
7
The registration and display of
functional data

7.1 Introduction

We can now assume that our observations are in functional form, and
want to proceed to consider methods for their analysis. We are not quite
ready, however; a problem of critical importance to functional data needs
a solution. We see often that variation in functional observations involves
both phase and amplitude, and that confounding these two leads to many
problems. Our main emphasis is on registration of the data, involving
transformations of the argument t rather than the values x(t).

Figure 1.2 illustrates a problem that can frustrate even the simplest anal-
yses of replicated curves. Ten records of the acceleration in children’s height
show individually the salient features of growth: the large deceleration dur-
ing infancy is followed by a rather complex but small-sized acceleration
phase during late childhood. Then the dramatic acceleration-deceleration
pulses of the pubertal growth spurt finally give way to zero acceleration in
adulthood. But the timing of these salient features obviously varies from
child to child, and ignoring this timing variation in computing a cross-
sectional mean function, shown by the heavy dashed line in Figure 1.2, can
result in a estimate of average acceleration that does not resemble any of
the observed curves. In this case, the mean curve has less variation during
the pubertal phase than any single curve, and the duration of the mean
pubertal growth spurt is rather larger than that of any individual curve.

The problem is that the growth curves exhibit two types of variability.
Amplitude variability pertains to the sizes of particular features such as the
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Figure 7.1. The left panel shows three height acceleration curves varying only in
amplitude. The right panel shows three curves varying only in phase.

velocity peak in the pubertal growth spurt, ignoring their timings. Phase
variability is variation in the timings of the features without considering
their sizes. Before we can get a useful measure of a typical growth curve,
we must separate these two types of variation, so that features such as the
pubertal spurt occur at roughly the same “times” for all girls. The problem
is expressed in schematic terms in Figure 7.1, where we see in the left panel
two acceleration curves that differ only in amplitude, and in the right panel
two curves with the same amplitude, but differing in phase.

The need to transform curves by transforming their arguments, which
we call curve registration, can be motivated as follows. The rigid metric of
physical time may not be directly relevant to the internal dynamics of many
real-life systems. Rather, there can be a sort of biological or meteorological
time scale that can be nonlinearly related to physical time, and can vary
from case to case.

Human growth, for example, is the consequence of a complex sequence of
hormonal events that do not happen at the same rate for every child. The
intensity of the pubertal growth spurts of two children should be compared
at their respective ages of peak velocity rather than at any fixed age. A
colleague with a musical turn of mind refers to this as differences in the
tempo of growth.

Similarly, weather is driven by ocean currents, reflectance changes for
land surfaces, and other factors that are timed differently for different spa-
tial locations and different years. Winter comes early in some years, and
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late in others, and typically arrives later at some weather stations than
others. We need to assess how cold the average winter is at the time the
average temperature bottoms out rather than at any fixed time.

Put more abstractly, the values of two or more function values xi(ti) can
in principle differ because of two types of variation. The first is the more
familiar vertical variation, or amplitude variation, due to the fact that x1(t)
and x2(t) may simply differ at points of time t at which they are compared,
but otherwise exhibit the same shape features at that time. But they may
also exhibit phase variation in the sense that functions x1 and x2 should
not be compared at the same time t because they are not exhibiting the
same behavior. Instead, in order to compare the two functions, the time
scale itself has to be distorted or transformed.

We now look at several types of curve registration problems, beginning
first with the problem of simply translating or shifting the values of t by a
constant amount δ. Then we discuss landmark registration, which involves
transforming t nonlinearly in order to line up important features or land-
marks for all curves. Finally, we look at a more general method for curve
registration.

7.2 Shift registration

Many of the issues involved in registration can be illustrated by consider-
ing the simplest case, a simple shift in the time scale. The pinch force data
illustrated in Figure 1.11 are an example of a set of functional observations
that must be aligned by moving each curve horizontally before any mean-
ingful cross-curve analysis is possible. This often happens because the time
at which the recording process begins is arbitrary, and is unrelated to the
beginning of the interesting segment of the data, in this case the period
over which the measured squeeze actually takes place.

