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Canonical correlation and discriminant
analysis

11.1 Introduction

11.1.1  The basic problem

In this chapter, we continue our consideration of exploratory approaches
to functional data, specifically the case where we have observed pairs of
functions (X;,Y;), 4 = 1,...,N, such as the hip and knee angles for
the gait cycles of a number of children as discussed in Chapters 1 and
8. Suppose we wanted to know how variability in the knee angle cycle
is related to that in the hip angle. In Section 8.5 we saw how principal
components analysis can examine the variability in the two sets of curves
taken together, but we did not explicitly address the issue of interaction
between the two curves. In this chapter, we pursue a somewhat different
emphasis by considering canonical correlation analysis (CCA), which seeks
to investigate which modes of variability in the two sets of curves are most
associated with one another.

In the functional context, canonical correlation analysis provides a pair
of functions (£(s),n(s)) such that [£X; and [ nY; are well correlated with
one another. We can think of £(s) and 7(s) as the components of variation
in the two curves that most account for the interaction between the hip and
knee angles. Our method gives the curves shown in Figure 11.1. The values
J€X; and [nY; are called canonical variates, and the sample correlation
between these variates is about 0.81 in this case.

In the figure, the curves £ and 7 are rather similar, and the broad inter-
pretation is that there is correlation between the two measurements X;(s)
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Figure 11.1. Estimated canonical variate weight functions for the gait data. Solid

curve: weight function for hip observations; dotted curve: weight function for knee
observations.

and Y;(s) at any particular time. But it is interesting that the extreme in
the hip curve in the middle of the cycle occurs a little later than that in
the knee curve, whereas the order of the extremes near the beginning of
the cycle is reversed. This suggests that, in the middle of the cycle, high
variability from the norm in the hip follows that in the knee; near the ends
of the cycle, the effects occur in the opposite order. This may indicate a
physical propagation of errors caused by the relevant strike of the heel at
the beginning and in the middle of the cycle.

Having found these components of variability, we can go on to find further
components of variation. Call the (§,7) we have already found (&1,71). We
can now look for another pair of functions (2, 72) such that

e There is a high correlation between the variation in the hip angles
described by a multiple of & and that in the knee angles accounted
for by 79, but ...

o these effects are uncorrelated with the previously found contributions
to variability corresponding to &; and ;.

The functions & and 7y are shown in Figure 11.2. In this case the correla-
tion between f & X and f 12Y; is about 0.72, only slightly lower than that
for the first pair of canonical variates. The points at which the functions
&5 and 12 cross the axis indicate conclusions similar to those outlined with
respect to the leading variates. In the middle of the cycle the hip curve
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Figure 11.2. Second pair of smoothed canonical variate weight functions for the

gait data. Solid curve: weight function for hip observations; dashed curve: weight
function for knee observations.

crosses zero considerably later than the knee curve, whereas near the be-
ginning of the cycle the hip curve crosses first. Put another way, we could
roughly transform both the first and the second canonical variates to be
identical for the hip and the knee by speeding up the hip cycle relative
to the knee cycle in the first half of the cycle, and slowing it down in the
second.

We shall see that the estimation of the weight functions as shown in
Figures 11.1 and 11.2 is not quite straightforward and that an appropriate
form of smoothing is essential. But first we review classical multivariate
CCA; a fuller discussion can be found in most multivariate analysis text-
books, such as Anderson (1984). We then go on to develop our approach
to functional CCA, largely based on the paper of Leurgans, Moyeed and
Silverman (1993), and using the gait data as a running example. Another
application is considered in Section 11.4. We shall see that some regu-
larization is essential to obtain meaningful results, for reasons discussed
briefly in Section 11.5. In Section 11.6, various algorithmic approaches and
connections with other FDA topics are explored.

Finally, in Section 11.7, we present some extensions of the ideas of func-
tional CCA to deal with problems of optimal scoring and discriminant
analysis. This is based on work of Hastie, Buja and Tibshirani (1995).
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11.2  Principles of classical canonical correlation
analysis

Suppose we have n pairs of observed vectors (x;,y;), each x; being a p-
vector and each y; being a g-vector. The object of canonical correlation
analysis is to reduce the dimensionality of the data by finding the vectors
a; and by (p- and g-vectors respectively) for which the linear combinations
ajz; and bly; are as highly correlated as possible. The canonical variates
ajx; and bly; are the linear compounds of the original observations whose
variability is most closely related in terms of correlation. The vectors a;
and b; are called the leading canonical variate weight vectors.

