
10
Principal components analysis of
mixed data

10.1 Introduction

It is a characteristic of statistical methodology that problems do not al-
ways fall into neat categories. In the context of the methods discussed in
this book, we often have both a vector of data and an observed function
on each individual of interest. In this chapter, we consider some ways of
approaching such mixed data, extending the ideas of PCA that we have
already developed.

In Chapter 7 we have discussed one way in which mixed data can arise.
Consider the Canadian temperature data as a specific example. The reg-
istration process finds, for each weather station, a suitable phase shift to
apply to the raw observed curve; the phase shifts are chosen to make the
shifted records fit together as well as possible. The vector part of the record
is in this case just the single number giving the size of the shift. The
functional part of the record is the shifted curve.

The method we will develop in this chapter produces principal compo-
nent weights that have the same structure as the mixed data themselves. So
the variability accounted for by each principal component can itself be split
into two parts, the part corresponding to variability in the phase shifts and
the part corresponding to variability in the registered functions. The first
four principal components for the Canadian temperature data are shown
in Figure 10.1. Let µ̂(s) be the mean of all the registered curves, in other
words the mean of the functional parts of all the observations. We assume
that the mean of all the phase shifts is zero.
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Figure 10.1. The mean Canadian temperature curve and the effects of adding
and subtracting a suitable multiple of each PC curve, with the shift considered
as a separate parameter.

The effect of each principal component is specified by a pair (ξi(s), vi),
where ξ(s) is the effect of variation in that component on the functional
part, and vi is the effect on the shift. Suppose, just for example, that the
score at a particular weather station is 2.5 on the ith principal component
and zero on all others. Then the functional part of the observation would
be µ̂(s) + 2.5ξi(s) and the phase shift would be 2.5vi. Note that the two
effects go together, and the multiple of ξi(s) is the same as that of vi. In
each case, the sign of the principal component has been taken to make the
shift positive; this is by no means essential, but it leads to some simplicity
of interpretation.

In the figure, the functional part of each principal component is illus-
trated by showing the effect on the overall mean µ̂ of adding and subtracting
a suitable multiple of the relevant ξj . The fine dotted curve corresponds
to adding the ξj and the dashed curve to subtracting. The shift part vi

is given numerically, for example 1.8 days for the second component. The
figure also states what percentage of variability of each PC is accounted for
by shift variability as opposed to the variability of the functional part.

Now consider the figure in detail. The first principal component—
accounting for 89.1% of the variability in the original observations—entirely
concerns the functional part, with 0% of the variability being in the shift
component. A high score on this component goes along with a weather
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station that is warmer than average all the year round, but with a larger
variation in the winter months.

The second component has 10.7% of its variability accounted for by a
shift component, of size 1.8 days. The functional part of this component
corresponds to a change in amplitude of the annual temperature variation.
High positive scores on this component would indicate lower-than-average
temperature variation over the year (cool summers and relatively warm
winters) together with a positive shift value. The third component is very
largely shift variation (71.7% of the variability). Associated with a positive
shift is an increase in temperature at the high point of the summer, with
very little effect elsewhere.

A comparison between Figure 10.1 and Figure 8.2 is instructive. Because
the shift component has been explicitly separated out, less skill is needed
to interpret the principal components in Figure 10.1. The percentage of
variation explained by each of the first four principal components is very
similar, but not quite identical, in the two analyses, for a reason discussed
further in Section 10.4.2.

Of course, there are many other situations where we have numerical
observations as well as functional observations on the individuals of interest,
and the PCA methodology we set out can be easily generalized to deal with
them.

10.2 General approaches to mixed data

We now consider mixed data in a more general context, bearing in mind
the Canadian temperature data as a specific example. To be precise about
notation, suppose that our observations consist of pairs (xi,yi), where xi

is a function on the interval T and yi is a vector of length M . How might
we use PCA to analyze such data?