Let the interval T over which the functions are to be registered be [T1, T2].
We also need to assume that each sample function xi is available for some
region beyond each end of T . The pinch force data, for example, are ob-
served for substantial periods both before and after the force pulse that we
wish to study. In the case of periodic data such as the Canadian tempera-
ture records, this requirement is easily met since one can wrap the function
around by using the function’s behavior at the opposing end of the interval.

We are actually interested in the values

x∗
i (t) = xi(t + δi),

where the shift parameter δi is chosen in order to appropriately align the
curves. For the pinch force data, the size of δi is of no real interest, since
it merely measures the gap between the initialization of recording and the
beginning of a squeeze. Silverman (1995) refers to this situation, in which
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Figure 7.2. Temperature records for two weather stations where in the timing of
the seasons differs by a roughly constant shift.

a shift parameter must be accounted for but is of no real interest, as a
nuisance effects problem.

The Canadian temperature data present a curve alignment problem of
a somewhat different nature. As Figure 7.2 indicates, two temperature
records, such as those for St. John’s, Newfoundland, and Edmonton, Al-
berta, can differ noticeably in terms of the phase or timing of key events,
such as the lowest mean temperature and the timing of spring and au-
tumn. In this case, the shifts that would align these two curves vertically
are of intrinsic interest, and should be viewed as a component of variation
that needs careful description. It turns out that continental stations such
as Edmonton have earlier seasons than marine stations such as St. John’s,
because of the capacity of oceans to store heat and to release it slowly. In
fact, either station’s weather would have to be shifted by about three weeks
to align the two.

When, as in the temperature data case, the shift is an important feature
of each curve, we characterize its estimation as a random effects problem.
Silverman (1995) also distinguishes a third and intermediate fixed effects
case in which the shift must be carried out initially, and while not be-
ing discarded completely once the functions x∗

i have been constructed, is
nevertheless only of tangential interest.
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7.2.1 The least squares criterion for shift alignment
The basic mechanics of estimating the shifts δi are the same, whether they
are considered as nuisance or random effects. The differences become im-
portant when we consider the analysis in subsequent chapters, because in
the random effects case (and, to some extent, the fixed effects case) the
δi enter the analysis. However, for present purposes we concentrate on the
pinch force data as an example.

The estimation of a shift or an alignment requires a criterion that defines
when several curves are properly registered. One possibility is to identify a
specific feature or landmark for a curve, and shift each curve so that this
feature occurs at a fixed point in time. The time of the maximum of the
smoothed pinch force is an obvious landmark. Note that this might also be
expressed as the time at which the first derivative crosses zero with negative
slope, and landmarks are often more easily identifiable at the level of some
derivative.

However, the registration by landmark or feature alignment has some po-
tentially undesirable aspects: The location of the feature may be ambiguous
for certain curves, and if the alignment is only of a single point, variations
in other regions may be ignored. If, for example, we were to register the
two temperature curves by aligning the midsummers, the midwinters might
still remain seriously out of phase.

Instead, we can define a global registration criterion for identifying a shift
δi for curve i as follows. First we estimate an overall mean function µ̂(t) for
t in T . If the individual functional observations xi are smooth, it usually
suffices to estimate µ̂ by the sample average x̄. However, we wish to be able
to evaluate derivatives of µ̂, and so more generally we want to smooth the
overall estimate using one of the methods described in Chapters 4 and 5.
We can now define our global registration criterion by

REGSSE =
N∑

i=1

∫
T

[xi(t + δi) − µ̂(t)]2 ds

=
N∑

i=1

∫
T

[x∗
i (t) − µ̂(t)]2 ds. (7.1)

Thus, our measure of curve alignment is the integrated or global sum of
squared vertical discrepancies between the shifted curves and the sample
mean curve.

