
5
Smoothing functional data with a
roughness penalty

5.1 Introduction

We saw in Chapter 4 that basis expansions can provide good approxima-
tions to functional data provided that the basis functions have the same
essential characteristics as the process generating the data. Thus, a Fourier
basis is useful if the functions we observe are periodic and do not exhibit
fluctuations in any particular interval that are much more rapid than those
elsewhere. However, fitting basis expansions by least squares implies clumsy
discontinuous control over the degree of smoothing, and we wonder if it is
not possible to get better results with other methods.

Kernel smoothing and local polynomial fitting techniques, on the other
hand, are based on appealing, efficient and easily understood algorithms
that are fairly simple modifications of classic statistical techniques. They
offer continuous control of the smoothness of the approximation, but they
are seldom optimal solutions to an explicit statistical problem, such as
minimizing a measure of total squared error, and their rather heuristic
character makes extending them to other smoothing situations difficult.

In this chapter we introduce a more powerful option for approximating
discrete data by a function. The roughness penalty or regularization ap-
proach retains the advantages of the basis function and local expansion
smoothing techniques developed in Chapter 4, but circumvents some of
their limitations. More importantly, it adapts gracefully to the more general
functional data analysis problems that we consider in subsequent chapters.
Finally, it often produces better results, and especially in the estimation of
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derivatives. This roughness penalty approach will be our smoothing method
of choice throughout this book.

Like the least squares methods of Chapter 4, roughness penalty methods
are based on optimizing a fitting criterion that defines what a smooth of
the data is trying to achieve. But here the precise meaning of “smooth” is
expressed explicitly at the level of the criterion being optimized, rather than
implicitly in terms of the number of basis functions being used. Moreover,
roughness penalty approaches can be applied to a much wider range of
smoothing problems than simply estimating a curve x from observations
of x(tj) for certain points tj . Green and Silverman (1994) discuss a variety
of statistical problems that can be approached using roughness penalties,
including those where the data’s dependence on the underlying curve is
akin to the dependence on parameters in generalized linear models. Here
we extend still further the scope of roughness penalty methods by discussing
various functional data analysis contexts where roughness penalties are an
elegant way to introduce smoothing into the analysis.

Figure 5.1 shows what we are trying to achieve. The refinery data from
the top panel of Figure 1.4 show measurements that seem flat up to time
67, followed by a sharp upward turn and then an smooth approach toward
a new level. In Chapter 17 we will want to model the change or derivative
of this trend. A good estimate should show near zero derivative to time
64, an abrupt increase to a maximum value, and then an approximately
exponential decay thereafter. Three estimates of this derivative computed
by penalizing the roughness of the derivative are shown in the Figure. The
best of these seems to be the heavy line, which combines a near zero value
on the left with the abrupt upward turn, high peak value, and fairly smooth
decay that we want. The smoother of the other two curves fails at both the
upward turn and at the peak, and the other is too wild below time 50.

5.2 Spline smoothing

Let us consider how regularization works in the simplest functional case
when the goal is to estimate a non-periodic function x on the basis of
discrete and noisy observations in a vector y. We continue with the data-
smoothing problem described in Chapter 4. However, we will reserve the
term “spline smoothing” for using roughness penalties in the way described
in this section. By contrast, the smoothing literature often refers to the
least squares fitting of B-spline expansions that we described in Chapter 4
as “regression spline smoothing.”
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Figure 5.1. Three estimates of the rate of change or first derivative of the data
shown in the top panel of Figure 1.4. Each curve has its roughness penalized.

5.2.1 Two competing objectives in function estimation
The spline smoothing method estimates a curve x from observations yj =
x(tj) + εj by making explicit two conflicting goals in curve estimation. On
the one hand, we wish to ensure that the estimated curve gives a good fit to
the data, for example in terms of the residual sum of squares

∑
[yj −x(tj)]2.

On the other hand, we do not wish the fit to be too good if this results in
a curve x that is excessively “wiggly” or locally variable.

These competing aims correspond to the elements of the basic principle
of statistics, discussed in Section 4.5,

Mean squared error = Bias2 + Sampling variance,

where bias, sampling variance and mean squared error were defined in
Section 4.5.1. A completely unbiased estimate of the function value x(tj)
can be produced by a curve fitting yj exactly, since this observed value is
itself an unbiased estimate of x(tj) according to our error model. But any
such curve must have high variance, manifested in the rapid local variation
of the curve.

In spline smoothing, as in other smoothing methods, the mean squared
error, usually abbreviated MSE, is one way of capturing what we usually
mean by the quality of estimate. We noted in Section 4.5.1 that other loss
functions may be preferable in certain situations, but that the notion of a
trade-off between bias and sampling variance applies more widely to these
situations as well, although not with this exact decomposition.
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MSE can often be dramatically reduced by sacrificing some bias in or-
der to reduce sampling variance, and this is a key reason for imposing
smoothness on the estimated curve. By requiring that the estimate vary
only gently from one value to another, we are effectively “borrowing infor-
mation” from neighboring data values, thereby expressing our faith in the
regularity of the underlying function x that we are trying to estimate. This
pooling of information is what makes our estimated curve more stable, at
the cost of some increase in bias. The roughness penalty makes explicit
what we sacrifice in bias to achieve an improvement MSE or some other
loss function.

5.2.2 Quantifying roughness
Here is popular way to quantify the notion “roughness” of a function. The
square of the second derivative [D2x(t)]2 of a function at t is often called
its curvature at t, since a straight line, which we all agree has no curvature,
also has a zero second derivative. Consequently, a natural measure of a
function’s roughness is the integrated squared second derivative

PEN2(x) =
∫

[D2x(s)]2 ds . (5.1)

Highly variable functions can be expected to yield high values of PEN2(x)
because their second derivatives are large over at least some of the range
of interest. For example, consider the two acceleration curves displayed in
Figure 4.3, the estimated and actual growth acceleration according to the
Jolicoeur model. The values of PEN2(x) for these curves are 0.22 and 1.42,
respectively, indicating the the estimated acceleration curve is substantially
rougher than the true curve.

Of course, since these curves are themselves second derivatives, these
values are actually the values of

PEN4(x) =
∫

[D4x(s)]2 ds,

where x is a height function. This suggests that we may need to generalize
the roughness penalty (5.1) by allowing a derivative Dmx of arbitrary order
so as to work with the penalty

PENm(x) =
∫

[Dmx(s)]2 ds . (5.2)

5.2.3 The penalized sum of squared errors fitting criterion
We now need to modify the last squares fitting criterion (4.5), defined in
Chapter 4, so as to allow the roughness penalty PEN2(x) to play a role
in defining x(s). Let x(t) be the vector resulting from function x being
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evaluated at the vector t of argument values. We define a compromise that
explicitly trades off smoothness against data fit by defining the penalized
residual sum of squares as

PENSSEλ(x|y) = [y − x(t)]′W[y − x(t)]2 + λ × PEN2(x) , (5.3)

Our estimate of the function is obtained by finding the function x that
minimizes PENSSEλ(x) over the space of functions x for which PEN2(x) is
defined.

