernels such as the
uniform and quadratic are not differentiable. However, kernels specifically
designed to estimate a derivative of fixed order can be constructed by al-
tering the nature of kernel function Kern. For example, a kernel Kern(u)
suitable for estimating the first derivative must be zero near u = 0, positive
above zero, and negative below, so that it is a sort of smeared-out version
of the first central difference. The Gasser-Miiller weights for the estimation
of the first derivative are

15
Si(t) = $orllrio () =202, 0) — (i - 220)) (4.28)
and for the second derivative are
105 5

Sj(t) = 16h2[{27‘ 1 (1) =r5 1 () =rj 1 ()} ={2rf () —rf () —r;(D)}] (4.29)
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Figure 4.8. The second derivative or acceleration of the coordinate functions for
the handwriting data. Kernel smoothing was used with a bandwidth h = 0.075.

for |t; —t| < h and 0 otherwise. It is usual to need a somewhat larger value
of bandwidth A to estimate derivatives than is required for estimating the
function.

Figure 4.8 shows the estimated second derivative or acceleration for the
two handwriting coordinate functions. After inspection of the results pro-
duced by a range of bandwidths, we settled on h = 0.075. This implies that

any smoothed acceleration value is based on about 150 milliseconds of data
and about 90 values of y;.

4.7.2  Localized basis function estimators

The ideas of kernel estimators and basis function estimators can, in a sense,
be combined to yield localized basis function estimators, which encompass
a large class of function and derivative estimators. The basic idea is to
extend the least squares criterion (4.1) to give a local measure of error as
follows:

K

SHSSEi (vle) = > wy (s — Y cuon(t;)%, (4.30)

k=1

where the weight functions w; are constructed from the kernel function
using (4.23).

In matrix terms,

SMSSE¢(y|c) = (y — ®c)W(t)(y — ®c), (4.31)
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where W(¢) is a diagonal matrix containing the weight values w;(t) in its
diagonal. Don’t be confused by the formal similarity of this expression with
(4.5); the matrix W () plays a very different role here.

Choosing the coefficients c¢(¢) to minimize SMSSE; yields

c(t) = [@'W(t) @] @' W (1)y,

and substituting back into the expansion &(t) = Zszl Crdk(t) gives a linear
smoothing estimator of the form (4.8) with smoothing weight values S;(t)
being the elements of the vector

S(t) = W(t)®[®W(t)®] (1), (4.32)

where ¢(t) is the vector with elements ¢ (¢).

The weight values w;(t) in (4.30) are designed to have substantially
nonzero values only for observations located close to the evaluation ar-
gument ¢ at which the function is to be estimated. This implies that only
the elements in S(t) in (4.32) associated with data arguments values ¢; close
to evaluation argument ¢ are substantially different from zero, and conse-
quently that & (¢) is essentially a linear combination of only the observations
y; in the neighborhood of ¢.

Since the basis has only to approximate a limited segment of the data
surrounding ¢, the basis can do a better job of approximating the local
features of the data and, at the same time, we can expect to do well with
only a small number K of basis functions. The computational overhead for
a single t depends on the number of data argument values ¢; for which w;(t)
is nonzero, as well as on K. Both of these are typically small. However, the
price we pay for this flexibility is that the expansion must essentially be
carried out anew for each evaluation point .

4.7.8  Local polynomial smoothing

It is interesting to note that the Nadaraya-Watson kernel estimate can
be obtained as a special case of the localized basis expansion method by
setting K = 1 and ¢;(t) = 1. A popular class of methods is obtained by
extending from a single basis function to a low order polynomial basis.
Thus we choose the estimated curve value #(t) to minimize the localized
least squares criterion

L

SMSSE, (ylc) = > Kerny,(t;, t)[y; — > colt —t;)] . (4.33)
j=1 £=0

Setting L = 0, we recover the Nadaraya-Watson estimate. For values of
L > 1, the function value and L of its derivatives can be estimated by the
corresponding derivatives of the locally fitted polynomial at ¢. In general,
the value of L should be at least one and preferably two higher than the
highest order derivative required.
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Local polynomial smoothing has a strong appeal; see, for example, the
detailed discussion provided by Fan and Gijbels (1996). Its performance is
superior in the region of the boundaries, and it adapts well to unequally
spaced argument values. Local linear expansions give good results when we
require only an estimate of the function value. They can easily be adapted in
various ways to suit special requirements, such as robustness, monotonicity
and adaptive bandwidth selection.