The target function for transformation in (7.1) is the unregistered cross-
sectional estimated mean µ̂. But of course one of the goals of registration is
to produce a better estimate of this same mean function. We therefore ex-
pect to proceed iteratively: beginning with the unregistered cross-sectional
estimated mean, argument values for each curve are shifted so as to min-
imize REGSSE, then the estimated mean µ̂ is updated by re-estimating it
from the registered curves x∗

i , and a new iteration is then undertaken us-
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Figure 7.3. Twenty replications of “fda” written by one of the authors.

ing this revised target. This procedure of estimating a transformation by
transforming to an iteratively updated average is often referred to as the
Procrustes method. In practice, we have found that the process usually
converges within one or two iterations.

7.3 Feature or landmark registration

A landmark or a feature of a curve is some characteristic that one can
associate with a specific argument value t. These are typically maxima,
minima, or zero crossings of curves, and may be identified at the level of
some derivatives as well as at the level of the curves themselves.

We now turn to the more general problem of estimating a possibly non-
linear transformation hi of t, and indicate how we can use landmarks to
estimate this transformation. Coincidentally, the illustrative example we
use shows how vector-valued functional data can be handled by obvious
extensions of methods for scalar-valued functions.

The landmark registration process requires for each curve xi the identi-
fication of the argument values tif , f = 1, . . . , F associated with each of F
features. The goal is to construct a transformation hi for each curve such
that the registered curves with values

x∗(t) = xi[hi(t)]

have more or less identical argument values for any given landmark.
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Figure 7.4. The average length of the acceleration vector for the 20 handwriting
samples. The characters identify the 15 features used for landmark registration.

Consider, for example, the 20 replications of the letters “fda” in Fig-
ure 7.3. Each sample of handwriting was obtained by recording the position
of a pen at a sampling rate of 600 times per second. There was some pre-
processing to make each script begin and end at times 0 and 2.3 seconds,
and to compute coordinates at the same 1,401 equally-spaced time-values.
Each curve xi in this situation is vector-valued, since two spatial coordi-
nates are involved, and we use ScriptXi and ScriptYi to designate the X-
and Y-coordinates, respectively.

Not surprisingly, there is some variation from observation to observation,
and one goal is to explore the nature of this variation. But we want to take
into account that, for example, variation in the “f” can be of two sorts.
There is temporal variation due to the fact that timing of the top of the
upper loop, for example, is variable. While this type of variation would not
show up in the plots in Figure 7.3, it may still be an important aspect of
how these curves vary. On the other hand, there is variation in the way the
shape of each letter is formed, and this is obvious in the figure.

We estimated the accelerations or second derivatives of the two coor-
dinate functions D2ScriptXi and D2ScriptYi by the local polynomial
method described in Chapter 4. Figure 7.4 displays the average length
of the acceleration vector

√
(D2ScriptXi)2 + (D2ScriptYi)2
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Figure 7.5. The first handwriting curve with the location of the 15 landmarks
indicated by the characters used in Figure 7.4.

and we note that there are 15 clearly identified maxima, indicating points
where the pen is changing direction. We also found that these maxima were
easily identifiable in each record, and we were able to determine the values
of tif corresponding to them by just clicking on the appropriate points in a
plot. Figure 7.5 shows the first curve with these 15 features labelled, and we
can see that landmarks labelled “4” and “A” mark the boundaries between
letters. Figure 7.6 plots the values of the landmark timings tif against the
corresponding timings for the mean function, t0f . We were interested to
see that the variability of the landmark timings was rather larger for the
initial landmarks than for the later ones, and we were surprised by how
small the variability was for all of them.

The identification of landmarks enabled us to compare the X- and Y-
coordinate values for the 20 curves at the landmark times, but of course we
also wanted to make comparisons at arbitrary points between landmarks.
This required the computation of a function hi for each curve, called a
time-warping function in the engineering literature, with the properties
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Figure 7.6. The timings of the landmarks for all 20 scripts plotted against the
corresponding timings for the mean curve.