The parameter λ is a smoothing parameter that measures the rate of ex-
change between fit to the data, as measured by the residual sum of squares
in the first term, and variability of the function x, as quantified by PEN2(x)
in the second term. As λ becomes larger and larger, functions which are not
linear must incur a more and more substantial roughness penalty through
the term PEN2(x), and consequently the composite criterion PENSSEλ(x)
must place more and more emphasis on the smoothness of x and less and
less on fitting the data. For this reason, as λ → ∞ the fitted curve x
must approach the standard linear regression to the observed data, where
PEN2(x) = 0.

On the other hand, for small λ the curve tends to become more and more
variable since there is less and less penalty placed on its roughness, and as
λ → 0 the curve x approaches an interpolant to the data, satisfying x(tj) =
yj for all j. However, even in this limiting case the interpolating curve is not
arbitrarily variable; instead, it is the smoothest twice-differentiable curve
that exactly fits the data.

5.2.4 The structure of a smoothing spline
Suppose for the moment that we make no assumptions about function x
except that it has a second derivative.1 We also assume here that sampling
points tj , j = 1, . . . , n are distinct. What kind of function minimizes this
penalized error sum of squares?

A remarkable theorem, found in de Boor (2002) and other more advanced
texts on smoothing, states that the curve x that minimizes PENSSEλ(x|y)
is a cubic spline with knots at the data points tj . Note that we have not
here assumed anything about how x is constructed; the spline structure
of x is a consequence of this theorem, in which an objective function is
optimized with respect to an entire function. Solutions to problems that
involve optimizing with respect to functions rather than with respect to
parameters are called variational problems.

Placing knots at data points eliminates one of the issues in the use of
regression splines: where to place the knots. Smoothing splines adapt nat-

1More technically, a slightly weaker assumption is required: that the integral of the
squared second derivative is finite.
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urally to unequal spacing of sampling points, and thus automatically take
advantage of regions where data density is high, and at the same time are
especially smooth over regions where there are few observations.

The most common computational technique for spline smoothing is to use
an order four B-spline basis function expansion with knots at the sampling
points, and to minimize criterion (5.3) with respect to the coefficients of
the expansion. In this case, the fitting function is piece-wise cubic, and the
method is often referred to as cubic spline smoothing.

Recalling the relation between number of knots, the order of the spline
and the number of basis functions that was described in Chapter 3, using
order four B-splines in this way implies that we have n + 2 basis functions,
which are obviously enough to fit n data points exactly if λ = 0.

5.2.5 How spline smooths are computed
Reminding ourselves of expressions and relations drawn from Chapter 4
will help us to see how the use of a roughness penalty changes the smooth-
ing process from a projection to something that generalizes the idea of a
projection.

Recall that, without a roughness penalty, the coefficient vector c in the
expansion

x(t) =
K∑
k

ckφk(t) = c′φ(t) = φ′(t)c,

where c is the K-vector of coefficients and φ is the K-vector of basis
functions, has the solution

ĉ = (Φ′WΦ)−1Φ′W′y (5.4)

where n by K matrix Φ contains the values of the K basis functions at the
n sampling points, W is a weight matrix to allow for possible covariance
structure among residuals, and where y is the vector of discrete data to be
smoothed. The corresponding expression for the vector of fits to the data
is

ŷ = Φ(Φ′WΦ)−1Φ′Wy = Sφy, (5.5)

where Sφ is the projection operator

Sφ = Φ(Φ′WΦ)−1Φ′W (5.6)

corresponding to the basis system φ.
We can re-express the roughness penalty PENm(x) in matrix terms as

follows.

PENm(x) =
∫

[Dmx(s)]2 ds
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=
∫

[Dmc′φ(s)]2 ds

=
∫

c′Dmφ(s)Dmφ′(s)c ds

= c′[
∫

Dmφ(s)Dmφ′(s) ds]c

= c′Rc , (5.7)

where

R =
∫

Dmφ(s)Dmφ′(s) ds . (5.8)

Note that we will often encounter matrices like R that contain integrals of
outer products of vectors of functions, and it will keep the notation cleaner
if we can suppress the argument s and ds and use the notation

R =
∫

DmφDmφ′ .

By adding the error sum of squares SSE(y|c) and PENm(x) multiplied by
a smoothing parameter λ, we obtain

PENSSEm(y|c) = (y − Φc)′W(y − Φc) + λc′Rc . (5.9)

Taking the derivative with respect to parameter vector c, we obtain

−2Φ′Wy + Φ′WΦc + λRc = 0,

from which we obtain the expression for the estimated coefficient vector

ĉ = (Φ′WΦ + λR)−1Φ′Wy . (5.10)

5.2.6 Spline smoothing as a linear operation
The expression for the data-fitting vector ŷ is

ŷ = Φ(Φ′WΦ + λR)−1Φ′Wy = Sφ,λy , (5.11)

where the order n symmetric “hat” matrix is

Sφ,λ = Φ(Φ′WΦ + λR)−1Φ′W . (5.12)

Comparing this expression with (5.6) shows us that the only change is the
addition of λR to the cross-product matrix Φ′WΦ prior to its inversion,
and that the two operators become identical when λ = 0. The more general
operator (5.12) can be called a sub-projection operator because, unlike the
projection operator, the sub-projection does not satisfy the idempotency
relation, since

Sφ,λSφ,λ �= Sφ,λ.
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In plain language, this says that the spline smooth of a spline smooth is
even smoother.

Expressions of the form (5.10) occur often in statistics where linear mod-
els are used. For example, in multilevel or random coefficient models, a
similar expression arises when information about within-level regression
coefficients is borrowed across levels. In Bayesian versions of multiple re-
gression, the variance-covariance matrix Σ0 of the prior density for the
regression coefficient matrix shows up where we have R. Indeed, we can
think of the roughness penalty as analogous to the logarithm of a prior
density, just as the error sum of squares term is, except for a scale fac-
tor, the logarithm of a likelihood. An early example of regularization, ridge
regression, also used this operator.

Computing the matrix R will generally require approximating the inte-
gral in (5.8) by a numerical quadrature scheme, although exact expressions
are possible where both B-spline and Fourier bases are involved. In fact, it
is seldom necessary to have very high accuracy in the approximation. An
illustration of this point is that replacing R by a matrix of mth order differ-
ence operators applied to the coefficients themselves appears to work very
well as a smoothing technique for equally spaced sampling points (Eilers
and Marx, 1996).