Note that multiplying a; and/or b; by nonzero constants of the same
sign does not alter the correlation. If the constants are opposite in sign,
the correlation itself is reversed in sign but has the same magnitude. By
convention, we choose a; and by so that {ajz;} and {b}y;} both have
sample variance equal to 1, and the correlation p; between the ajx; and
bl y; is positive.

We can now go on to find subsidiary canonical variates. The jth pair
of canonical variates is defined by a p-vector a; and a g-vector b;, chosen
to maximize the sample correlation p; = corr(a}xi,b;yi) subject to the
constraints that

(a) corr(ajz;,ajz;) =0
(b) corr(b;yi,b;yi) =0
(c) corr(ajz;, byy;) =0,

where in each case the correlations are the sample correlations as i takes
the values 1,...,n.

11.3 Functional canonical correlation analysis

11.3.1 Notation and assumptions

We now return to the functional case, which is our main concern. As usual,
assume that the N observed pairs of data curves (X;,Y;) are available for
argument ¢ in some finite interval 7, and that all integrals are taken over T
Given functions € and 1, we define ccorsq(€,n) to be the sample squared
correlation of [€X; and [ nY;, and therefore

{cov([ €Xi, [ nY)}?

(var [ £X;)(var [ nY;)’

The use of a roughness penalty is central to our methodology. As usual we
quantify the roughness of a function f by its integrated squared curvature

ID2f|?= [(D?f)>.

ccorsq(€,n) =
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Figure 11.3. Unsmoothed canonical variate weight functions for the gait data
that attain perfect correlation. Top panel: weight function for hip observations;
bottom panel: weight function for knee observations.

11.3.2  The naive approach does not give meaningful results

For the moment concentrate on the leading canonical variates. We might
imagine that the obvious way to proceed is simply to find functions & and
7 that maximize ccorsq(&,n). This would be equivalent to maximizing
cov( [ £X;, [ nY;) subject to the constraints

var([£X;) = var([nY;) = 1. (11.1)

However, simply carrying out this maximization does not produce a mean-
ingful result. Figure 11.3 shows functions & and n that maximize the
sample correlation ccorsq for the gait data example. The sample correla-
tion achieved by these functions is 1. The functions displayed in Figure 11.3
do not give any meaningful information about the data and clearly demon-
strate the need for a technique involving smoothing. In Section 11.5, we
explain why this behavior is not specific to this particular data set but is
an intrinsic property of CCA applied in the functional context.

A straightforward way of introducing smoothing is to modify the
constraints (11.1) by adding roughness penalty terms to give

var([£X;) + N[ D?||? = var([ nYi) + A| D*n|?* = 1, (11.2)

where A is a positive smoothing parameter.
The effect of introducing the roughness penalty terms into the constraints
is that, in evaluating particular candidates to be canonical variates, we
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consider not only their variances, but also their roughness, and compare a
weighted sum of these two quantities with the covariance term. The problem
of maximizing the covariance cov( [ £X;, [ nY;) subject to the constraints
(11.2) is equivalent to maximizing the penalized squared sample correlation
defined by

ccorsq,(&,m) = {eov([ £X;, [ n¥i)}” .
M&M = rar(TeXs) + NID2EPH{var ([ nY7) + A D?n]}

(11.3)

We refer to this procedure as smoothed canonical correlation analysis.
Our method of introducing smoothing or regularization is similar to the
technique of ridge regression, which is often used in image processing and
ill-posed problems to improve the conditioning of the variance matrices
considered. The technique of ridge regression was applied to CCA by Vinod
(1976). Multiplying the curves £ and n by constants does not affect the value
of the criterion ccorsq, (§,n), and in the figures they are normalized to set

J&=[n=1

11.3.3 Choice of the smoothing parameter

The larger the value of A, the more emphasis is placed on the roughness
penalty and the smaller will be the true correlation of the variates found by
smoothed CCA. A good choice of the smoothing parameter is essential to
give a pair of canonical variates with fairly smooth weight functions and a
correlation that is not unreasonably low. The smoothing parameter can be
chosen subjectively, but if we require an automatic procedure, a reasonable
form of cross-validation is as follows:

Let Ccorsq;i(é, n) be the sample penalized squared correlation cal-
culated as in (11.3) but with the observation (X;,Y;) omitted. Let
(EE\_'),ng\_l)) be the functions that maximize ccorsqy’(£,7). The cross-
validation score for A is defined to be the squared correlation of the N
pairs of numbers

(e, [0\ Y))

for i = 1,...,n. We then choose A to maximize this correlation. It is this
choice of A that was used for the gait data in Figures 11.1 and 11.2. The
degree of smoothing chosen by cross-validation appears to be quite heavy,
and to test the sensitivity of these conclusions, Leurgans, Moyeed and Sil-
verman (1993) examined the first two pairs of canonical variates estimated
with a value of A reduced by a factor of 10. Though there was a little more
variability in the canonical variate curves, the broad features remained the
same.

