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Regularized principal components
analysis

9.1 Introduction

In this chapter, we discuss the application of smoothing to functional princi-
pal components analysis. In Chapter 5 we have already seen that smoothing
methods are useful in functional data analysis in preprocessing the data
to obtain functional observations. The emphasis in this chapter is some-
what different, in that we incorporate the smoothing into the principal
components analysis itself.

Our discussion provides a further insight into the way the method of
regularization, discussed in Chapter 5, can be used rather generally in func-
tional data analysis. The basic idea is to put into practice, in any particular
context, the philosophy of combining a measure of goodness-of-fit with a
roughness penalty.

Consideration of the third component in Figure 8.1 indicates that some
smoothing may be appropriate when estimating functional principal com-
ponents. A more striking example is provided by the pinch force data
discussed in Section 1.5.2. Rather than smoothing the data initially, con-
sider the data in Figure 9.1, which consists of the original records of the
force exerted by the thumb and forefinger during each of 20 brief squeezes
or pinches. The observed records are not very smooth, and consequently
the principal component curves in Figure 9.2 show substantial variability.
There is a clear need for smoothing or regularizing of the estimated princi-
pal component curves. In this chapter, we develop a method for smoothed
principal component analysis, but first of all the application of the method
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Figure 9.1. The aligned original recordings of the force relative to a baseline value
exerted during each of 20 brief pinches.
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Figure 9.2. The first four principal component curves for the pinch force data
without regularization.
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Figure 9.3. The first four smoothed principal components for the pinch force data,
smoothed by the method of Section 9.3. The smoothing parameter is chosen by
cross-validation.

to the pinch force data is demonstrated. In subsequent sections, the method
is defined in detail and various aspects of its implementation are discussed.

9.2 The results of smoothing the PCA

Figure 9.3 shows the effect of applying principal components analysis using
the method for smoothed PCA set out subsequently in this chapter. The
method incorporates a smoothing parameter λ to control the amount of
smoothing applied, and this has been chosen by a cross-validation method
set out in Section 9.3.3. The smoothing method achieves the aim of remov-
ing the considerable roughness in the raw principal component curves in
Figure 9.2.

Figure 9.4 displays the effects on the mean curve of adding and subtract-
ing a multiple of each of the first four smoothed principal components. The
first component corresponds to an effect whereby the shape of the impulse
is not substantially changed, but its overall scale is increased. The second
component (with appropriate sign) corresponds roughly to a compression
in the overall time scale during which the squeeze takes place. Both of these
effects were removed in the analysis of Ramsay, Wang and Flanagan (1995)
before any detailed analysis was carried out. It is, however, interesting to
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Figure 9.4. The effect on the overall mean curve of adding and subtracting a
suitable multiple of each of the first four smoothed principal component curves
provided in Figure 9.3.

note that they occur as separate components and therefore are essentially
uncorrelated with one another, and with the effects found subsequently.
The third component corresponds to an effect whereby the main part takes
place more quickly but the tail after the main part is extended to the right.
The fourth component corresponds to a higher peak correlated with a tail-
off that is faster initially but subsequently slower than the mean. The first
and second effects are transparent in their interest, and the third and fourth
are of biomechanical interest in indicating how the system compensates for
departures from the (remarkably reproducible) overall mean. The smooth-
ing we have described makes the effects very much clearer than they are in
the raw principal component plot.

The estimated variances σ2 indicate that the four components displayed
respectively explain 86.2%, 6.7%, 3.5% and 1.7% of the variability in the
original data, with 1.9% accounted for by the remaining components. The
individual principal component scores indicate that there is one curve with
a fairly extreme value of principal component 2 (corresponding to moving
more quickly than average through the cycle) but this curve is not unusual
in other respects.
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9.3 The smoothing approach

9.3.1 Estimating the leading principal component
Our smoothed PCA approach is based on a roughness penalty idea, as
discussed in Chapter 7. Suppose ξ is a possible principal component curve.
As in standard spline smoothing, we usually penalize the roughness of ξ
by its integrated squared second derivative over the interval of interest,
PEN2(ξ) = ‖D2ξ‖2.