4.7.4  Choosing the bandwidth h

In all the localized basis expansion methods we have considered, the pri-
mary determinant of the degree of smoothing is the bandwidth h, rather
than the number of basis functions used. The bandwidth controls the bal-
ance between two considerations: bias and variance in the estimate. Small
values of h imply that the expected value of the estimate &(t) must be close
to the true value z(t), but the price we pay is in terms of the high variabil-
ity of the estimate, since it is be based on comparatively few observations.
On the other hand, variability can always be decreased by increasing h,
although this is inevitably at the expense of higher bias, since the values
used cover a region in which the function’s shape varies substantially. Mean
squared error at ¢, which is the sum of squared bias and variance, provides
a composite measure of performance.

There is a variety of data-driven automatic techniques for choosing an
appropriate value of h, usually motivated by the need to minimize mean
squared error across the estimated function. Unfortunately, none of these
can always be trusted, and the problem of designing a reliable data-driven
bandwidth selection algorithm continues to be a subject of active research
and considerable controversy. Our own view is that trying out a variety
of values of h and inspecting the consequences graphically remains a suit-
able means of resolving the bandwidth selection problem for most practical
problems.

4.7.5  Summary of localized basis methods

Explicitly localized smoothing methods such as kernel smoothing and local
polynomial smoothing are easy to understand and have excellent compu-
tational characteristics. The role of the bandwidth parameter h is obvious,
and as a consequence it is even possible to allow h to adapt to curva-
ture variation. On the negative side, however, is the instability of these
methods near the boundaries of the interval, although local polynomial
smoothing performs substantially better than kernel smoothing in this re-
gard. As with unweighted basis function expansions, it is well worthwhile
to consider matching the choice of basis functions to known characteristics
of the data, especially in regions where the data are sparse, or where they
are asymmetrically placed around the point ¢ of interest, for example near
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the boundaries. The next chapter on the roughness penalty approach looks
at the main competitor to kernel and local polynomial methods: spline
smoothing.

4.8 Further reading and notes

This chapter and the next are so tightly related that you may prefer to
read on, and then consider these notes along with those found there.

Much of the material in this chapter is an application of multiple
regression, and references such as Draper and Smith (1998) are useful sup-
plements, and especially on other ways of estimating residual covariance
structures.

For more complete treatments of data smoothing, we refer the reader to
sources such as Eubank (1999), Green and Silverman (1994), Hardle (1990)
and Simonoff (1996). Fan and Gijbels (1996) and Wand and Jones (1995)
focus more on kernel smoothing and local polynomial methods. Hastie and
Tibshirani (1990) use smoothing methods in the context of estimating the
generalized additive or GAM model, but their account of smoothing is
especially accessible. Data smoothing also plays a large role in data mining
and machine learning, and Hastie, Tibshirani and Friedman (2001) is a
recent reference on these topics.

We use spline expansions by fixing the knot locations in advance of the
analysis, and optimizing fit with respect to the coefficients multiplying the
spline basis functions defined by this fixed knot sequence. The main argu-
ment for regarding knots as fixed is computational convenience, but there
is also a large literature on using the data to estimate knot locations. Such
splines are often called free-knot splines. The least squares fitting criterion
is highly nonlinear in knot locations, and the computational challenges
are severe. Nevertheless, in certain applications where strong curvature is
localized in regions not known in advance, this is the more natural ap-
proach. For recent contributions to free-knot spline model estimation, see
Lindstrom (2002), Lindstrom and Kotz (2004) and Mao and Zhao (2003).

We hope that we have not left the reader with the impression that least
squares estimation is the only way to do smoothing. One of the most im-
portant developments in statistics in recent years has been the development
of quantile regression methods by R. Koenker and S. Portnoy, where the
model estimates a quantile of the conditional distribution of the dependent
variable. Least squares methods, by contrast, attempt to estimate the mean
of this distribution. Quantile regression minimizes the sum of absolute val-
ues of residuals rather than their sum of squares. Koenker and Portnoy
(1994) applied quantile regression to the spline smoothing problem.