Throughout this section, we have concentrated on the choice of smooth-
ing parameter for the leading canonical variates. If we were particularly
interested in the ideal smoothing parameter for a subsidiary canonical cor-



11.3. Functional canonical correlation analysis 207

Table 11.1. Smoothed and unsmoothed sample correlations for the first three
pairs of smoothed canonical variates for the gait data.

Canonical Sample squared correlations
variates ccorsq, (€5,my) ccorsq(€,,mny)
First 0.755 0.810
Second 0.618 0.717
Third 0.141 0.198

relation, we could formulate a relevant cross-validation score. However, our
practical experience has shown us that, although cross-validation works
well for the leading canonical variate, its behavior is much more disap-
pointing for subsequent canonical variates. We have found it to be more
satisfactory simply to use the same value of A for any subsidiary canonical
variates considered.

We have used a single smoothing parameter A for both & and 7. It is
possible to use separate smoothing parameters A\; and As; the conceptual
and algorithmic extensions are straightforward, but we have found a single
smoothing parameter to be adequate in the examples we have considered.

11.3.4  The values of the correlations

Once the canonical variates have been found, we can consider the values of
the correlations themselves. We can consider either the smoothed squared
correlation ccorsq, or the unsmoothed value ccorsq; there is no firm the-
oretical footing for the choice between them and in any case it would be a
matter of some concern if the effect of smoothing was to make the values
dramatically different.

For the gait data, Table 11.1 shows the values of the smoothed and
unsmoothed squared correlations, and also includes corresponding values
for the second and third pairs of smoothed canonical variates, estimated
with the same A. Table 11.1 shows that the second pair of canonical variates
is almost as important as the first. On the other hand, the third pair of
canonical variates have low estimated correlation, and we do not consider
them further.

Before we leave the gait example, we note that scatterplots of the
canonical variate scores ([ £€X;, [ nY;) show that no particular curves have
outlying scores for either of the first two canonical variates. In Section 8.5,
we saw that the first principal component of variation in the hip curves
alone corresponded to an overall vertical shift in the curves. If this shift
were in any way correlated with a variation in the knee curves, the hip
canonical variate curves would be more like constants than sine waves.
Since this is not the case, we can see that this vertical shift is a property
of the hip curves alone, independent of any variation in the knee angles.
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Figure 11.4. Smoothed canonical variate weight functions for the lupus data, from
Buckheit et al. (1997). Left panel: results of CCA applied to GFR and KUC with
solid curve corresponding to GFR and dashed curve to KUC. Right panel: results of
CCA applied to GFR and GOP, with solid curve corresponding to GFR and dashed
curve to GOP.

11.4 Application to the study of lupus nephritis

Buckheit, Olshen, Blouch and Myers (1997) applied functional CCA to
renal physiology, in the study of diffuse proliferative lupus nephritis, and
we present their results here as an illustration. The original paper should be
consulted for further details; we are extremely grateful to Richard Olshen
for his generosity in sharing and discussing this work with us prior to its
publication.

They had available various measurements on a number of patients over
a 60-month period. These include the glomerular filtration rate (GFR), the
glomerular oncotic pressure (GOP) and the two-kidney ultrafiltration coeffi-
cient (KUC). They focused on nine patients labelled progressors, those whose
kidney function, as measured by GFR was clearly declining over the period
of study. The GFR measure is currently favored by clinicians as an overall
indicator of progressive glomerular disease, a particular form of kidney de-
generation, and therefore the progressors are the group suffering long-term
kidney damage, likely to require eventual dialysis or transplantation. It
is important to understand the kidney filtration dynamics in this disease,
and this is facilitated by investigating the covariation between measured
variables.
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Within the progressor group, GFR and KUC tend to decrease considerably
over the 60 month period, whereas the GOP measure increases somewhat.
This contrasts with well-functioning kidneys, where an increase in GOP
would be counteracted by an increase in KUC, resulting in steady GFR.
Functional smoothed CCA was applied to explore variability and inter-
action effects in the progressor group. The correlations between GFR and
each of KUC and GOP were investigated. Figure 11.4 shows the leading pairs
of canonical variate weight functions. It is interesting that the linear func-
tional of GFR most highly correlated with the other two variables is virtually
the same in both cases.

