
6
Constrained functions

6.1 Introduction

Up to now we have only asked smoothness of our functions, but in many
situations the function that we estimate must also satisfy important side
conditions, such as being strictly increasing. Unfortunately, our central idea
of using a basis expansion can get us into trouble here. We saw in Chapters
4 and 5 that smoothing the height data often produced curves that did
not increase everywhere and consequently had negative velocities. It is, in
general, difficult to force functions defined by linear expansions to satisfy
constraints such as being everywhere positive, monotone, and so forth.

In this chapter we consider four constrained estimation situations: func-
tions which must be positive, those which must be strictly monotone, those
whose values are probabilities, and probability density functions, which
must be both positive and integrate to one. We will in each case redefine
the original problem so that the function to be estimated is unconstrained.
The idea of defining a constrained function by a differential equation will
be introduced. In the density estimation case, it will be necessary to use a
fitting criterion other than least squares.

6.2 Fitting positive functions

Data are often collected on functions that are strictly positive. The data
themselves may be zero, but these zero values indicate only that the func-
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Figure 6.1. The circles indicate squared residuals averaged across the 54 girls in
the Berkeley growth study for the ages of observation. The solid line is a positive
smooth of these data.

tion being estimated is small at that point. For example, within any year
we are apt to observe many days without any rainfall, and there can be
days where no rain is recorded in thirty years. But eventually it rains, at
least in Canada. Counts of errors, as another example, can easily be zero,
but eventually everybody makes a mistake.

We often need to use the data to estimate variances σ2(t) that vary over
argument t, and a zero or negative variance estimate can cause all kinds of
problems. We don’t want a string of zero observed variances to translate
into a zero estimate.

We can estimate a nonstationary variance function for the 54 females
in the Berkeley growth data as follows. First, we smooth the height val-
ues assuming a constant variance. We opted for smoothing splines with a
penalty on (D4x)2 and λ = 1. The squared residuals from these fits were
averaged over cases, and Figure 6.1 displays the resulting averages. The
measurement error is elevated in infancy and around the pubertal growth
spurt, but the error variance estimates near the boundaries are certainly
too small, probably due to the over-fitting that happens in these regions
due to the lack of data.

The solid line in Figure 6.1 shows the fit using a version of a smoothing
spline, to be described below, that is constrained to be positive, so as to
avoid any estimated value σ̂2(t) that is zero or negative. The fit indicates
that the standard error of measurement is about seven millimeters in in-
fancy, but is more like three millimeters in later years. We then re-smoothed
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the data using a diagonal weight matrix W containing its diagonal the re-
ciprocals of the fitting variances wj = 1/ ˆσ2(tj). We could go on to iterate
this process by re-estimating average squared residuals, and so on.

6.2.1 A positive smoothing spline
A positive smoothing function x can always be defined as the exponential
of an unconstrained function W :

x(t) = eW (t) , (6.1)

so that W is the logarithm of x. Other bases besides e for the logarithm
are, of course, always appropriate; some of our clients may prefer the base
10 to aid interpretation.

Since W (t) can be positive or negative and is not in any other way
constrained, it is reasonable to expand W in terms of a set of basis
functions,

W (t) =
∑

k

ckφk(t) , (6.2)

probably using a Fourier series for periodic data such as daily precipita-
tion levels and B-spline expansions for non-periodic data such as the mean
squared residuals for the growth data.

The roughness of a positive smoothing function x is defined as the rough-
ness of its logarithm W , so that the roughness-penalized fitting criterion
for positive smoothing, using the size of the second derivative, is

PENSSEλ(W |y) = [y − eW (t)]′W[y − eW (t)]2 + λ

∫
[D2W (t)]2 dt . (6.3)

A complication on the computational side is that we must now use nu-
merical methods to minimize criterion (6.3) with respect to the coefficients
ck of the expansion. These methods iteratively decrease an initial estimate
of W (t) until convergence is reached. However, because the exponential
transform is only mildly nonlinear, these iterative methods usually con-
verge rapidly, even from initial estimates far away from the final value.
In fact, we find that starting with W = 0 works just fine in most circum-
stances. Keep in mind, however, that if the data are mostly zero in a region,
and especially at the boundaries, the values of W (t) in that region will be
poorly defined large negative numbers.