There are three different ways of viewing the yi. First, it may be that the
yi are simply nuisance parameters, of no real interest to us in the analysis,
for example corresponding to the time at which a recording instrument is
activated. In this case we would quite simply ignore them. The yi can be
thought of as one of the features of almost all real data sets that we choose
not to include in the analysis.

On the other hand, as in the temperature data example, both the func-
tions xi and the observations yi may be of primary importance. The PCA
of such hybrid data (xi,yi) is the case to which we give the most attention,
from Section 10.3 onwards. There is some connection with the methodology
described in Section 8.5 for bivariate curve data with values (xi(t), yi(t)),
though in our case the second component is a scalar or vector rather than
a function.
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As a third and somewhat intermediate possibility, the yi may be of
marginal importance, our central interest being in the functions xi. In this
case, we could ignore the yi initially and carry out a PCA of the curves
xi(t) alone. Having done this, we could investigate the connection between
the scores on the principal component scores and the variable(s) yi. We
could calculate the sample correlations between the principal component
scores and the components of the yi. Alternatively or additionally, we could
plot the yi against the principal component scores or use other methods for
investigating dependence. In this general approach, the yi would not have
been used in the first part of the analysis itself; however, they would have
played a key part in interpreting the analysis. It would be interesting, for ex-
ample, to notice that a particular principal component of the xi was highly
correlated with yi. We develop this approach further in Section 10.5.2.

10.3 The PCA of hybrid data

10.3.1 Combining function and vector spaces
A typical principal component weight function would consist of a pair (ξ,v),
where v is an M -vector, and the principal component score of a particular
observation would then be the sum

ηi =
∫

xi(s)ξ(s) ds + y′
iv. (10.1)

Another way of saying this is that the principal component would be
made up of a functional part ξ and a vector part v, corresponding to the
functional and vector (or numerical) parts of the original data. A typical
observation from the distribution of the data would be modelled as(

xi

yi

)
=

∑
j

ηij

(
ξj

vj

)
, (10.2)

where (ξj ,vj) is the jth principal component weight and, as j varies, the
vectors of principal component scores ηij =

∫
xiξj + y′

ivj are uncorrelated
variables with mean zero.

This kind of hybrid data PCA can very easily be dealt with in our general
functional framework. Define Z to the space of pairs z = (x,y), where x is
a smooth function and y is a vector of length M . Given any two elements
z(1) = (x(1),y(1)) and z(2) = (x(2),y(2)) of Z, define the inner product

〈z(1), z(2)〉 =
∫

x(1)x(2) + y′
(1)y(2). (10.3)

From (10.3) we can define the norm ‖z‖2 = 〈z, z〉 of any z in Z.
Now that we have defined an inner product and norm on Z, write zi for

the data pair (xi,yi). To find the leading principal component, we wish to



10.3. The PCA of hybrid data 191

find ζ = (ξ,v) in Z to maximize the sample variance of the 〈ζ, zi〉 subject
to ‖ζ‖2 = 1. The 〈ζ, zi〉 are of course exactly the same as the quantities
ηi =

∫
xi(s)ξ(s) ds + y′

iv specified in equation (10.1).
Subsequent principal components maximize the same sample variance

subject to the additional condition of orthogonality to the principal com-
ponents already found, orthogonality being defined by the hybrid inner
product (10.3). Principal components found in this way yield principal com-
ponent scores that are uncorrelated, just as for conventional multivariate
PCA.

The PCA of hybrid data is thus very easily specified in principle. How-
ever, there are several important issues raised by this idea, and we discuss
these in the following sections.

10.3.2 Finding the principal components in practice
How do we carry out the constrained maximization of the sample variance
of the 〈ζ, zi〉 in practice? Suppose that φk is a basis of K functions in
which the functional parts xi of the hybrid data zi can be well approxi-
mated. Given any element z = (x,y) of Z, define the K-vector c to be the
coefficients of x relative to the basis φ. Now let p = K + M , and let w be
the p-vector

w =
[

c
y

]
.