• hi(0) = 0

• hi(2.3) = 2.3

• hi(t0f ) = tif , f = 1, . . . , 15

• hi is strictly monotonic: s < t implies that hi(t) < hi(t).

The values of the adjusted curves at time t are ScriptX[hi(t)] and
ScriptY[hi(t)]. In all the adjusted curves, the landmarks each occur at
the same time as in the mean function. In addition, the adjusted curves are
also more or less aligned between landmarks. In this application, we merely
used linear interpolation for time values between the points (t0f , tif ) (as
well as (0,0) and (2.3,2.3)) to define the time warping function hi for each
curve. We introduce more sophisticated notions in the next section. Fig-
ure 7.7 shows the warping function computed in this manner for the first
script record. Because h1 is below the diagonal line in the region of “f,” the
aligned time h1(t) is earlier than the actual time of features, and hence the
actual times for curve 1 are retarded with respect to the mean curve.

We can now re-compute the mean curve by averaging the registered
curves. The result is in Figure 7.8, shown along with the mean for the
unregistered data. Although the differences are not dramatic, as we might
expect given the mild curvature in h1, we do see that the upper and lower
loops of the “f” are now more pronounced, and in fact do represent the
original curves substantially better.
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Figure 7.8. The solid line is the mean of the registered “fda” curves, and the
dashed line is the mean of the unregistered curves.
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7.4 Using the warping function h to register x

Now that a warping function h has been estimated from landmark registra-
tion, or by using the continuous method described in a later section, you
will want to calculate the registered function values x∗(t) = x[h(t)]. This
requires two steps.

First, estimate the inverse warping function h−1(t) with the property
h−1[h(t)] = t. Note that this is not an inverse in the sense of the reciprocal.
Instead, h−1(t) is computed by smoothing or interpolating the relationship
between h(t) plotted on the horizontal axis and t plotted on the vertical
axis. You can then use simple interpolation to get the values of this inverse
function at an equally spaced set of values of t if required. Note that it will
be essential that this smoothing or interpolation function be strictly mono-
tonic, so you may have to use lots of values of t and/or employ monotone
smoothing described in Chapter 6.

The second step is to smooth or interpolate the relationship between
h−1(t) plotted on the abscissa and x(t) plotted on the ordinate. You can
then use simple interpolation to get the values of this registered function
at an equally spaced set of values of t if required.

7.5 A more general warping function h

The linear interpolation scheme that we used on the handwriting data to
estimate the time-warping function h has two limitations. First, if we want
to compute higher order derivatives of the curves with respect to warped
time, the warping function must also be differentiable to the same order, a
linear interpolation would not carry us beyond the first derivative. Secondly,
we will shortly consider continuous registration methods that do not use
landmarks and where the idea of interpolating a sequence of points will not
be helpful.

Time is itself a growth process, and thus can be linked to our discussion
in Chapter 6 on how to model the children’s growth curves. That is, we
can use the formulation

h(t) = C0 + C1

∫ t

0
exp W (u) du (7.2)

that we used in (6.9). Here the constants C0 and C1 are fixed by the
requirement that h(t) = t at the lower and upper limits of the interval
over which we model the data. Or, if shift registration is a possibility, the
constant term C0 can be allowed to pick any constant phase shift that is
required.

Physical or clock time grows linearly, of course, and thus corresponds
to W (u) = 0. If W (u) is positive, then h(t) > t, warped time is growing
faster than clock time, and this is what we want if our observed process
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Figure 7.9. The left panel shows the target function, x0(t) = sin(4πt), as a dotted
line; an early function, xE(t) = sin(4πt0.8), as a solid line; and a late function,
xL(t) = sin(4πt1.2), as a dashed line. The corresponding warping functions that
register the early and late curves to the target are shown in the right panel.

is running late. Similarly, for negative values of W (u), h(t) < t, and clock
time is being slowed down for a process that is running ahead of some
target.