The positive smooth of the residuals in Figure 6.1 was obtained by using
an order four B-spline expansion of W (t) with a knot located at each age
of observation. The fit was made smooth by using as a roughness penalty
the integrated squared derivative D2σ multiplied by λ = 0.0001.
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6.2.2 Representing a positive function by a differential
equation

A differential equation expresses a relationship between a function and one
or more of its derivatives, and is often an elegant way of describing functions
with special structures.

For example, what does the notation ewt, where w is here some fixed rate
constant, really mean? We may say that the notation stands for a recipe
for computing its value, namely the convergent infinite series

x(t) =
∞∑

i=0

(wt)i

i
. (6.4)

But a recipe is not the same as a taste, and a computer program is not
the same as the mathematical concept whose value it calculates. We might
prefer a definition that tells us directly about an important property of ewt.
Here it is:

Dx(t) = w(t)x(t). (6.5)

This is easier to remember, and a positive w evokes the image of a graph
that increases more and more rapidly as the function gets larger and larger,
that is, an image of explosive growth. Or, if w is negative, that the slope
of x goes to zero as the function value x(t) goes to zero.

If w(t) is a function, the solution function x for the differential equation
(6.5) is

x(t) = C exp[
∫ t

t0

w(u) du] (6.6)

for some nonzero constant C and lower limit of integration t0. In the cleaner
functional notation, x = C exp D−1w . If C > 0, then

x(t) = exp[W (t)], (6.7)

where

W (t) =
∫ t

t0

w(u) du + log C = D−1w(t) + log C.

In fact, our invocation of the infinite series (6.4) would not be correct in
a wider functional sense; the recipe (6.4) only works when w is a constant
and therefore (D−1w)(t) = wt. Three lessons are therefore to be drawn:

• Going from scalar to functional notation can turn up some surprises.

• A differential equation can be a powerful and evocative way of
defining a function.

• The solution to a differential equation is a class of functions, in this
case corresponding to the arbtrary choice of constant C.
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Perhaps the need for this little bit of mathematics will be less than
apparent here. If so, ignore it, but do expect the differential equation theme
to return again and again, and to become progressively more important.

6.3 Fitting strictly monotone functions

Now that we have the principle that smooth functions can result from
transforming the constrained smoothing problem to one that is uncon-
strained, we are ready to look at the monotone smoothing of the growth
data. A strictly monotone function has a strictly positive first derivative.
The spline smoothing approach that has been used up to now has worked
fine for ages up to about sixteen, but after that the estimated velocities
have in many cases gone negative. We hope that preventing negative esti-
mates of velocities can stabilize height, velocity and acceleration estimates
at the adult end of the fitting interval.

6.3.1 Fitting the growth of a baby’s tibia
Figure 6.2 displays a tough monotone smoothing problem. The data were
collected by M. Hermanussen et al. (1998), who developed an instrument
measuring bone lengths to within about 0.1 millimeters. They are the
lengths of the tibia, the large bone in the lower leg, in a newborn baby
measured daily for the first 40 days of its life. It is clear that growth at
this age is not a smooth process; a few days of little growth are separated
by the astonishing increase of two or more millimeters within twenty-four
hours. The only way a conventional unconstrained smoother could avoid
having negative slope would be to smooth so heavily that the data would
be badly fit. We especially need to fit the data monotonically here in order
to get a good estimate of the velocity of growth, displayed in Figure 6.3.