It is also useful to plot the linear filter defined by the smoothing pro-
cess for estimating acceleration. Let Φ(2) contain the values of the second
derivatives of the basis functions evaluated at the sampling points, that
is, D2φk(tj), and let ŷ(2) be the vector of acceleration estimates at the
sampling points. Then

ŷ(2) = Φ(2)(Φ′WΦ + λR)−1Φ′Wy = S(2)
φ,λy ,

where S(2)
φ,λ is the matrix mapping the data vector into the vector of ac-

celeration estimates. Rows in this matrix corresponding to acceleration
estimates at ages one, ten and eighteen years are displayed in Figure 5.2.
Notice that the acceleration estimate at

• age one requires some weighting of data all the way up to eight years,

• age ten, in the middle of the pubertal growth spurt, uses data from
ages seven to thirteen, and

• age eighteen uses data back to age thirteen.

If the widths of these age ranges seems surprising, recall, firstly, that accel-
eration is intrinsically much harder to estimate than height; and, secondly,
that the sparse sampling of function values forces us to borrow informa-
tion from widely dispersed sampling points. Put another way, acceleration
at age ten is a composite of a peak, a valley, and a peak, and uses about
twelve data points, which works out to four per feature, and this in turn is
close to the minimum possible of three per feature.
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Figure 5.2. The solid curve indicates the weights placed on observations in the
growth data for estimating acceleration at age ten. The dashed line corresponds
to weights for height acceleration at age one, and the dashed-dotted line for age
eighteen.

Another useful application of Sφ,λ is in computing a degrees of freedom
value for a spline smooth,

df(λ) = traceSφ,λ . (5.13)

Hastie and Tibshirani (1990) discuss this and other ways of assessing the
degrees of freedom of a smoothing procedure and, more generally, any esti-
mation procedure that maps the data vector linearly to a parameter vector.
Zhang (2003) offers a more in-depth update of this issue.

5.2.7 Spline smoothing as an augmented least squares problem
Expression (5.9) can be interpreted as arising from an augmented least
squares problem. First, since R is a positive semidefinite matrix because of
its cross-product structure, we can express it as

R = L′L

by applying, among other possibilities, the Choleski decomposition. Now
let

ỹ =
[

y
0

]
,
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where the zero vector is of the same length as c. We can match this
augmented response vector by the augmented design matrix

Φ̃ =
[

Φ√
λL

]
.

Finally, we augment the weight matrix W with the identity matrix I on
the diagonal and zeros elsewhere to get the augmented weight matrix W̃.

Now we can express coefficient vector c using the roughness penalty as
the solution to the weighted least squares problem

SSE(ỹ|c) = (ỹ − Φ̃c)′W̃(ỹ − Φ̃c) . (5.14)

This version of the roughness penalty problem makes clear that a roughness
penalized least squares is a regular least squares where the data y are
augmented by a vector of zeros, and the zeros are fit using the augmented
portion of the design matrix

√
λL. Moreover, using the QR decomposition

to minimize (5.14) rather than using (5.10) directly is preferable from the
standpoint of rounding error in computing ĉ.

5.2.8 Estimating derivatives by spline smoothing
Many functional data analyses call for the estimation of derivatives, either
because these are of direct interest, or because they play a role in some
other part of the analysis. The penalty (5.1) may not be suitable, since it
controls curvature in x itself, and therefore only slope in the derivative Dx.
It does not require the second derivative D2x even to be continuous, let
alone smooth in any sense.

If the derivative of order m is the highest required, one should actually
penalize the derivatives of order m + 2 in order to control the curvature of
the highest order derivative. For example, the estimate of acceleration is
better if we use

PEN4(x) =
∫

[D4x(s)]2ds = ‖D4x‖2 (5.15)

in (5.3) since this controls the curvature in D2x.
We can use relation (5.13), for example, to compare the acceleration

estimates by least squares and roughness penalized smoothing from the
single simulated observation in Figure 4.3. By solving for the value of λ
that produces a value of df of 12, we obtain λ = 0.06. Smoothing the data
with this observation produces the acceleration estimate shown as a heavy
line in Figure 5.3. This estimate does much better at the boundaries than
the least squares estimate, which is also shown. Over the interior of the
interval, however, the two estimates are rather similar, although the spline
smooth does a slightly better job on the pubertal growth spurt.
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Figure 5.3. The heavy solid curve is the estimated growth acceleration for a single
set of simulated data shown in Figure 4.3 computed by roughness penalized spline
smoothing. The lighter solid line is for least squares smoothing, and the dashed
curve is the errorless true curve.

5.3 Some extensions

The spline smoothing procedure given above can be extended in many ways,
and many of these extensions are of great importance in applications. We
summarize fairly briefly a number of these in this section.

5.3.1 Roughness penalties with fewer basis functions
In applications such as the study of handwriting and other forms of move-
ment, we may use motion capture equipment that produce observations
hundreds or thousands of times per second. Even the nondurable goods
manufacturing index involves nearly a thousand sampling points. In these
situations, placing a knot at every sampling point may imply a prohibitive
amount of computation. Moreover, rounding errors may accumulate in the
calculations to the point where the results are seriously inaccurate. See
Section 5.4.3 below for more comments on this problem.

In these situations involving very large numbers of sampling points, it
may entirely reasonable to use a lower-dimensional B-spline basis defined
by some appropriate more limited knot sequence τ , provided that there
remains sufficient flexibility to capture the features of interest. For example,
handwriting data in Ramsay (2000) involved sampling pen position 400
times per second. The strokes making up the characters being produced
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each lasted around 120 milliseconds, and thus included about 50 argument
values, but was found that only about ten equally-spaced knots per stroke
was more than sufficient to capture the shape of any stroke as well as three
of its derivatives.

As a further example, 34 years of daily weather measurements represents
about 12,500 observations, and it is a heavy chore to use that many basis
functions. Instead, a system of 500 spline basis functions was considered
sufficient in Ramsay and Silverman (2002) to capture all the variation of
interest, and a roughness penalty was then used with this system to impose
further smoothness on the result.

None of the mathematics outlined above changes when we use fewer
knots than sampling points, and yet roughness penalization can remain an
effective way to ensure a smooth fit and stable derivative estimates.

5.3.2 More general measures of data fit
There are aspects of the roughness penalty method that are really use-
ful in our treatment of functional data analysis. For example, instead of
quantifying fit to the data by the residual sum of squares, we can penalize
any criterion of fit by a roughness penalty. For instance, we might have a
model for the observed yj for which the log likelihood of x can be written
down. Subtracting λ×PEN2(x) from the log likelihood and then finding the
maximum allows smoothing to be introduced in a wide range of statistical
problems, not merely those in which error is appropriately measured by a
residual sum of squares. These extensions of the roughness penalty method
are a major theme of Green and Silverman (1994).