The left panel of Figure 7.9 displays two examples. Here the target
or standard function is x0(t) = sin(4πt), the early function is xE(t) =
sin(4πt0.8) and the late function is xL(t) = sin(4πt1.2). Warping hE(t) =
t0.125 will register the first example since sin[4π(t0.8)1.25] = sin(4πt), and
similarly hL(t) = t0.833. Approximations to the two warping functions by
a method to be described below are presented in the right panel, and we
can see there how early functions are associated with time-decelerating
warpings, and late functions with time-accelerating warpings.

The use of (7.2) as a representation of a warping function has a very
handy bonus. Providing that the warp h is reasonably smooth and mild, the
inverse warp h−1 is achieved to a close approximation by merely replacing
W in the equation by −W .

7.6 A continuous fitting criterion for registration

The least squares criterion (7.1) worked well for simple shift registration,
but gets us into trouble for more general warping functions. The lower
panel in Figure 7.10 shows why. When two functions differ in terms of
amplitude as well as phase, the least squares criterion uses time warping to
also minimize amplitude differences by trying to squeeze out of existence
regions where amplitudes differ. Put another way, the least squares fitting
criterion is intrinsically designed to assess differences in amplitude rather
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Figure 7.10. The upper two panels show results for an artificial registration prob-
lem using the minimum eigenvalue criterion. The dotted curve in the upper-left
panel is the curve to be registered to the curve indicated by the dashed line.
The solid line is the registered curve. The upper-right panel contains the warping
function for this case, h(t) = t. The lower panels show the same results using the
least squares criterion.

than phase. This wasn’t a problem when only time shifts were involved
since such simple time warps cannot affect amplitude differences.

Suppose two curves x0 and x1 differ only in amplitude but not in phase,
such as in the left panel of Figure 7.10. Then, if we plot the function values
x0(t) and x1(t) against each other, we will see a straight line. Amplitude
differences will then be reflected in the slope of the line, a line at 45o

corresponding to no amplitude differences.
Now thinking about a line as a one-dimensional set of points on a plane,

we can turn to principal components analysis as just the right technique for
assessing how many dimensions are required to represent the distribution
of these points. This technique will yield only one positive eigenvalue if the
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point spread is, in fact, one-dimensional. That is, the size of the smallest
eigenvalue measures departures from unidimensionality.

Let us consider now evaluating both the target function x0 and the reg-
istered function x∗ at a fine mesh of n values of t to obtain the pairs of
values (x0(t), x[h(t)]). Let the n by two matrix X contain these pairs of
values. Then the two-by-two cross-product matrix X′X would be what we
would analyze by principal components.

The following order two matrix is the functional analogue of the cross-
product matrix X′X.

T(h) =
[ ∫

{x0(t)}2 dt
∫

x0(t)x[h(t)] dt∫
x0(t)x[h(t)] dt

∫
{x[h(t)]}2 dt

]
(7.3)

We see that the summations over points implied by the expression X′X
have here been replaced by integrals. Otherwise this is the same matrix.
We have expressed the matrix as a function of warping function h to remind
ourselves that it does depend on h.

Consequently, we can now express our fitting criterion for assessing the
degree to which two functions are registered as follows:

MINEIG(h) = µ2[T(h)], (7.4)

where the function µ2 is the size of the second eigenvalue of its argument,
which is an order two symmetric matrix. When MINEIG(h) = 0, we have
achieved registration, and h is the warping function that does the job.

As is now routine, we will want to apply some regularization now and
then to impose smoothness on h, so we extend our criterion to

MINEIGλ(h) = MINEIG(h) + λ

∫
{W (m)(t)}2 dt. (7.5)

Here we are assuming that h is of the form (7.2), and that we achieve
smoothness in h by smoothing the function W that defines it.

The results in Figure 7.9 were achieved by expanding W in terms of 13
B-splines with equally spaced knots, and penalizing the size of its second
derivative using a smoothing parameter of λ = 106.