6.3.2 Expressing a strictly monotone function explicitly
The solution x to the strictly monotone smoothing problem is linked to
positive function estimation in Section 6.2 since velocity Dx is now as-
sumed to be positive. We can, therefore, use (6.1) by expressing Dx as the
exponential of an unconstrained function W to obtain

Dx(t) = eW (t) . (6.8)

By integrating both sides of this equation, we obtain

x(t) = C +
∫ t

t0

exp[W (u)] du , (6.9)

where C is a constant that will have to be estimated from the data.
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Figure 6.2. The length of the tibia of a newborn infant over the first 40 days of
life. The solid line is the fit to the data using a monotone smoothing spline.

6.3.3 Expressing a strictly monotone function as a
differential equation

Again we can pass directly from differential equation (6.5) to the cor-
responding equation for monotone functions by substituting Dx for
x:

D2x = wDx . (6.10)

Here function w = D2x/Dx, and is consequently the derivative of the
logarithm of velocity, the log velocity always existing because velocity is
positive.

This differential equation has the following general solution:

x(t) = C0 + C1

∫ t

t0

exp[
∫ v

t0

w(v) dv] du , (6.11)

where C1 is nonzero. This is the same equation as (6.9) if we substitute

W (u) =
∫ v

t0

w(v) dv + log C1 = D−1w(u) + log C1 .

Let us consider the role of function w. First, if w(t) = 0 for all t, we have
the solution

x(t) = C0 + C1t .
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Figure 6.3. The estimated derivative or velocity of the data in Figure 6.2.

If w is a nonzero constant, then the solution becomes

x(t) = C0 + C1e
wt .

Thus, linear functions are at the origin of a sort of one-dimensional func-
tional coordinate system defined by varying function w, and exponential
functions are contained within the same system. If w is a function, then
the closer to zero it is at an argument value t, the more its local behav-
ior around t will be linear. If C1 is positive, then positive values of w(t)
imply local exponential increase, and negative values imply an exponential
approach locally to some asymptote.

We will be especially interested in the next chapter in strictly monotone
functions, called warping functions, that monotonically transform a time
interval [0, T ] into itself. There the differential equation will reveal other
neat properties.

6.4 The performance of spline smoothing revisited

In Chapter 5 we used direct spline smoothing to fit simulated growth data
for girls. We now ask how monotone smoothing compares in performance
with this direct smoothing. We simulated 1000 samples from the mean
curve used in Section 5.5, but this time fit each curve with a monotone
smooth, penalizing the variation in the third derivative of relative accel-
eration function W with a smoothing parameter of 0.1. This is roughly
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Figure 6.4. The cross-hatched area shows point-wise 95% confidence limits ob-
tained from monotone smoothing, and the other dashed lines are the limits
obtained with direct smoothing that are shown in Figure 5.7.

equivalent to the the nature and amount of roughness penalization that we
used for the direct spline smoothing.

The results are shown in Figure 6.4 as point-wise confidence limits around
the true curve, along with the standard error estimates that we obtained
previously. There is a great improvement in precision of estimation at later
ages, where the monotonicity constraint acts as a powerful smoothing prin-
ciple in its own right. There is also much improvement in precision in the
childhood ages as well, where we very much need the extra fitting power in
order to study the smaller “mid-spurts” that are often found there. We lose,
though, in early childhood, where the steep slope on the acceleration func-
tion leaves a lot of room for variation, and where violating monotonicity is
no problem for the direct smoothing estimate.

6.5 Fitting probability functions

It is often necessary to estimate the probability of an event happening
as a function of time or some other continuum. Does, for example, the
probability that a non-smoking worker will get lung cancer depend on the
number of cigarettes smoked per hour in his workspace? This probability
function with values p(n) is an example of a dose response function of the
kind often estimated in pharmacokinetics and toxicology.
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A function p taking values on the interior of the unit interval (0, 1) can be
neatly defined by a differential equation. The differential equation Dx = wx
worked for nonzero functions because, by definition, x is never zero. In this
case, what is never zero is p(t)[1 − p(t)]. Consequently, we can propose the
nonlinear differential equation

Dp(t) = w(t)p(t)[1 − p(t)] . (6.12)

The equation implies that

w(t) =
Dp(t)

p(t)[1 − p(t)]
,

so that function w(t) is the slope of p at t relative to the variance of the
binary variable with p(t) as its parameter.