In the functional data analysis context, we adopt this philosophy in con-
sidering functional versions of several multivariate techniques. The function
estimated by these methods is expressed as the solution of a maximization
(or minimization) problem based on the given data. For example, principal
components are chosen to have maximum possible variance subject to cer-
tain constraints. By penalizing this variance using a roughness penalty term
appropriately, the original aim of the analysis can be traded off against the
need to control the roughness of the estimate. There are different ways of
incorporating the roughness penalty according to the context, but the over-
all idea remains the same: Penalize whatever is the appropriate measure of
goodness-of-fit to the data for the problem under consideration.

5.3.3 More general roughness penalties
The second extension of the roughness penalty method uses measures of
roughness other than ‖D2x‖2. We have already seen one reason for this
in Section 5.2.8, where the estimation of derivatives of x was considered.
However, even if the function itself is of primary interest, there are two
related reasons for considering more general roughness penalties. On the
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one hand, we may wish that the class of functions with zero roughness were
wider than, or otherwise different from, those that are of the form a + bt.
On the other hand, we may have in mind that, locally at least, curves x
should ideally satisfy a particular differential equation, and we may wish
to penalize departure from this.

For example, if we are analyzing periodic data, it would be more natural
to use the harmonic acceleration operator

Lx = D3x + ω2Dx (5.16)

since zero roughness implies that x is of the form

x(t) = c1 + c2 sin ωt + c3 cos ωt,

where ω is the period.
We can achieve both of these goals by replacing the second derivative

operator D2 with a more general linear differential operator L, defined as

Lx = w0x + w1Dx + . . . + wm−1D
m−1x + Dmx,

where the weights wj may be either constants or functions wj(t). Then we
can define

PENL(x) =
∫

[(Lx)2](t) dt = ‖Lx‖2, (5.17)

the integral of the square of Lx.
As an alternative to pre-specifying the differential operator, we can

use observed functional data to estimate the operator L. These ideas are
developed further in Chapters 19 and 21.

5.3.4 Computing the roughness penalty matrix
The roughness penalty matrix R defined in (5.8) is composed of the inte-
grals of products of a derivative Dm of basis functions. For B-spline bases,
Fourier bases, and most of the basis systems that we are likely to work with
in practice, these integrals can be computed analytically. In the B-spline
case, however, the details (see de Boor, 2002) are intricate, and few users
of FDA will want to write programming code for this problem. There are
functions in the MATLAB R©, R and S-PLUS languages that can do this
work for you.

When more general roughness penalties are involved of the kind defined
in (5.17) above, it will be necessarily to resort to numerical approximation
of the integrals in (5.8) for matrix R. There are two main strategies in this
case.

The safer approach is to use a numerical method that iteratively im-
proves its estimate of an integral until a test for its accuracy is satisfied.
A classic approach is to use a simple method such as the trapezoidal rule
and to double the number of points at which the integrand is evaluated



94 5. Smoothing functional data with a roughness penalty

until an estimate of the integral is judged to have converged. We have had
good experience with Romberg integration, also called Richardson’s extrap-
olation, and have used variants of the algorithm described in Press et al.
(1999). However, there are more modern methods that may well perform
even better.

However, these adaptive methods can be too slow for applications where
R must be evaluated many times during the course of a calculation. In
this case, a lower accuracy non-iterative approach that is still considered
to be sufficiently accurate may be preferable. For example, the integrals
in (5.8) can be converted to matrix products using a fine mesh of values
of t and a numerical quadrature method such as Simpson’s Rule (Stoer
and Bulirsch, 2002). As a rough guideline, we have found that about 21
evaluation points per interval when working with B-spline basis functions
gives a level of accuracy that has sufficed for our purposes.

If multiple knots at the same location are used in order to allow for
discontinuity in a derivative or function value, be careful not to evaluate
the discontinuous quantity at the function value. Aside from the fact that
the value is not defined mathematically, available software for evaluating
spline basis functions can fail to warn you that you did something wrong,
and cheerfully return a function value of large and unpredictable size, which
will play havoc with your integral approximation. The better procedure is
to carry out the integration piecewise over each interval, and integrate only
up to a t-value separated from the knot location by a small constant.

5.4 Choosing the smoothing parameter

When we fit data using a roughness penalty instead of least squares, we
switch from defining the smooth in terms of degrees of freedom K to
defining the smooth in terms of the smoothing parameter λ. Neverthe-
less, strategies for selecting λ are rather similar to those that we used in
Chapter 4 in that we use a “discounted” measure of fit that compensates
for the degrees of freedom in the data used up by the fit.

5.4.1 Some limits imposed by computational issues
Although from a mathematical perspective we can contemplate any positive
values of λ, the realities of floating point computation actually impose some
severe limits. These limits are due to the need to solve a system of linear
equations with the coefficient matrix

M(λ) = Φ′WΦ + λR,
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where R is defined in (5.8). The two matrices Φ′WΦ and R can have
elements of radically different sizes. In particular, the size of

‖R‖ =
√∑

k

∑
�

r2
k�

increases by roughly an order of magnitude for each increase in the order
m of derivative that is used to define the roughness penalty.

Now R itself has rank K−m, and so cannot itself be useful as a coefficient
matrix. This implies that we cannot have λR so large as to overwhelm
Φ′WΦ; otherwise, attempting to invert M(λ) will either produce an error
message or, worse, a result that is so full of rounding error as to lead to
seriously wrong results further on down the line. A rough rule of thumb is
that the size of λR should not be more than 1010 times the size of Φ′WΦ.

Consider the handwriting data, for example. There are 1401 sampling
points evenly spaced between 0 and 2.3 seconds. We will need to estimate
the third derivative of the X and Y coordinates of pen position in Chap-
ter 19, and consequently will need to penalize the size of the derivative of
order m = 5. The minimal order of B-spline that will serve to define an
integrable fifth derivative is 7. If we choose to use smoothing splines with
a knot at each sampling value, this implies 1406 basis functions defining
matrix Φ. The size ‖R‖ of R in this context is about 2 × 1031! By con-
trast, ‖Φ′WΦ‖ ≈ 20. Hence, by our rule of thumb, we will be in trouble if
λ > 10−20 or so.

This illustrates the importance of some preliminary explorations along
these lines before plunging into functional data analysis, and especially
when high orders of derivatives are involved. In any case, the cure is simple;
as we indicated in Section 3.7, these problems arise because the unit of
measurement, 2.3 seconds, for t is far larger than the length of the interval
over which a spline basis function is nonzero. Measuring time in milliseconds
removes the problem.