Consider, first, the estimation of the leading principal component. In an
unsmoothed functional PCA as described in Chapter 8, we work with the
sample variance var

∫
ξxi of the principal component scores

∫
ξxi over the

observations xi. The first principal component weight function is chosen
to maximize var

∫
ξxi subject to the constraint ‖ξ‖2 = 1. As explained in

Section 8.2.4, this maximization problem is solved by finding the leading
solution of the eigenfunction equation V ξ = ρξ.

However, maximizing this sample variance is not our only aim. We also
want to prevent the roughness PEN2(ξ) =

∫
ξ′′(t)2dt of the estimated prin-

cipal component ξ from being too large. The key to the roughness penalty
approach is to make explicit this possible conflict. As usual in the rough-
ness penalty method, the trade-off is controlled by a smoothing parameter
λ ≥ 0 which regulates the importance of the roughness penalty term.

Given any possible principal component function ξ with ‖ξ‖2 = 1, one
way of penalizing the sample variance var

∫
ξxi is to divide it by {1 + λ ×

PEN2(ξ)}. This gives the penalized sample variance

PCAPSV(ξ) =
var

∫
ξxi

‖ξ‖2 + λ × PEN2(ξ)
. (9.1)

Increasing the roughness of ξ while maintaining λ fixed decreases
PCAPSV(ξ), as defined in (9.1), since PEN2(ξ) increases. Moreover, PCAPSV
reverts to the raw sample variance as λ → 0. On the other hand, the larger
the value of λ, the more the penalized sample variance is affected by the
roughness of ξ. In the limit λ → ∞, the component ξ is forced to be of the
form ξ = a in the periodic case and ξ = a + bt in the nonperiodic case, for
some constants a and b.

9.3.2 Estimating subsequent principal components
Of course, it is usually of interest not merely to estimate the leading prin-
cipal component, but also to estimate the other components. The way our
procedure works is to estimate each ξj to maximize the penalized variance
PCAPSV(ξ) as defined in (9.1), subject to two constraints. The first con-
straint is the usual requirement that ‖ξj‖2 = 1. Secondly, we impose a
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modified form of orthogonality to the previously estimated components∫
ξj(s)ξk(s)ds +

∫
D2ξj(s)D2ξk(s)ds = 0 for k = 1, . . . , j − 1. (9.2)

The use of the modified orthogonality condition (9.2) means that we can
find the estimates of all the required principal components by solving a
single eigenvalue problem, and this will be explained in Section 9.4, where
practical algorithms are discussed. Silverman (1996) provides a detailed
investigation of the theoretical advantages of this approach.

9.3.3 Choosing the smoothing parameter by cross-validation
How should the smoothing parameter λ be chosen? It is perfectly adequate
for many purposes to choose the smoothing parameter subjectively, but we
can also use a cross-validation approach to choose the amount of smoothing
automatically. Some general remarks about the use of automatic methods
for choosing smoothing parameters are found in Section 3.1 of Green and
Silverman (1994).

To consider how a cross-validation score could be calculated, suppose
that x is an observation from the population. Then, by the optimal ba-
sis property discussed in Section 8.2.3, the principal components have the
property that, for each m, an expansion in terms of the functions ξ1, . . . , ξm

can explain more of the variation in x than any other collection of m func-
tions. To quantify the amount of variation in x accounted for by these
functions, we define x∗ to be the projection of x onto the subspace spanned
by ξ1, . . . , ξm and let ζm be the residual component x−x∗. Thus, ζm is the
component of x orthogonal to the functions ξ1, . . . , ξm.

If we wish to consider the efficacy of the first m components, then a
measure to consider is E‖ζm‖2; in order not to be tied to a particular m,
we can, for example, minimize

∑
m E‖ζm‖2. In both cases, we do not have

new observations x to work with, and the usual cross-validation paradigm
has to be used, as follows:

1. Subtract the overall mean from the observed data xi.

2. For a given smoothing parameter λ, let ξ
[i]
j (λ) be the estimate of ξj

obtained from all the data except xi.