To interpret the figure, remember that all patients concerned show an
overall declining value of GFR. The U-shaped solid curves in the figure
therefore correspond to a canonical variate where a positive value indicates
a GFR record that starts at a value higher than average, but then declines
more rapidly than average in the first 40 months, finally switching to a
relatively less rapid decline in the last 20 months.

The left-hand panel shows that this variate is correlated with a similar
effect for KUC, but the switch in rate happens earlier. This indicates not
only that strong decline of GFR is associated with strong decline of KUC but
also suggests that the pattern of GFR in some sense follows that of KUC,
raising the hope that KUC could be used to predict future GFR behavior.
On the other hand, the right-hand panel shows that this aspect of GFR
behavior is correlated with an increase of GOP stronger than average over
the entire time period. Thus, patients with rapidly increasing GOP are likely
to be those whose GFR declines rapidly at first, though there may be some
reduction in the rate of decline after about 36 months.

In broad terms, the CCA gives insights broadly consistent with those for
the average behavior of the sample as a whole. It is interesting that the
relationships between the variables are borne out on an individual level, not
merely on an average level. Furthermore the detailed conclusions yielded
by the CCA give important avenues for future thought and investigation
concerning the way in which the variables interrelate. Of course, given
the small sample size, any conclusions must be relatively tentative unless
supported by other evidence.

11.5  Why is regularization necessary?

Apart from its importance as a practical method, canonical correlation
analysis of functional data has an interesting philosophical aspect. In the
principal components analysis context we have already seen that appropri-
ately applied smoothing may improve the estimation accuracy. However, in
most circumstances, we obtain reasonable estimates of the population prin-
cipal components even if no smoothing is applied. By contrast, as we saw
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in the gait example, in the context of functional CCA some regularization
is absolutely essential to obtain meaningful results. This is the same con-
clusion that we will draw for the functional regression context discussed in
Chapter 16. But in the canonical correlation case, the impact of smoothing
is even more dramatic.

To understand the need for regularization, compare functional CCA with
standard multivariate CCA. A standard condition of classical CCA is that
n > p+ ¢+ 1 which ensures (with probability 1, under reasonable condi-
tions) that the sample covariance matrix Vio of the n vectors (z;,y;) is
nonsingular (see Eaton and Perlman,1973). In the functional case, p and ¢
are essentially infinite, and so this condition cannot be fulfilled.

Furthermore, consider a sample Xi,..., Xy of functional data, and as-
sume for the moment that the N curves are linearly independent. Now
suppose that z1, ..., 2y is any real vector. By results that will be discussed
in Chapter 16, it is possible to find a curve & such that, for some constant
ax, zi = ax + fﬁ'Xi for all . Essentially, the reason for this is that we
only have N constraints on £, but infinitely many degrees of freedom in
the choice of &, because £ is a function. Now suppose we have a second
sample of curves Y;, which may be correlated with the X; in some way,
and again are linearly independent. We can find a function n such that,
for some constant ay, z; = ay + f nY; for all i. This means that the given
values z; can be predicted perfectly either from the X; or from the Y;.

It follows that not only have we found functions & and 1 such that
ccorsq(€,n) = 1, because the variates [€X; and [ nY; are perfectly cor-
related, but that we can prescribe the values z; taken by the canonical
variates to be whatever we please, up to a constant. In particular, we could
start with any function &, construct z; = [ £X;, and then find a function n
such that ccorsq(&,m) = 1. In this sense, every possible function can arise
as a canonical variate weight function with perfect correlation!

Leurgans, Moyeed and Silverman (1993) discuss this result in greater de-
tail. They demonstrate that the assumption of linear independence among
the curves is a very mild one, and, by proving an appropriate consistency
result, they show that regularization indeed makes meaningful estimates
possible.