On the lower limit side, we clearly cannot always use λ = 0; in this
example, there are more basis functions than data points and consequently
Φ′WΦ would not be invertible. Again, a rule of thumb can be proposed:
Choose λ at least large enough to ensure that the size of λR is at least
with ten orders of magnitude of the size of Φ′WΦ.

Now we turn to two strategies for choosing smoothing parameter
somewhere between these broad limits.

These difficulties are actually a result of the way the penalized least
squares criterion is defined in almost all the statistical literature. The appli-
cation of the method of dimensional analysis used routinely in the physical
sciences can be helpful here. The basic idea is that two quantities that are
added should have the same units of measurement.

Now the error sum of squares ‖y − ŷ‖2 has the unit of measurement
of x squared. In the handwriting data, this would be squared meters, for
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example. We should probably also divide this criterion by n to allow for
the number of sampling points.

Smoothing parameter λ can be made dimensionless by using its loga-
rithm, which is consistent with the idea that it will be a positive quantity.
Thus, we should multiply a roughness penalty such as PENm(x) by 10ν

where ν = log10 λ. In fact, we basically do this already since we tend to
vary λ by multiplying it by a fixed factor.

Finally, the units of Dmx are those of x itself divided by the time unit,
that we can indicate by τ , taken to the power m. This suggests that PENm(x)
should be multiplied by T 2m, where T is the length of time in τ units over
which the integration takes places. This will cancel out the role of the time
unit in the integrand. We might divide the integral, on the other hand, by
T itself to allow for the summation over time that the integral represents.
Putting this all together, it would be better to redefine the penalized least
squares criterion as

PENSSE(x) =
1
n

‖y − ŷ‖2 + 10νT 2m−1PENm(x). (5.18)

For the handwriting data, for example, if we use the time unit τ = 1
second, so that the interval of integration is 2.3 seconds, along with m = 5
to control the curvature of the third derivative, then T 9 ≈ 1800, but if we
opt for milliseconds as the time unit, then T 9 ≈ 1.8× 1012. Now, of course,
the fifth derivative takes on huge values in the time scale of seconds, but
comparatively mild values on the time scale of milliseconds so that, finally,
we will wind up using the same value of ν in either time scale.

5.4.2 The cross-validation or CV method
The basic idea behind cross-validation is to set part of the data to one
side, calling it a validation sample, and fit the model to the balance of the
data, called the training sample. In that way, we see how well the model fits
data that were not used to estimate the model, thus avoiding the somewhat
incestuous procedure of using the data to both fit the model and assess fit.

A versatile technique for choosing a smoothing parameter involves taking
this notion to the extreme situation where we leave only one observation out
as the validation sample, fitting the data to the rest, and then estimating
the fitted value for the left out data value. If this procedure is repeated for
each observation in turn, and the resulting error sum of squares summed
over all values, the result is the cross-validated error sum of squares. We
compute this criterion over a range of values of λ, and choose that value
that yields its minimum.

Cross-validation can be used in a wide range of situations, and in effect
rests only on the assumption that observations are relatively independent
of one another. However, the method has two problems. First, it is usually
computationally intensive, and not the sort of thing that would be feasible
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for sample sizes in the thousands. However, there are specific situations in
which some computational tricks can be used to reduce the computational
burden. The second problem is that minimizing CV can lead to under-
smoothing the data because the method tends too often to favor fitting
noisy or high-frequency types of variation that we would prefer to ignore.

5.4.3 The generalized cross-validation or GCV method
A measure that is popular in the spline smoothing literature is the gen-
eralized cross-validation measure GCV developed by Craven and Wahba
(1979). It was originally developed as a simpler version of the cross-
validation procedure that avoided the need to re-smooth n times. But it
also has been found to be rather more reliable than cross-validation in the
sense of having less of a tendency to under-smooth. The criterion is usually
expressed as

GCV(λ) =
n−1 SSE

[n−1trace (I − Sφ,λ)]2
,

where df is the equivalent degrees of freedom measure (5.13) and Sλ is the
smoothing operator defined in (5.12). But it can be more revealing to use
the equivalent expression

GCV(λ) =
( n

n − df(λ)
)( SSE

n − df(λ)
)

. (5.19)

Notice that this is a twice-discounted mean squared error measure. The
right factor is the unbiased estimate of error variance σ2 familiar in regres-
sion analysis, and thus represents some discounting by subtracting df(λ)
from n. The left factor further discounts this estimate by multiplying by
n/(n − df(λ)).

As a practical matter, C. Gu (2002) reports that the remaining tendency
for GCV to yield under-smoothing can be further reduced by multiplying
df by factors such as 1.2 or 1.4 in (5.19). This is a third level of discounting,
in effect. Apparently the additional discounting does not seriously increase
the odds of over-smoothing the data.

The minimization of GCV with respect to λ will inevitably involve trying
a large number of values of λ, whether grid-search or a numerical optimiza-
tion algorithm is used. The computation of GCV(λ) can be greatly speeded
up by performing a preliminary generalized eigenanalysis. Criterion GCV
can be expressed in terms of the n by N data matrix Y, the n × K matrix
Φ of basis function values and the order K penalty matrix R as follows:

GCV(λ) =
n trace{Y′[I − Sφ,λ]−2Y}

{trace[I − Sφ,λ]}2 ,

where the “hat” matrix Sφ,λ has the expression

Sφ,λ = ΦM(λ)−1Φ′W
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and where, in turn

M(λ) = Φ′WΦ + λR.

Note that we have dropped the weight matrix W from these expressions
to keep the notation a little simpler.

We actually don’t need to invert M(λ) each time we change λ, but we
do need to solve a linear system of equations for which it is the coefficient
matrix, and this is that we want to avoid. This can be achieved if we first
solve the generalized eigenvalue problem

RV = Φ′WΦVD,

where D is the matrix of eigenvalues of R in the metric defined by Φ′WΦ
and V, the columns of which are the corresponding eigenvectors of R,
satisfy the orthogonality condition

V′Φ′WΦV = I.

Note that the generalized eigenvalue problem has a solution only if
Φ′WΦ is nonsingular. This will not be the case if knots are placed at
every data point. However, a trick recommended by de Boor (2002) is to
drop enough knots next to the boundary to make the number of basis
functions equal to the number of sampling points. For example, if we are
working with cubic smoothing splines of order four and we have 101 sam-
pling points, then this implies 103 basis functions. But if we drop the knots
associated with sampling points 2 and 100, the number of basis functions
drops to 101, and Φ′WΦ will be nonsingular, at least if sampling points
are reasonably well-spaced. It is, needless to say, always a good idea to
check Φ′WΦ for singularity.