3. Define ζ
[i]
m (λ) to be the component of xi orthogonal to the subspace

spanned by {ξ
[i]
j (λ) : j = 1, . . . , m}.

4. Combine the ζ
[i]
m (λ) to obtain the cross-validation scores

CVm(λ) =
n∑

i=1

‖ζ [i]
m (λ)‖2 (9.3)
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and hence

CV(λ) =
∞∑

m=1

CVm(λ). (9.4)

In practice, we would of course truncate the sum in (9.4) at some
convenient point. Indeed, given n data curves, we can estimate at
most n − 1 principal components, and so the sum must be truncated
at m = n − 1 if not at a smaller value.

5. Minimize CV(λ) to provide the choice of smoothing parameter.

Clearly there are other possible ways of combining the CVm(λ) to produce
a cross-validation score to account for more than one value of m, but we
restrict attention to CV(λ) as defined in (9.4).

In the pinch force data example considered Section 9.2, it was found sat-
isfactory to calculate the cross-validation score on a grid (on a logarithmic
scale) of values of the smoothing parameter λ and pick out the minimum.
The grid can be quite coarse, since small changes in the numerical value of
λ do not make very much difference to the smoothed principal components.
For this example, we calculated the cross-validation scores for λ = 0 and
λ = 1.5i−1 for i = 1, . . . , 30, and we attained the minimum of CV(λ) by
setting λ = 37.

9.4 Finding the regularized PCA in practice

In practice, the smoothed principal components are most easily found by
working in terms of a suitable basis. First of all, consider the periodic case,
for which it is easy to set out an algorithm based on Fourier series.

9.4.1 The periodic case
Suppose, for simplicity, that T is the interval [0, 1] and that periodic
boundary conditions are valid for all the functions we are considering. In
particular, this means that the data xi(s) themselves are regarded as being
periodic. Let {φν} be the series of Fourier functions defined in (3.7). For
each j, define ω2j−1 = ω2j = 2πj. Given any periodic function x, we can
expand x as a Fourier series with coefficients cν =

∫
xφν , so that

x(s) =
∑

ν

cνφν(s) = c′φ(s).

The operator D2 has the useful property that, for each ν,

D2φν = −ω2
νφν ,
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meaning that we can also expand D2x as

D2x(s) = −
∑

ν

ω2
νcνφν(s).

By standard orthogonality properties of trigonometric functions, the φν

are orthonormal, and it follows that the roughness penalty ‖D2x‖2 can be
written as a weighted sum of squares of the coefficients cν :

‖D2x‖2 =
∫

(−
∑

ν

ω2
νcνφν)(−

∑
ν

ω2
νcνφν) =

∑
ν

ω4
νc2

ν .

Now proceed by expanding the data functions to sufficient terms in the
basis to approximate them closely. We can use a fast Fourier transform
on a finely discretized version of the observed data functions to do this
efficiently. Denote by ci the vector of Fourier coefficients of the observation
xi(s), so that xi(s) = c′

iφ(s) where φ is the vector of basis functions. Let
V be the covariance matrix of the vectors ci, and let S be the diagonal
matrix with entries

Sνν = (1 + λω4
ν)−1/2.

The matrix S then corresponds to a smoothing operator S.
Let y be the vector of coefficients of any potential principal component

curve ξ, so that

ξ(s) =
∑

ν

yνφν(s) = y′φ(s). (9.5)

In terms of Fourier coefficients, we have

PCAPSV(ξ) =
y′Vy

y′S−2y
. (9.6)

Furthermore, if y(j) denotes the vector of Fourier coefficients of the curve
ξk, then the constraint (9.2) can be written as y′

(j)S
−2y(k) = 0 for k =

1, . . . , j − 1.
It follows from standard arguments in linear algebra that the estimates

specified in Section 9.3 have Fourier coefficients that satisfy the eigenvector
equation

Vy = ρS−2y, (9.7)

which can be rewritten

(SVS)(S−1y) = ρ(S−1y). (9.8)

The matrix SVS is the covariance matrix of the vectors Sci, the Fourier
coefficient vectors of the original data smoothed by the application of the
smoothing operator S.