11.6  Algorithmic considerations

11.6.1 Discretization and basis approaches

There are several ways of carrying out our method of smoothed functional
CCA numerically. For completeness, we present the methodology for the
general case of different parameters A; and As. A direct approach is to set
up a discrete version of the covariance ccorsq and of the constraints (11.2).
Discretize the functions £ and n and the covariance operators v;(s, t) using
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a fine grid, and replace the operator D? by a finite difference approximation.
The problem then becomes one of maximizing a quadratic form subject to
quadratic constraints, and it can be solved by standard numerical methods.

We can also use a basis for the functions X; and Y;, and for the weight
functions € and 1. Suppose that ¢1, o, ..., ¢y is a suitable basis, which
for simplicity we will assume is used for all of these four functions. As usual,
define K to be the matrix with entries [(D?¢;)(D?¢y) and J the matrix
with entries [ ¢;¢y. If we use a Fourier or other orthonormal basis, then J
is the identity matrix.

Define C and D to be the matrices of coefficients of the basis expansions
of the X; and Y; respectively, meaning that

M
X; = E Civ Oy
v=1

and

M
Y = z_jl div

up to the degree of approximation involved in any choice of the number M
of basis functions considered. Write a and b for the vectors of coefficients
of the basis expansions of the functions & and 7.

Define M x M covariance matrices \711, \712 and \722 to be the matrices
with (v, p) entries

N7t Z CivCip, N1 Z Cil/dip7 and N—! Z di,,dip,
[ [ 7

respectively, the sample variance and covariance matrices corresponding
to the basis expansions of the data. It can be shown that, in the basis
expansion domain, we carry out the smoothed CCA of the given data by
solving the generalized eigenvalue problem

0 JViJ|[a]l_  [JIViI+MK 0 a
IVyd 0 b|~” 0 IV + XK || b

As in Chapter 14, we should choose the number of basis functions M
large enough to ensure that the regularization is controlled by the choice
of the smoothing parameter(s) A rather than that of dimensionality M.
Values of M of around 20 should give good results without imposing an
excessive computational burden.

11.6.2  The roughness of the canonical variates

A third algorithmic possibility is related to the idea of quantifying of the
roughness of a variate, as discussed in Chapter 5. Just as in the case of
smoothing data, this idea is of both conceptual and algorithmic value,
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and can be used to elucidate the regularization method we propose for
functional canonical correlation analysis.

Suppose z; = [£X; is a possible canonical variate value, and let z be
the N-vector containing these values. Let Rx be the matrix R as derived
in Section 15.7.3, implying that z’Rxz is the roughness of the smoothest
function £ such that [ (X, = z; for all i. It may be that zZ’Rxz is equal to
||D2¢]|?, or it may be that z; can be obtained by integrating a smoother
function against the X;. In any case, we can consider z’Rxz in its own
right as a measure of the roughness of z; as a variate based on the X;.

Similarly, let Ry be a matrix such that the roughness of any vector of
canonical variate values w relative to the observed covariate functions {Y;}
is w'Ryw. Our smoothed canonical correlation method can then be recast
as the determination of vectors z and w to maximize the sample covariance
of z; and w; subject to

var{z;} + \1z’'Rxz = var{w;} + aw'Ryw = 1. (11.4)

Once we have found in this way a pair of canonical variates, the corre-
sponding weight functions are defined as the smoothest functions & and n
satisfying z; = [ €X; and w; = [nY; for all i.

We can maximize the sample covariance of {z;} and {w;} subject to the
constraints (11.4) by solving an eigenvalue problem. Some care is necessary
to deal with a slight complication caused by the presence of the sample
mean in the formula for variance and covariance.

Assuming without loss of generality that the canonical variates have
sample mean zero, write the constrained maximization problem as that of
finding the maximum of z’w subject to the constraints

Zz+MzZRxz=ww+wRyw=1 (11.5)
and the additional constraints
1'z=1w=0. (11.6)

For the moment, neglect the constraint (11.6) and consider the maxi-
mization of z’w subject only to the constraints (11.5). This corresponds to
the eigenvalue problem

{(1) (I)HVZV}—,)[IH&RX 1+£2Rvazv]' (11.7)

By premultiplying (11.7) by [z' w’] and taking the product of the two
expressions for z'w thus obtained, any solution of (11.7) satisfies

(2w)? = p*(z'z + Mz Rxz)(W'w + \ow'Ryw) > p?(2'z)(W'w)

and so it is necessarily the case that |p| < 1. Since the smoothest functional
interpolant of the constant vector has roughness zero, Rx1 = Ry1 = 0,
and so the condition z = w = 1 yields the leading solution of (11.7), with
eigenvalue p = 1.
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The solution of (11.7) with the second largest eigenvalue maximizes z'w
subject to the constraint (11.5) and the additional constraint

1/(I+>\1Rx)Z: 1/(I+)\2Ry)W:0 (118)

But since Rx1 = Ry1 = 0, the constraint (11.8) is precisely equivalent
to the constraint (11.6) that we temporarily neglected. It follows that the
second and subsequent eigensolutions of (11.7) are the canonical variates
we require, and automatically have sample mean zero; the leading solution
is a constant and should be ignored.