We now express, for any new value of λ, the required inverse very
efficiently as

M(λ)−1 = V(I + λD)−1V′,

since the matrix now being inverted is diagonal. Moreover, taking the
derivative of GCV(λ) involves calculating the matrix

M(λ)−1Φ′WΦM(λ)−1 = V(I + λD)−2V′

so that providing a derivative value to a numerical optimization algo-
rithm is also computationally efficient and likely to decrease the number of
evaluations of GCV(λ) substantially.

Gu (2002) offers a detailed and up to date discussion of theoretical and
computational issues associated with the CV(λ), GCV(λ) and other methods
for choosing λ.
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Figure 5.4. A sample of twenty height acceleration curves for females generated
using the Jolicoeur model.

5.4.4 Spline smoothing the simulated growth data
We illustrate here some of the points made in this chapter by the analysis
of 1000 simulated records for females using the Jolicoeur model described
in Section 4.3. A random sample of twenty acceleration curves from this
model are shown in Figure 5.4.

Figure 5.5 shows the variation of the generalized cross-validation statistic
GCV over a range of log10(λ) values in its top panel. We see that the
minimum GCV is attained at λ = −0.1. At this smoothing level, the degrees
of freedom measure has the value of 11.4, which is not far from the number
twelve of basis functions that we used in least squares smoothing.

In the lower panel, we see the square root of the mean squared error
(RMSE) of the acceleration curve values at ages eight, before puberty;
twelve, mid-puberty for the average girl; and sixteen, post-puberty for most
girls. These curves do not bottom out at the same value as the GCV curve,
but they come close to doing so. It is not surprising that the curve for age
twelve favors a lower value of λ; the curvature of the acceleration function is
much sharper for the average girl at mid-puberty. The more stable curves
typical for most girls at ages eight and sixteen favor higher values of λ.
Nevertheless, the GCV-favored value gives nearly optimal values for RMSE.

Figure 5.6 indicates the variation in RMSE, bias, and sampling standard
error over age for the smoothing level minimizing GCV. We see that the
curve estimates are of limited value for ages less than three years or more
than sixteen years. But they aren’t bad at all in between these extremes,
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Figure 5.5. The top panel displays the relation between the GCV statistic and
smoothing level for 1000 simulated female records. The bottom panel displays
the root-mean-squared error in acceleration estimates at the selected ages of 8,
12 and 16 years of age.

and the bias in particular is small. Of course, we could do better if we had
sampled height more often. It is also not surprising that sampling error is
higher during the pubertal growth spurt when curvature is high.

Perhaps the main conclusion to be drawn here is that the spline smooth-
ing method does a good job in this context, and especially given that there
are only 31 observations in each record. Choosing λ using the GCV criterion
gets us close to the best answer, on the average.

5.5 Confidence intervals for function values and
functional probes

We now want to see how to compute confidence limits on some useful
quantities that depend on an estimated function x that has, in turn, been
computed by the smoothing with a roughness penalty a vector of discrete
data y.

For example, how precisely is the function value at t, x(t), determined by
our sample of data y? Or, what sampling standard deviation can we expect
if we re-sample the data over and over again, estimating x(t) anew with
each sample? Can we construct a pair of confidence limits such that the
probability that the true value of x(t) lies within these limits is a specified
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Figure 5.6. The root-mean-squared error for the GCV-optimal smoothing level
as a function of age is shown in the top panel, and the corresponding values of
bias and sampling standard error are shown in the middle and bottom panels,
respectively.

value, such as 0.95? Displaying functions or their derivatives with point-
wise confidence limits is a useful way of conveying how much information
there is in the data used to estimate these functions. See Figure 5.7 below
for an example.

However, do be aware of the distinction between these point-wise limits,
which tell us only the precision at a fixed location, and global confidence
limits, which would tell us a region of confidence for the entire function.
Constructing an upper and a lower curve such that the probability that
the entire true curve lies between these functional limits can be achieved
by computationally intensive methods such as bootstrapping (Efron and
Tibshirani, 1993).

5.5.1 Linear functional probes
More generally, we may wish to examine quantities of the form

ρξ(x) =
∫

ξ(t)x(t) dt . (5.20)

We use the term functional probe for the quantity ρξ(x) and linear probe
function for the weighting function ξ that defines it. The probe function,
in turn, is chosen so as to highlight some interesting feature, such as a
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peak, valley, or difference between function values over two non-overlapping
regions.

A probe is a generalization of the notion of a contrast in analysis of
variance, used there to probe a set of treatment effects for specific types of
variation. However, there is no need for the values of ξ to integrate to zero.
If we have multiple probes, it may be helpful for pairs of probe functions
to be orthogonal, but this is not essential.

For example, to highlight the behavior of x over an interval, an appro-
priate probe function ξ might be the box function, which takes the value 1
within the interval and 0 elsewhere. Or, to highlight the difference between
x in two intervals A and B of equal length, one could use a probe function
taking the value 1 on A, −1 on B, and 0 elsewhere. In cases like these, we
will want to compute the sampling standard deviation of the scalar ρξ in
order to decide whether it differs significantly from some reference value
like zero.

Functional probes ρξ of this nature include the simpler situation of x(t)
as a special case, since x(t) can be obtained by choosing ξ to be nonnegative
and concentrating its nonzero values arbitrarily near t while preserving unit
area under the its curve. We can denote such a probe by

ρt(x) = x(t) , (5.21)

and it is called the evaluation map because it maps function x into its value
x(t) at t. Probes of this nature are taken up in detail in Section 20.3.

Probe ρξ is a linear function of the estimated smoothing function x in
the sense if that we multiply two such functions, x1 and x2 by the constants
a and b, respectively, then

ρξ(ax1 + bx2) = aρξ(x1) + bρξ(x2).

This linearity implies that there is a linear transformation of the coefficient
vector c that defines x that yields the value ρξ(x). At the same time, we
already worked out in this chapter the linear transformation that takes or
maps the data vector y to the coefficient vector c.

5.5.2 Two linear mappings defining a probe value
In order to study the sampling behavior of ρξ, we need to compute these two
linear mappings plus their composite. They are given names and described
as follows:

1. Mapping y2cMap, which converts the raw data vector y to the coef-
ficient vector c for the basis function expansion of x. If y and c are
lengths n and K, respectively, the mapping is a K by n matrix S
such that

c = Sy .



5.5. Confidence intervals for function values and functional probes 103

2. Mapping c2rMap, which converts the coefficient vector c to the scalar
quantity ρξ(x). This mapping is a 1 by K row vector L such that

ρξ(x) = Lc .

3. The composite mapping called y2rMap defined by

y2rMap = ρξ(x) = c2rMap ◦ y2cMap,

which takes data vector y directly to the probe value and is the 1 by
n row vector LS that yields

ρξ(x) = LSy .