To find the solutions of (9.8), suppose that u is an eigenvector of SVS
with eigenvalue ρ. Finding the eigenvectors and eigenvalues of SVS corre-
sponds precisely to carrying out an unsmoothed PCA of the smoothed data
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Sci. Then it is apparent that any multiple of Su is a solution of (9.8) for the
same ρ. Because we require ‖y‖2 = 1, renormalize and set y = Su/‖Su‖.
The functional principal component ξ corresponding to y is then computed
from (9.5).

Putting these steps together gives the following procedure for carrying
out the smoothed principal component analysis of the original data:

1. Compute the coefficients ci for the expansion of each sample function
xi in terms of basis φ.

2. Operate on these coefficients by the smoothing operator S.

3. Carry out a standard PCA on the resulting smoothed coefficient
vectors Sci.

4. Apply the smoothing operator S to the resulting eigenvectors u, and
renormalize so that the resulting vectors y have unit norm.

5. Compute the principal component function ξ from (9.5).

9.4.2 The nonperiodic case
Now turn to the nonperiodic case, where Fourier expansions are no longer
appropriate because of the boundary conditions. Suppose that {φν} is a
suitable basis for the space of smooth functions S on [0, 1]. Possible bases
include B-splines on a fine mesh, or possibly orthogonal polynomials up to
some degree. In either case, we choose the dimensionality of the basis to
represent the functions xi(s) well. As in the discussion of the periodic case,
let ci be the vector of coefficients of the data function xi(s) in the basis
{φν}. Let V be the covariance matrix of the vectors ci.

Define J to be the matrix
∫

φφ′, whose elements are
∫

φjφk and K the
matrix whose elements are

∫
D2φjD

2φk. The penalized sample variance
can be written as

PCAPSV =
y′JVJy

y′Jy + λy′Ky
(9.9)

and the eigenequation corresponding to (9.7) is given by

JVJy = ρ(J + λK)y. (9.10)

Now perform a factorization LL′ = J + λK and define S = L−1. We
can find a suitable matrix L by an SVD or by Choleski factorization, in
which case L is a lower triangular matrix. The equation (9.10) can now be
written as

(SJVJS′)(L′y) = ρL′y.

We can now work through stages corresponding to those for the periodic
case. The algorithm obtained is as follows:
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1. Expand the observed data xi with respect to the basis φ to obtain
coefficient vectors ci.

2. Solve Ldi = Jci for each i to find the vectors di = SJci.

3. Carry out a standard PCA on the coefficient vectors di.

4. Apply the smoothing operator S′ to the resulting eigenvectors u by
solving L′y = u in each case, and renormalize so that the resulting
vectors y have y′Jy = 1.

5. Transform back to find the principal component functions ξ using
(9.5).

If we use a B-spline basis and define L by a Choleski factorization, then
the matrices J, K and L are all band matrices, and by using appropriate
linear algebra routines, we can carry out all the calculations extremely
economically. Even in the full matrix case, especially if not too many basis
functions are used, the computations are reasonably fast because S never
has to be found explicitly.

9.5 Alternative approaches

In this section, we discuss two alternative approaches to smoothed
functional PCA.

9.5.1 Smoothing the data rather than the PCA
In this section, we compare the method of regularized principal compo-
nents analysis with an approach akin to that discussed earlier in the book.
Instead of carrying out our smoothing step within the PCA, we smooth the
data first, and then carry out an unsmoothed PCA. This approach to func-
tional PCA was taken by Besse and Ramsay (1986), Ramsay and Dalzell
(1991) and Besse, Cardot and Ferraty (1997). Of course, conceivably any
smoothing method can be used to smooth the data, but to make a reason-
able comparison, we use a roughness penalty smoother based on integrated
squared second derivative. For simplicity, let us restrict our attention to
the case of periodic boundary conditions.