Suppose that the basis φ is an orthonormal basis, the Fourier functions,
for example. Then the inner product (10.3) of any two elements z(1) and
z(2) of Z is precisely equal to the ordinary vector inner product w′

(1)w(2) of
the corresponding p-vectors of coefficients. Thus, if we use this method of
representing members of Z by vectors, we have a representation in which
the vectors behave exactly as if they were p-dimensional multivariate ob-
servations, with the usual Euclidean inner product and norm. It follows
that we can use standard multivariate methods to find the PCA.

In summary, we can proceed as follows to carry out a PCA:

1. For each i, let ci be the vector of the first K Fourier coefficients of
xi.

2. Augment each ci by yi to form the p-vector wi.

3. Carry out a standard PCA of the wi, by finding the eigenvalues and
eigenvectors of the matrix N−1 ∑

i wiw′
i.

4. If u is any resulting eigenvector, the first K elements of u are the
Fourier coefficients of the functional part of the principal component,
and the remaining elements are the vector part.
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Since the procedure we have set out is a generalization of ordinary
functional PCA, we may wish to incorporate some smoothing, and this
is discussed in the next section.

10.3.3 Incorporating smoothing
To incorporate smoothing into our procedure, we can easily generalize the
smoothing methods discussed in Chapter 9. The key step in the method
is to define the roughness of an element z = (x,y) of Z. Let us take the
roughness of z to be that of the functional part x of z, without any reference
to the vector part y. To do this, define D2z to be equal to the element
(D2x, 0) of Z so that the roughness of z can then be written ‖D2z‖2, just
as in the ordinary functional case. The norm is taken in Z, but since the
vector part of D2z is defined to be zero, ‖D2z‖2 = ‖D2x‖2 as required.

Once we have defined the roughness of z, we can proceed to carry out
a smoothed PCA using exactly the same ideas as in Chapter 9. As far as
algorithms are concerned, the Fourier transform algorithm for the periodic
case requires slight modification. Let z∗ be the vector representation of an
element z, of length K + p. The first K elements of z∗ are the Fourier
coefficients of the functional part x and the last p elements simply the
vector part y. The roughness of z is

∑K−1
k=0 ω4

kz∗
k
2 so the matrix S used in

the algorithm described in Section 9.4.1 must be modified to have diagonal
elements (1 + λω4

k)−1/2 for k < K, and 1 for K ≤ k < p.
Apart from this modification, and of course the modified procedures for

mapping between the function/vector and basis representations of elements
of Z, the algorithm is exactly the same as in Section 9.4.1. Furthermore,
the way in which we can apply cross-validation to choose the smoothing
parameter is the same as in Section 9.3.3.

To deal with the nonperiodic case, we modify the algorithm of Sec-
tion 9.4.2 in the same way. The matrix J is a block diagonal matrix where
the first K rows and columns have elements

∫
φjφk and the last M rows and

columns are the identity matrix of order M . The matrix K has elements∫
(D2φj)(D2φk) in its first K rows and columns, and zeroes elsewhere.

10.3.4 Balance between functional and vector variation
Readers who are familiar with PCA may have noted one potential difficulty
with the methodology set out above. The variations in the functional and
vector parts of a hybrid observation z are really like chalk and cheese:
they are measured in units which are almost inevitably not comparable,
and therefore it may well not be appropriate to weight them as we have.
In the registration example, the functional part consists of the difference
between the pattern of temperature on the transformed time scale and
its population mean; the vector part is made up of the parameters of the
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time transformation. Clearly, these are not measured in directly compatible
units!

One way of noticing the effect of noncomparability is to consider the
construction of the inner product (10.3) on Z, which we defined by adding
the inner product of the two functional parts and that of the two vector
parts. In many problems, there is no intrinsic reason to give these two inner
products equal weight in the sum, and a more general inner product we
could consider is

〈z(1), z(2)〉 =
∫

x(1)x(2) + C2y′
(1)y(2) (10.4)

for some suitably chosen constant C. Often, the choice of C (for example
C = 1) is somewhat arbitrary, but we can make some remarks that may
guide its choice.