7.7 Registering the height acceleration curves

The 10 acceleration functions in Figure 1.2 were registered by the Pro-
crustes method and the regularized basis expansion method set out in
Section 7.6. The interval T was taken to be [4, 18] with time measured
in years. The break-values τk defining the monotone transformation family
(7.2) were 4, 7, 10, 12, 14, 16 and 18 years, and the curves were regis-
tered over the interval [4,18] using criterion (7.5) with λ = 0.001. A single
Procrustes iteration produced the results displayed in Figure 7.11. The
left panel displays the 10 warping functions hi, and the right panel shows
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Figure 7.11. The left panel contains the estimated time warping functions hi

for the 10 height acceleration curves in Figure 1.2. The right panel displays the
registered curves.
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Figure 7.12. The cross-sectional means of the registered and unregistered height
acceleration curves displayed in Figure 1.2.

the curve values xi[hi(t)]. Figure 7.12 compares the unregistered and reg-
istered cross-sectional means. We see that the differences are substantial,
and moreover that the mean of the registered function tends to resemble
much more closely most of the sample curves.
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7.8 Some practical advice

Before registration, remove amplitude effects that can be accounted for
by vertical shifts or scale changes, by centering and possibly rescaling the
curves. This is standard advice in data analysis; deal with obvious effects
in a simple way before moving on to more sophisticated procedures.

In general it is not clear that variation in the amplitude of curves can be
cleanly separated from the variation that the registration process aims to
account for. It is easy to construct examples where a registration function
h that is allowed to be highly nonlinear can remove variation that is clearly
of an amplitude nature, and the lower panels of Figure 7.10.

This problem of lack of identifiability of the two types of variation,
horizontal and vertical, is perhaps less of a concern if only linear trans-
formations are permitted, and is also not acute for landmark registration,
where the role of the transformation is to only align curve features.

However, there is one situation that implies relatively unambiguous sep-
aration of the two types of variation. This happens with curves that cross
zero at a number of points. At and near these zero crossings, only phase
variation is possible. In effect, zero crossings are landmarks that should be
aligned. Consequently, it may be wise to consider registering a derivative of
a curve rather than the curve itself, since derivatives often cross zero. This
is why we registered the acceleration curves above rather than the height
or velocity curves.

If flexible families of monotone transformations such as those described
above are used in conjunction with a global fitting criterion such as MINEIG,
allow transformations to differ from linear only with caution by careful
application of regularization.

In general, we have found it wise to first register on any landmarks that
are clearly identifiable before using the continuous registration procedure.
For example, in our work with the growth data we first register the curves
using the zero-crossing in the middle of the pubertal growth spurt as a
single landmark. Then we use the curves resulting from this preliminary
registration as inputs to a continuous registration. If we use the notation
hL and hC|L to refer to the landmark warps and the continuous warps
after landmark registration, respectively, then the final composite warping
function is h(t) = hC|L[hL(t)] or h = hC|L ◦ hL.

7.9 Computational details

7.9.1 Shift registration by the Newton-Raphson algorithm
We can estimate a specific shift parameter δi iteratively by using a mod-
ified Newton-Raphson algorithm for minimizing REGSSE. This procedure
requires derivatives of REGSSE with respect to the δi. If we assume that the
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differences between x∗
i and µ̂ at the ends of the interval can be ignored

(this is exactly true in the periodic case, and often approximately true in
the non-periodic case if the effects of real interest are concentrated in the
middle of the interval), then we have

∂

∂δi
REGSSE = 2

∫
T

{xi(t + δi) − µ̂(t)}Dxi(t) dt

∂2

∂δ2
i

REGSSE = 2
∫
T

{xi(t + δi) − µ̂(t)}D2xi(t) dt

+ 2
∫
T

{Dxi(t)}2 dt. (7.6)

The modified Newton-Raphson algorithm works as follows:
Step 0: Begin with some initial shift estimates δ

(0)
i , perhaps by aligning

with respect to some feature, or even δ
(0)
i = 0. But the better the initial

estimate, the faster and more reliably the algorithm converges. Complete
this step by estimating the average µ̂ of the shifted curves, using a method
that allows the first two derivatives of µ̂ to give good estimates of the
corresponding derivatives of the population mean, such as local polynomial
regression of degree 4, or roughness penalty smoothing with an integrated
squared fourth derivative penalty.