The explicit solution to this equation is

p(t) =
exp[

∫ t

t0
w(u) du]

1 + exp[
∫ t

t0
w(u) du]

, (6.13)

and, defining

W (t) =
∫ t

t0

w(u) du,

we have that

W (t) = log
[ p(t)
1 − p(t)

]
is the log odds-ratio function.

An example using of this formulation of the binomial smoothing problem
can be found in Chapter 9 of Ramsay and Silverman (2002) and in Rossi,
Wang and Ramsay (2002).

We would not normally choose to fit a set of frequency sample size pairs
(fj , Nj) by least squares estimation. Rather, we would use maximum like-
lihood estimation, or treat the model as a general linear model (GLM),
which amounts to the same thing.

6.6 Estimating probability density functions

The estimation of a probability density function p describing the distri-
bution of a set of sample values t1, . . . , tN is perhaps one of the oldest
functional estimation problems in statistics. A probability density function
is positive, and therefore is a special case of (6.6), and thus of the form

p(t) = CeW (t)
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but with the additional restriction∫
p(t) dt = 1.

The constant C in (6.6) is therefore

C = 1/
( ∫

eW (t) dt
)
.

Maximizing likelihood is the usual strategy for estimating a density func-
tion, Given N observed values tk, we would in practice maximize the log
likelihood

lnL(W |c) =
N∑
i

log p(ti)

=
N∑
i

W (ti) − N ln
∫

eW (t) dt

=
N∑
i

c′φ(ti) − N ln
∫

exp[c′φ(t)] dt (6.14)

where W (t) = c′φ(t) for a vector φ of K basis functions.
The roughness of the estimated density can always be controlled by the

number K of basis functions, but the versatility of roughness penalties that
we have already encountered suggests they might work better here, too. If
we maximize the log likelihood, we will have to subtract the roughness
penalty to control roughness.

Using the penalty

PEN3(W ) =
∫

[D3W (t)]2 dt

implies that the heavier the penalty, the more W will approximate a
quadratic function and, consequently, the more density p will approach
a normal or Gaussian density function (Silverman, 1982, 1986). Later in
Chapter 18 it will be shown that there is a linear differential operator L
corresponding to most of the textbook density functions such that penal-
izing the size of LW can permit us to smooth toward one of a wide range
of default densities.

Figure 6.5 shows the probability density function for the log of daily
rainfall at Prince Rupert, British Columbia, one of the rainiest places in
North America, over the years 1960 through 1994. Even there, however,
about a third of the days have a precipitation of 0.1 mm or less, and we
used only the 7697 days having precipitation in excess of 0.1 mm. Sixteen
B-spline basis functions of order five and equally spaced knots were used
to expand W (t), and the size of the third derivative was penalized with
λ = 10−6. The distribution is rather negatively skewed, even after taking
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Figure 6.5. The estimated probability density function for the log (base 10)
of daily precipitation at Prince Rupert, British Columbia. Only the 7697
precipitations in excess of 0.1 mm were used.

a log transformation. The sharp peak in the density suggests that rainfall
comes in two forms: a steady drizzle that leaves up to a centimeter of rain,
and large violent storms that can dump more than 10 centimeters of rain.
It is possible to show point-wise confidence regions for density estimates
such as these, but with this many observations the limits are too close to
the estimated curve to be worth plotting.

6.7 Functional data analysis of point processes

A point process is a sample of N times of events, t1, . . . , tN . These times
are usually taken relative to some time t0 at which recording begins, and
this can be taken without losing any generality as t0 = 0.

There are two questions that are central to point processes:

• Given that an event has already taken place at time ti, how probable
is it that the next event will take place at a time at or near t ≥ ti?

• What is the relation of this probability to the events already ob-
served? For example, how does the probability that the next event
will be at t depend on the time ti − ti−1 between the last two events?