First, if the interval T is of length |T |, then setting C2 = |T | gives the
same weight to overall differences between x(1) and x(2) as to differences
of similar size in a single component of the vector part y. If the measure-
ments are of cognate or comparable quantities, this may well be a good
method of choosing C. On the other hand, setting C2 = |T |/M tends to
weight differences in functional parts the same as differences in all vector
components.

Another approach, corresponding to the standard method of PCA rela-
tive to correlation matrices, is to ensure that the overall variability in the
functional parts is given weight equal to that in the vector part. To do this,
we would set

C2 =
∑

i ‖xi − x̄‖2∑
i ‖yi − ȳ‖2 ,

taking the norm in the functional sense in the numerator, and in the usual
vector sense in the denominator.

Finally, in specific problems, there may be a particular rationale for
some other choice of constant C2, an example of which is discussed in
Section 10.4.

Whatever the choice of C2, the most straightforward algorithmic ap-
proach is to construct the vector representation z of any element z = (x, y)
of Z to have last M elements Cy, rather than just y. The first K elements
are the coefficients of the representation of x in an appropriate basis, as
before. With this modification, we can use the algorithms set out above.
Some care must be taken in interpreting the results, however, because any
particular principal component weight function has to be combined with
the data values using the inner product (10.4) to get the corresponding
principal component scores.
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10.4 Combining registration and PCA

10.4.1 Expressing the observations as mixed data
We now return to the special case of mixed data obtained by registering a
set of observed curves. For the moment, concentrate on data that may be
assumed to be periodic on [0, 1]. We suppose that an observation can be
modelled as

x(t + τ) = µ(t) +
∑

j

ηjξj(t) (10.5)

for a suitable sequence of orthonormal functions ξj , and where ηj are un-
correlated random variables with mean zero and variances σ2

j . The model
(10.5) differs from the usual PCA model in allowing for a shift in time τ
as well as for the addition of multiples of the principal component func-
tions. Because of the periodicity, the shifted function x(t + τ) may still be
considered as a function on [0, 1].

Given a data set x1, . . . , xn, we can use the Procrustes approach set out
in Chapter 7 to obtain an estimate µ̂ of µ and to give values of the shifts
τ1, . . . , τn appropriate to each observation. Then we can regard the data
as pairs zi = (x̃i, τi), where the τi are the estimated values of the shift
parameter and the x̃i are the shifted mean-corrected temperature curves
with values xi(t + τi) − µ̂(t). Recall that a consequence of the Procrustes
fitting is that the x̃i satisfy the orthogonality property∫

x̃iDµ̂ = 0. (10.6)

10.4.2 Balancing temperature and time shift effects
We can now consider the effect of the methodology of Section 10.3 to the
mixed data zi obtained in the registration context. We seek principal com-
ponents (ξ, v) that have two effects within the model (10.5): the addition
of the function ξ to the overall mean µ̂, together with a contribution of v
to the time shift τ .

In the special case of the registration data, there is a natural way of
choosing the constant C2 that controls the balance between the functional
and shift components in the inner product (10.4). Suppose that x is a
function in the original data function space, and that z = (x̃, τ) is the
corresponding pair in Z, so that

x(t) = µ̂(t − τ) + x̃(t − τ).

Because of the orthogonality property (10.6), we can confine attention to
x̃ that are orthogonal to µ̂.
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To define a norm on Z, a requirement is that, at least to first order,

‖z‖2 ≈ ‖x − µ̂‖2 =
∫

[x(s) − µ̂(s)]2 ds, (10.7)

the standard squared function norm for x − µ̂. This means that the norm
of any small perturbation of the mean function µ̂ must the same, whether
it is specified in the usual function space setting as x − µ̂, or expressed as
a pair z in Z, consisting of a perturbation x̃ orthogonal to µ̂ and a time
shift.