Step ν, for ν = 1, 2, . . .: Modify the estimate δ
(ν−1)
i on the previous

iteration by

δ
(ν)
i = δ

(ν−1)
i − α

(∂/∂δi)REGSSE
(∂2/∂δ2

i )REGSSE
,

where α is a step-size parameter that can sometimes simply be set to one.
It is usual to drop the first term (7.6) in the second derivative of REGSSE
since it vanishes at the minimizing values, and convergence without this
term tends to be more reliable when current estimates are substantially far
from the minimizing values. Once the new shifts are estimated, recompute
the estimated average µ̂ of the shifted curves.

Although the algorithm can in principle be iterated to convergence, and
although convergence is generally fast, we have found that a single iteration
is often sufficient with reasonable initial estimates. For the pinch force data,
we began by aligning the smoothed curves by setting the location of the
maximum of each curve at 0.1 seconds. The shifts involved ranged from
−20 to 50 milliseconds. We then carried out a single Newton-Raphson
update (ν = 1 above) where the range T of integration was from 23 to 251
milliseconds. The changes in the δi ranged from −3 to 2 milliseconds, and
after this update, a second iteration did not yield any changes larger than
a millisecond. The aligned curves are shown in Figure 7.13.

As part of a technique that they call self-modelling nonlinear regression,
which attempts to estimate both parametric and nonparametric compo-
nents of variation among several curves, Kneip and Gasser (1988) use linear
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Figure 7.13. The pinch force curves aligned by minimizing the Procrustes criterion
REGSSE.

transformations of t, that is both shift and scale changes. Kneip and En-
gel (1995) use such shift-scale transformations to identify “shape invariant
features” of curves, which remain unaltered by these changes in t.

7.10 Further reading and notes

The classic paper on the estimation of time warping functions is Sakoe and
Chiba (1978), who used dynamic programming to estimate the warping
function in a context where there was no need for the warping function to
be smooth.

Landmark registration has been studied in depth by Kneip and Gasser
(1992) and Gasser and Kneip (1995), who refer to a landmark as a structural
feature, its location as a structural point, to the distribution of landmark
locations along the t axis as structural intensity, and to the process of aver-
aging a set of curves after registration as structural averaging. Their papers
contain various technical details on the asymptotic behavior of landmark
estimates and warping functions estimated from them. Their papers on
growth curves (Gasser et al., 1990, 1991a,b) are applications of this pro-
cess. Another source of much information on the study of landmarks and
their use in registration is Bookstein (1991).

Ramsay (1996b) and Ramsay and Li (1996) developed the fitting of a
general and flexible family of warping functions hi making use of a regular-
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ization technique. Their work used a piecewise linear basis for function W
in order to avoid numerical integration, but our subsequent work has found
numerical integration to be easy to apply here as well as elsewhere, and
consequently W may now be expanded in terms of any basis. Kneip, Li,
MacGibbon and Ramsay (2000) developed a method that is rather analo-
gous to local polynomial smoothing for identifying warping functions that
register a sample of curves.

Wang and Gasser (1997, 1998, 1999) and Gervini and Gasser (2004) have
evolved registration technology that does not use landmarks in a number
of useful ways, and consider some important theoretical issues. Liu and
Müller (2004) advanced their theoretical framework by discussing curve
registration in the context of a model for random or stochastic functions
where time is itself transformed in a random manner. They propose the
operation of taking a functional convex sum as a way of computing convex
sums of unregistered functions. This operation defines a type of mean that
preserves the locations and shapes of features. See also Rønn (2001) for a
model-based approach to shift registration.

The functional two-sample functional testing problem considered by
Munoz, Maldonado, Staniswalis, Irwin and Byers (2002) uses landmark
registration of some image density curves as a pre-processing step.