As an illustration, consider a conventional linear regression model with
design matrix Z

y = Zc + e,

where the regression coefficient vector c is estimated by ordinary least
squares. Then, since c = (Z′Z)−1Z′y, the matrix corresponding to y2cMap
is S = (Z′Z)−1Z′. Now suppose that for some reason we want to estimate
the difference between the first and second regression coefficients, possibly
because we conjecture that they may be equal in the population. Then
the probe function ξ is equivalent to the probe vector L = (1,−1, 0, . . .),
and this is the row vector corresponding to mapping c2rMap. Finally, the
composite mapping y2rMap taking y directly into the value of this difference
is simply the row vector L(Z′Z)−1Z′.

Now the random behavior of the estimator of whatever we choose to
estimate is ultimately tied to the random behavior of the data vector y.
Let us indicate the order n variance-covariance matrix of y as Var(y) = Σe,
as we did in Sections 4.6.1 and 4.6.2. Recall that we are operating in this
chapter with the model

y = x(t) + ε ,

where x(t) here means the n-vector of values of x at the n argument values
tj . In this model x(t) is regarded as fixed, and as a consequence Σe =
Var(ε).

5.5.3 Computing confidence limits for function values
Now let’s express these mappings in the context of estimating confidence
limits specifically for a function value x(t). Let n by K matrix Φ contain
the values φk(tj), and let the matrices R and W be defined as before. Then
the matrix corresponding to y2cMap is

S = (Φ′WΦ + λR)−1Φ′W

for smoothing parameter λ.
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Suppose that we are interested in the sampling behavior of the function
value ρt(x) = x(t). We know that

x(t) = φ′(t)c = φ′(t)Sy,

and from this we can see that the 1 by K matrix L corresponding to c2rMap
is simply φ′, the row vector resulting from evaluating each of the basis
functions at t. And of course the composite mapping y2rMap corresponds
to the matrix LS. Consequently, using the expression for the variance of a
linear transform of a random vector, we have that

Var[x̂(t)] = LSΣeS′L′. (5.22)

The matrix LS used in (5.22) is also of interest in itself. Each row of
this matrix indicates the profile of weights on the data used to define what
is being estimated for that row. For example, if row j corresponds to the
function evaluation ρtj (x) at time tj , then a plot of the values in this row
shows the entries in y that are used to define this estimate. A row of this
matrix is often called a linear filter for estimating the quantity in question
by engineers. See Figure 5.7 below for an example.

5.5.4 Confidence limits for growth acceleration
With this information in hand, we can gain an impression of how well the
acceleration function can be estimated using the results in Section 5.5. If we
use spline smoothing using order six B-splines as the basis for smoothing,
a smoothing parameter λ = 0.1, and weight matrix W a diagonal matrix
containing the values of the variances of estimate as derived from Figure 4.2,
then Figure 5.7 shows the acceleration curve for the Jolicoeur model based
on using the mean coefficients along with point-wise 95% confidence limits.
The confidence limits balloon out at the extremes because of the difficulty
of estimating derivatives in these regions.

5.6 A bi-resolution analysis with smoothing splines

We now turn to a more general approach, of which spline smoothing turns
out to be a special case. So far we have used basis functions in two essen-
tially different ways. In section 4.2 of Chapter 4, we forced the function x
to lie in a relatively low dimensional space, defined in terms of a suitable
basis. On the other hand, in Section 4.7, we did not assume that the whole
function was in the span of a particular basis, but rather we considered
a local basis expansion at any given point. In this section, we allow the
function to have a higher-dimensional basis expansion, but use a roughness
penalty in fitting the function to the observed data.
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Figure 5.7. The solid curve is an acceleration curve derived from the Jolicoeur
model. The dashed lines are 95% point-wise confidence limits on the curve
based on a smoothing spline estimate from data having the standard error of
measurement plotted in Figure 4.2.

5.6.1 Complementary bases
To develop our approach, suppose that we have two sets of basis functions,
φj , j = 1, . . . , J and ψk, k = 1, . . . , K, that complement one another. Let
functions φj be small in number and chosen to give reasonable account of
the large-scale features of the data. The complementary basis functions ψk

will generally be much larger in number, and are designed to catch local
and other features not representable by the φj . Assume that any function
x of interest can be expressed in terms of the two bases as

x(s) =
J∑

j=1

djφj(s) +
K∑

k=1

ckψk(s). (5.23)

For example, for the Canadian temperature data, the first three Fourier
series functions with ω = π/6 would be a natural choice for the φj , setting
J = 3 and letting the φ basis be the functions

1, sin(ωt), cos(ωt).

The appropriate choice for the ψk in this case would be the remaining K
functions in an order (J + K) Fourier series expansion. In the monthly
temperature data case, they could be the remaining nine Fourier series
terms needed to represent the data exactly. Usually, as in the Fourier case
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above, the bases [φj ] and [ψk] are mutually linearly independent, and the
expansion is unique, but this is not entirely essential to our method.

5.6.2 Specifying the roughness penalty
Let us now develop a roughness penalty for x so that linear combinations
of the φj are in effect completely smooth, in that they contribute nothing
to the roughness penalty. Then the roughness penalty must depend only on
the coefficients of the ψk. One way of motivating this choice is by thinking
of x as the sum of two parts, an “ultrasmooth” function xS =

∑
j djφj and

a function xR =
∑

k ckψk. Therefore we seek a measure PEN(xR) of how
rough, or in any other way important, we would consider the function xR

expressed solely in terms of the ψk. One possibility is simply to take the
usual L2 norm of xR, defining

PEN0(xR) =
∫

xR(s)2 ds =
∫

(c′ψ)2 =
∫

[
K∑

k=1

ckψk(s)]2 ds.

Another possibility is to take a certain order of derivative of the expan-
sion prior to squaring and integrating, just as we did for the function x
itself in Section 5.2. For example, we might use

PEN2(xR) =
∫

(D2xR)2 =
∫

[
K∑

k=1

ckD2ψk(s)]2 ds

to assess the importance of xR in terms of its total curvature, as measured
by its squared second derivative, or PEN4(xR) =

∫
(c′D4ψ)2 to assess the

curvature of its second derivative. More generally, we can use any linear
differential operator L, defining

PENL(xR) =
∫

(LxR)2 =
∫

[
K∑

k=1

ckLψk(s)]2 ds.

Of course, setting L as the identity operator or the second derivative
operator yields PEN0 and PEN2 as special cases.

We can express these penalties in matrix terms as

PENL(xR) = c′Rc,

where the order K symmetric matrix R contains elements

Rkl =
∫

Lψk(s)Lψl(s)ds.