Suppose ‖x̃‖ and τ are small. If we let

C2 = ‖Dµ̂‖2, (10.8)

then, to first order in ‖x̃‖ and τ ,

x(t) − µ̂(t) ≈ −τDµ̂(t − τ) + x̃(t − τ).

By the orthogonality of x̃ and Dµ̂,

‖z − µ̂‖2 ≈
∫

x̃2(s) + C2τ2(s) ds = ‖x̃‖2 + C2‖τ‖2, (10.9)

as required.
With this calculation in mind, we perform our PCA of the pairs (x̃i, τi)

relative to the inner product (10.4) with C2 = ‖Dµ̂‖2, and this was the way
that C was chosen in Section 10.1. The percentage of variability of each
principal component due to the shift was then worked out as 100C2v2

j .
The use of this value of C provides approximate compatibility between

the quantification of variation caused simply by the addition of a curve to
the overall mean, and variation that also involves a time shift. It therefore
accounts for the similarity of the percentages of variation explained by the
various components in Figures 8.2 and 10.1.

10.5 The temperature data reconsidered

10.5.1 Taking account of effects beyond phase shift
In the temperature example, the shift effect is not necessarily the only effect
that can be extracted explicitly and dealt with separately in the functional
principal components analysis. We can also take account of the overall
annual average temperature for each weather station, and we do this by
extending the model (10.5) to a model of the form

x(t + τ) − θ = α + µ(t) +
∑

j

ηjξj(t), (10.10)

where θ is an annual temperature effect with zero population mean. The
ηj are assumed to be uncorrelated random variables with mean zero. The
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parameter α is the overall average temperature (averaged both over time
and over the population). For identifiability we assume that

∫
µ(s) ds = 0.

The data we would use to fit such a model consist of triples (x̆i, τi, θi),
where x̆i are the observed temperature curves registered to one another
by shifts τi, and with each curve modified by subtracting its overall annual
average α̂+θi. Here the number α̂ is the time average of all the temperatures
observed at all weather stations, and the individual θi therefore sum to zero.
Because the annual average α̂+ θi has been subtracted from each curve x̆i,
the curves x̆i each integrate to zero as well as satisfying the orthogonality
condition (10.6). The mean curve µ̂ is then an estimate of the mean of
the registered curves x̆i, most straightforwardly the sample mean. In the
hybrid data terms we have set up, the functional part of each data point is
the curve x̆, whereas the vector part is the 2-vector (τi, θi)′.

To complete the specification of (10.10) as a hybrid data principal compo-
nents model, we regard τ and θ as random variables which can be expanded
for the same ηj , as

τ =
∑

j

ηjvj and θ =
∑

j

ηjuj ,

where the vj and uj are fixed quantities. Thus, the jth principal component
is characterized by a triple (ξj , vj , uj), constituting a distortion of the mean
curve by the addition of a multiple of ξj , together with shifts in time and
in overall temperature by the same multiples of vj and uj , respectively.

Just as before, we carry out a PCA of the hybrid data {(x̆i, τi, θi)}
with respect to a suitably chosen norm. To define the norm of a
triple (x̆, τ, θ), consider the corresponding unregistered and uncorrected
curve x, defined by

x(t + τ) = α̂ + θ + µ̂(t) + x̆(t).

Define C1 = ‖Dµ̂‖2 and C2 = |T |. Assume that x̆ integrates to zero and
satisfies (10.6).

By arguments similar to those used previously, using the standard square
integral norm for x̆,

‖x − µ̂‖2 ≈ ‖x̆‖2 + C2
1τ2 + C2

2θ2.

Thus an appropriate definition of the norm of the triple is given by

‖(x̆, τ, θ)‖2 = ‖x̆‖2 + C2
1τ2 + C2

2θ2.