Suppose that x is a data curve, and that we regard x as the sum of a
smooth curve and a noise process. We would obtain the roughness penalty
estimate of the smooth curve by minimizing

PENRSS = ‖x − g‖2 + λ‖D2g‖2

over g in S. As usual, λ is a smoothing parameter that controls the trade-off
between fidelity to the data and smoothing. This is a generalization of the
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Figure 9.5. The pinch force data curves, smoothed by a roughness penalty method
with the same smoothing parameter as used for the smoothed PCA, and with
the baseline pressure subtracted.

spline smoothing method discussed in Chapter 5 to the case of functional
data.

Consider an expansion of x and g in terms of Fourier series as in
Section 9.4.1, and let c and d be the resulting vectors of coefficients. Then

PENRSS = ‖c − d‖2 + λ
∑

ν

ω4
νd2

ν ,

and hence the coefficients of the minimizing g satisfy

d = S2c, (9.11)

where S is as defined in Section 9.4.1. Note that this demonstrates that
the smoothing operator S used twice in the algorithm set out in Sec-
tion 9.4.1 can be regarded as a half-spline-smooth, since S2 is the operator
corresponding to classical spline smoothing.

Now let us consider the effect of smoothing the data by the operator
S2 using the same smoothing parameter λ = 37 as in the construction of
Figures 9.3 and 9.4. The effect of this smoothing on the data is illustrated
in Figure 9.5. Figure 9.6 shows the first four principal component curves of
the smoothed data. Although the two methods do not give identical results,
the differences between them are too small to affect any interpretation.



184 9. Regularized principal components analysis

Time

S
qu

ee
ze

0 20 40 60 80 100

-2
-1

0
1

2 1
2
3
4

Figure 9.6. The first four principal component curves of the smoothed data as
shown in Figure 9.5.

However, this favorable comparison depends rather crucially on the way
in which the data curves are smoothed, and in particular on the match
between the smoothing level implied in (9.11) and the smoothing level used
for the PCA itself. For example, we tried smoothing the force functions
curves individually, selecting the smoothing parameters by the generalized
cross-validation approach used in the S-PLUS function smooth.spline.
The result was much less successful, in the sense that the components were
far less smooth. The reason appears to be that this smoothing technique
tended to choose much smaller values of the smoothing parameter λ.

Kneip (1994) considers several aspects of an approach that first smooths
the data and then extracts principal components. Under a model where
the data are corrupted by a white noise error process, he investigates the
dependence of the quality of estimation of the principal components on
both sample size and sampling rate. In an application based on economics
data, he shows that smoothing is clearly beneficial in a practical sense.

9.5.2 A stepwise roughness penalty procedure
Another approach to the smoothing of functional PCA was set out by Rice
and Silverman (1991). They considered a stepwise procedure incorporat-
ing the roughness penalty in a different way. Their proposal requires a
separate smoothing parameter λj for each principal component. The prin-
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cipal components are estimated successively, the estimate ξ†
j of ξj being

found by maximizing var
∫

ξxi − λj‖D2ξ‖2 subject to the conventional
orthonormality conditions ‖ξ‖2 = 1 and

∫
ξξ†

k = 0 for k = 1, . . . , j − 1.
This approach is computationally more complicated because a separate

eigenproblem has to be posed and solved for each principal component;
for more details, see the original paper. Theoretical results in Pezzulli
and Silverman (1993) and Silverman (1996) also suggest that the proce-
dure described in Section 9.3 is likely to be advantageous under conditions
somewhat milder than those for the Rice-Silverman procedure.

9.5.3 A further approach
Yao, Müller, Clifford, Dueker, Follet, Lin, Bucholz and Vogel (2003) reg-
ularize the principal component scores fim by shrinking them towards
zero.