If computing the integrals proves difficult, a simple numerical integration
scheme, such as the trapezoidal rule applied to a fine mesh of argument
values, usually suffices, and then we can also estimate derivatives numer-
ically. Alternatively, we can specify R directly as any suitable symmetric
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non-negative definite matrix, without explicit reference to the roughness of
the function xR.

Now we consider a general function x of the form (5.23), and simply
define the roughness of x as

PEN(x) = c′Rc.

To express the penalized sum of squares, we need to express the residual
sum of squares in terms of the coefficient vectors d and c. Working just as
in (4.1), ∑

j

[yj − x(tj)]2 = ‖y − Φd − Ψc‖2,

where the n × K matrix Ψ has elements Ψik = ψk(tj). We can now define
the composite smoothing criterion

PENSSEλ(x|y) = ‖y − Φd − Ψc‖2 + λc′Rc. (5.24)

We can minimize this quadratic form in d and c to find the fitted curve
x in terms of its expansion (5.23) as follows. The solution for d for any
fixed value of c is given by

d = (Φ′Φ)−1Φ′(y − Ψc) (5.25)

and, consequently,

Φd = Sφ(y − Ψc),

where the projection matrix Sφ is

Sφ = Φ(Φ′Φ)−1Φ′.

In words, the φ basis component of the fit is the conventional basis ex-
pansion of the residual vector y − Ψc. Substitute this solution for d into
PENSSEλ and define the complementary projection matrix Qφ by

Qφ = I − Sφ.

Recalling that because Qφ is a projection matrix, QφQφ = Qφ, we arrive
at the equations

ĉ = (Ψ′QφΨ + λR)−1Ψ′Qφy

d̂ = (Φ′Φ)−1Φ′[I − Ψ(Ψ′QφΨ + λR)−1Ψ′]y . (5.26)

5.6.3 Some properties of the estimates
The first term of (5.24) is identical in structure to the error sum of squares
criterion Q(c) defined in (4.1), except that both sets of basis functions
are used in the expansion. The second term, however, modifies the basis
function expansion problem by penalizing the roughness or size in some
sense of the ψ-component of the expansion.
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The size of the penalty on the ψ-component is controlled by the smooth-
ing parameter λ. In the limit as λ → 0, no penalty whatsoever is applied,
and the estimates obtained by minimizing the criterion PENSSEλ revert to
those obtained by an ordinary basis expansion in the combined basis of φj

and ψk. At the other extreme, when λ → ∞, the penalty is so severe that
ψ-contribution to the roughness penalty is forced to zero; if R is strictly
positive-definite, we obtain the basis function estimate corresponding to
the basis [φj ] alone. If R is not strictly positive-definite, then a contribu-
tion xR from the [ψk] basis is allowed, provided that it satisfies LxR(s) = 0
for all s.

It is instructive to study the minimizing values of the coefficient vectors
d and c. The smoothing matrix S then becomes

Sλ = SφQψ,λ + Sψ,λQφ,

where the smoothing operator Sψ,λ is

Sψ,λ = Ψ(Ψ′QφΨ + λR)−1Ψ′. (5.27)

and Qψ,λ = I − Sψ,λ. From this we can see that Sψ,λ is a kind of “sub-
projection”’ matrix in the metric of the projection Qφ in that it has the
structure of a true projection except for a perturbation of Ψ′QφΨ by λR.

Moreover, the fit vector ŷ is now partitioned into two orthogonal parts,
ŷ = ŷ0 + ŷ1, where

ŷ0 = SφQψ,λy

ŷ1 = Sψ,λQφ
y. (5.28)

The first “ultra-smooth” term comes from first smoothing y using rough
basis ψ, and then projecting the residual from that smooth onto the space
spanned by smooth basis φ. The second “rough” term comes from first
projecting y on to the orthogonal complement of the φ-space, and then
applying the ψ-smoother to the result.

This elaborates the way in which the regularized basis approach provides
a continuous range of choices between low-dimensional basis expansion in
terms of the functions φj and a high-dimensional expansion also making
use of the functions ψk.

5.6.4 Relationship to the roughness penalty approach
We conclude with some remarks about the connections between the reg-
ularized basis method and the method discussed in Section 5.3.3 above.
Firstly, to minimize the residual sum of squares penalized by ‖Lx‖2, we
need not specify any functions at all in the φj part of the basis, but merely
ensure that [ψk] is a suitable basis for the functions of interest. In the
original spline smoothing context, with L = D2, we can take the [ψk] to
be a B-spline basis with knots at the data points, and, by using suitable
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methods of numerical linear algebra, we can obtain a stable O(n) algo-
rithm for spline smoothing; this is the approach of the S-PLUS function
smooth.spline.

Secondly, if we wish to prescribe a particular ultrasmooth class F0, the
regularized basis approach allows us to choose basis functions φj to span
F0, and then allow R to be any appropriate strictly positive-definite ma-
trix. In this way, the choice of the ultrasmooth class is decoupled from the
way that roughness is measured.

5.7 Further reading and notes

We drew on the treatment of roughness penalties in Green and Silverman
(1994) in preparing this chapter, but possibly the best current reference for
fairly advanced readers is Gu (2002). Wahba (1990) reviews the many re-
markable contributions of the author and her students to spline smoothing
technology, but requires a background in functional analysis to read.

Although we have expressed roughness penalties in terms of integrated
squared derivatives, many authors have used the simpler approach of sum-
ming squared first or second difference values instead. This only works if
the sampling points tj are equally spaced, but in this context, summing
squared differences works well, and is discussed in Eilers and Marx (1996),
and also by O’Sullivan (1986) and O’Sullivan, Yandell and Raynor (1986).

Two efforts stand out as path-breaking attempts to use derivative infor-
mation in data analysis. The first of these is a series of papers on human
growth data beginning with Largo et al. (1978) that focussed on the shape
of the acceleration function. By careful and innovative use of smoothing
techniques, spline and kernel, they were able to isolate a hitherto ignored
phenomenon, the so-called mid-spurt, or hump in the acceleration curve
that precedes the pubertal growth spurt and occurs at around seven to
eight years in almost all children of either gender. These studies confirmed
a principle that we have seen in many of our own functional data analy-
ses: Exogenous influences and other interesting events are often much more
apparent in some order of derivative than in the original curves.

On a somewhat more technical note, the thesis by Besse (1979) and his
subsequent papers (Besse and Ramsay, 1986; Besse, 1980 & 1988) moved
the French data analytic school into a new realm involving data that take
values in spaces of functions possessing a certain number of derivatives.
Besse’s discussion of principal components analysis in the context of ob-
servations in Sobelev space was inspired by Dauxois and Pousse (1976),
Dauxois, Pousse and Romain (1982) and the functional analytic approaches
to spline smoothing by Atteia (1965). Ramsay and Dalzell (1991), who
coined the term functional data analysis, extended this line of work to
linear models.