The simplest of point processes, the homogeneous Poisson process, an-
swers these two questions in this way. First, let there be no relationship
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whatever between the time of the next event and the times of previous
events. Second, the distribution of the time to the next event, that is
t − ti, is exponential. The distribution function and density function for
an exponential distribution, respectively, are

F (t−ti|µ) = 1−exp[−µ(t−ti)] and p(t−ti|µ) = µ exp[−µ(t−ti)], (6.15)

where the parameter µ is average number of events per unit time, and is
often called the intensity parameter of the process. The exponential dis-
tribution is a model of perfect chaos in the sense that if you have waited
already to time t for an event to occur, the distribution of how much longer
you have to wait remains exponential. That is, you gain nothing by waiting.
The larger µ, the shorter your average waiting time, which is 1/µ.

The likelihood L(t1, . . . , tN ) of the sample of event times is, using t0 = 0,

L(t|µ) =
N∏
i

p(ti − ti−1|µ)

and the log likelihood is

lnL(t|µ) =
N∑
i

[lnµ − µ(ti − ti−1)] = N lnµ − µtN . (6.16)

Consequently, the maximum likelihood estimate of µ is

µ̂ =
N

tN
,

and it is interesting to note that the estimate depends only on the last
observed time, and thus ignores previous event times.

Poisson processes, although well understood by statisticians, are usually
much too simple to model real-life event times. For example, if you have
waited twenty minutes for a bus, it is reasonable to assume that you won’t
have to wait much longer. Also, the probability of a particular waiting time
is often not likely to remain constant, as (6.15) suggests; if you are waiting
for a bus at 3 a.m., you can expect to wait longer than at 5 p.m.

We may decide to keep the assumption of independence of event times,
but relax the assumption of a constant intensity parameter. Suppose, now,
that intensity parameter µ is a function of time with values µ(t). The
mathematically natural way to generalize (6.15) to this situation is

F (t − ti|µ) = 1 − exp[−
∫ t

ti

µ(s) ds]

p(t − ti|µ) = µ(t) exp[−
∫ t

ti

µ(s) ds]. (6.17)
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This more general model reduces to the Poisson process when µ(s) is a
constant. The log likelihood now becomes

lnL(t|µ) =
N∑
i

lnµ(ti) −
∫ tN

0
µ(s) ds. (6.18)

The fact that µ(t) is nonnegative suggests that we should take the
approach in Section 6.2 and use the exponentiated basis function expansion

µ(t) = exp[c′φ(t)], (6.19)

where φ is a functional vector of K basis functions, and vector c contains
the coefficients of the expansion. Substituting this into 6.18 gives us

lnL(t|µ) =
N∑
i

c′φ(ti) −
∫ tN

0
exp[c′φ(s)] ds. (6.20)

In order to compute the maximum likelihood estimate of the coefficients in
c, we need the derivative

Dc lnL(t|µ) =
N∑
i

φ(ti) −
∫ tN

0
φ(s) exp[c′φ(s)] ds. (6.21)

Setting Dc lnL to zero does not result in any simple solution for c, and we
must resort to numerical optimization methods to maximize (6.20).

If we compare the log likelihood in this situation with (6.14) for the log
likelihood in the problem density estimation, the similarity is striking. The
first term is the same, and the second term for densities involves multiplying
by N , logging and then integrating to ∞ rather than just integrating to
tN . The problems are thus essentially the same except for relatively minor
changes in the normalizing constraint.

Lupus is an autoimmune disease characterized by sudden flares in symp-
toms. Figure 6.6 shows the timings of 41 flares for a single patient over
nearly 19 years, along with the estimated intensity function µ for these
data. The intensity function reflects well the two periods when this patient
was relatively free of flares, as well as the period of intense disease activity
around year eight. The point-wise confidence limits, however, caution us
that this amount of data does not pin down the intensity function espe-
cially well. These results were achieved using 13 order four B-splines with
a roughness penalty on D2µ multiplied by smoothing parameter 5.0.