In practice, a PCA with respect to this norm is carried out by the same
general approach as before. For each i, the function x̆i is represented by a
vector c̆i of its first K Fourier coefficients. The vector is augmented by the
two values C1τi and C2θi to form the vector zi. We then carry out a stan-
dard PCA on the augmented vectors zi. The resulting principal component
weight vectors are then unpacked into the parts corresponding to ξj , vj

and uj , and the appropriate inverse transforms applied—just dividing by
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Figure 10.2. The mean Canadian temperature curve and the effect of adding
and subtracting a suitable multiple of each PC curve, with the shift and annual
average temperature considered as separate parameters.

C1 and C2 respectively in the case of the shift and overall temperature ef-
fects, and applying an inverse Fourier transform to the first K components
of the vector to find ξj .

Figure 10.2 shows the effect of this approach applied to the Canadian
temperature data. Notice that a component that was entirely variation in
overall temperature would have a temperature effect of ±1 degree, because
time is scaled to make the cycle of unit length (with time measured in
years) so that C2 = 1. Because each principal component is scaled to have
unit norm, the maximum possible value of (C2ui)2 is 1, with equality if
and only if the other components are zero. Similarly, since C1 = 365/5.4, a
component that was entirely a time shift would have vi = ±5.4/365 years,
i.e., ±5.4 days.

In each case in the figure, the proportions of variability due to the two
parametric effects, shift and overall average temperature, are combined to
give the percentage of variability due to the vector parameters. Principal
component 1 is almost entirely due to the variation in overall tempera-
ture, with a small effect corresponding to a decrease in range between
summer and winter. (Recall that the dotted curve corresponds to a pos-
itive multiple of the principal component curve ξi, and the dashed curve
to a negative multiple.) Principal component 2 has some shift component,
a moderate negative temperature effect, and mainly comprises the effect
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Figure 10.3. Principal component analysis carried out on the Canadian
temperature curves adjusted for time shift and for annual average temperature.

of a decreased annual temperature range. Within this component, overall
average temperature is positively associated with increased range, whereas
in component 1 the association was negative. Principal component 1 ac-
counts for a much larger proportion of the variability in the original data,
and a slightly different approach in Section 10.5.2 shows that within the
data as a whole, increased overall temperature is negatively correlated with
higher range between summer and winter—colder places have more extreme
temperatures.

Neither principal component 3 nor 4 contains much of an effect due to
overall temperature. As before, component 3 is very largely shift, whereas
component 4 corresponds to an effect unconnected to shift or overall
temperature.

10.5.2 Separating out the vector component
This section demonstrates the other procedure suggested in Section 10.2.
We carry out a principal components analysis on the registered curves
x̆i and then investigate the relationship between the resulting principal
component scores and the parameters τi and θi arising in the registration
process. Thus we analyze only the functional part of the mixed data, and
the vector part is only considered later.
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The effect of doing this is demonstrated in Figure 10.3. Removing the
temperature and shift effects accounts for 79.2% of the variability in the
original data, and the percentages of variability explained by the various
principal components have been multiplied by 0.208, to make them express
parts of the variability of the original data, rather than the adjusted data.
For each weather station, we have a shift and annual average temperature
as well as the principal component scores. Figure 10.3 shows the correla-
tions between the score on the relevant principal component and the two
parameters estimated in the registration.

We see that the components 3 and 4 in this analysis account for very lit-
tle of the original variability and have no clear interpretation. Component 1
corresponds to an increase in range between winter and summer—the effect
highlighted by component 2 in the previous analysis. We see that this ef-
fect is strongly negatively correlated with annual average temperature, and
mildly negatively correlated with shift. Component 2 corresponds approx-
imately to component 4 in the previous analysis, and is the effect whereby
the length of summer is lengthened relative to that of winter. This effect
is positively correlated with average temperature and negatively correlated
with shift.