6.8 Fitting a linear model with estimation of the
density of residuals

Our default approach to fitting data has been to minimize the sum of
squared residuals. This is tantamount to assuming that the residuals are
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Figure 6.6. The times of flares in lupus symptoms for a single patient are indicated
by vertical lines on the horizontal axis. The solid line is the intensity function µ
for a nonhomogeneous Poisson process estimated from these data. The dashed
lines indicate 95% point-wise confidence limits for the intensity function.
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Figure 6.7. The estimated probability density functions of the residuals from
fitting log (base 10) of daily precipitation at Churchill, Manitoba, and Vancouver,
British Columbia.

normally distributed in the population of potential observations from which
we have sampled.

Assuming normality can be risky, and especially if the true distribution
has long tails. It would be safer if we could estimate the density of the
residuals as well as the fit to the data by combining the methodology in
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Chapters 4 and 5 with the density estimation approach of Section 6.6. For
example, if there are residuals many standard deviations from the curve,
then allowing for this in estimating the fitted curve will give a measure of
robustness to the fit. In other situations, the density of the residuals might
be interesting on its own, as we saw in Figure 6.5.

Suppose that we have a vector y of N dependent variable observations,
and an N by p design matrix Z available as a basis for a linear model for y.
In the curve-fitting situation, for example, Z will contain the values φk(tj)
of the basis functions at the sampling points ti, i = 1 . . . , N. Let a vector e
of N residuals be of the form

e = y − Zc, (6.22)

where we expect to estimate the coefficients in p-vector c.
In addition to estimating c, however, we want an estimate of the density

of the residuals e, and we want to use that density in the estimation of c. It
will often be convenient to standardize the residuals prior to estimating the
residuals by dividing them by a constant σ. If σ is a preliminary estimate
of the standard deviation of the ei’s, for example, this will normalize the
interval over which the residuals are distributed to something not too far
from [−3, 3]. Consequently, defining r to be

r = e/σ, (6.23)

we want an estimate p of the standardized residual density with values

p(ri) =
eW (ri)∫
eW (u) du

=
eW (

yi−
∑

j
zijcj

σ )∫
eW (u) du

, (6.24)

where, as with (6.2) but with a change of symbols,

W (r) =
∑

k

bkψk(r).

The computational problem is now to maximize

PENLIK(W |b, c) =
N∑
i

log p(ti) =
N∑
i

W (ti)−N

∫
eW (t) dt−

∫
[LW (t)]2 dt

(6.25)
with respect to both b and c. This criterion can, of course, be further
augmented with a roughness penalty on the fit defined by Zc.

Figure 6.7 shows the residual density functions estimated in fitting log
precipitation for Churchill high up on Hudson’s Bay and Vancouver on the
lower Pacific coast. In both cases, we see some strong departures from nor-
mality. Both densities have much heavier negative tails than the normal



126 6. Constrained functions

0 100 200 300
−0.5

0

0.5

1

Day

Lo
g 10

P
re

c.
 (

m
m

)

Churchill

0 100 200 300
Day

Vancouver

Figure 6.8. The estimated log (base 10) of daily precipitation at Churchill, Mani-
toba, and Vancouver, British Columbia. The heavy solid lines are the fits resulting
from estimating the residual densities, and the lighter dashed lines were fits using
least squares estimation.

distribution, and Vancouver in particular has a number of strong normal-
ized residuals at about −4.5. Churchill has a shoulder on the negative side
of its density, suggesting a rainy season and a dry season.

Figure 6.8 shows the two fitted precipitation curves, and in each case
also the curve fit by least squares. Both curves fitted by the estimated
density are smoother, and Vancouver’s fit is also less perturbed by some
large negative residuals in mid–summer, while the least squares fit was.
Estimating the density in this case made the fit more robust.

6.9 Further notes and readings

For a general purpose introduction to nonparametric density estimation,
see Silverman (1986). Scott (1992) also considers multivariate density es-
timation. Otherwise, there is a vast literature on this topic, and especially
using kernel smoothing methods.

A thorough reference on point processes is Snyder and Miller (1991), but
the older Cox and Lewis (1966) is rather more readable.