11.7 Penalized optimal scoring and
discriminant analysis

Hastie, Buja and Tibshirani (1995) consider functional forms of the mul-
tivariate techniques of optimal scoring and linear discriminant analysis,
making use of ideas closely related to the functional canonical correlation
analysis approach discussed in this chapter. We present a brief overview of
their work; see the original paper for further details.

11.7.1 The optimal scoring problem

Assume that we have N paired observations (X;,y;) where each X; is
a function, and each y; is a category or class taking values in the set
{1,2,...,J}. For notational convenience, we code each y; as a J-vector
y,; with value 1 in position j if y; = j, and 0 elsewhere.

We aim to obtain a function 4 and a J-vector @ minimizing the criterion

N
OSERR(6,3) = N~* Z(/ BX; —0'y,)’
i=1

subject to the normalization constraint N=!>".(0"y;)?> = 1. The idea is
to turn the categorical variable coded by the y-vectors into a quantitative
variable taking the values 6;. The 6; are the scores for the various cat-
egories, chosen to give the best available prediction of a linear property
J BX of the observed functional data.

For any given 8, the problem of finding the functions § is that of finding
a function which satisfies a finite number of linear constraints. Because
there are infinitely many degrees of freedom in the choice of a function, it
is usually possible to choose ( to give perfect prediction of any specified
values 0'y,. This means that we cannot choose an optimal score vector 0
uniquely on the basis of the observed data. To deal with this difficulty,
Hastie et al. (1995) introduced the penalized optimal scoring criterion

OSERR, (6, 3) = OSERR(H, 3) + A x PEN(f3),
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where A is a smoothing parameter and PEN() a roughness penalty.

11.7.2  The discriminant problem

The discriminant problem is similar to the optimal scoring problem.
Again, we have functional observations X;, each allocated to a category in
{1,2,...,J}. For any proposed linear discriminant functional f (X, define
6, to be the average of the [ 3X; for all X; falling in category j. For each
fixed 3, this value of @ minimizes the quantity 0SERR(8, 3), which can then
be re-interpreted as the within-class variance of the [ 8X;. The between-
class variance is simply the variance of the discriminant class means 0"y,
defining the J-vectors y,; by the same coding as above. Discriminant anal-
ysis aims to maximize the between-class variance subject to a constraint
on the within-class variance.

The roles of objective function and constraint are exchanged in passing
from optimal scoring to discriminant analysis, and minimization is replaced
by maximization. Also, primary attention shifts from the score vector @ in
optimal scoring to the discriminant functional defined by the function
in discriminant analysis. Hastie et al. make the correspondence complete
by proposing penalized discriminant analysis where we maximize the raw
between-class variance subject to a penalized constraint on the within-class
variance

0SERR(6, 3) + A\ x PEN(8) = 1.

11.7.3 The relationship with CCA

Simple modifications of arguments from multivariate analysis show that the
penalized optimal scoring and the penalized discriminant analysis problems
are both equivalent to the mixed functional-multivariate canonical corre-
lation analysis problem of maximizing the covariance of [¢X; and 7'y,
subject to the constraints

var(/ €X;) + A x PEN(&) = var(n'y;) = 1. (11.9)

In the notation we have used for CCA, the weight corresponding to the
functional part X; of the data is itself a function &, whereas the vector
part y; is mapped to its canonical variate by a weight vector . Only the
functional part £ is penalized for roughness in the constraints (11.9). The
numerical approaches we have set out for CCA carry over to this case, with
appropriate modifications because only the X; are functions.

To obtain the solutions (3,0) of the discriminant and optimal scoring
problems, it is only necessary to rescale the estimated function £ and
vector 1 appropriately. The subsidiary variates are also interesting for
these problems because they yield estimates of vector-valued scores 6; and
discriminants [ 8X;.
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11.7.4 Applications

Hastie et al. present two fascinating applications of these techniques. For
speech recognition, the frequency spectra of digitized recordings of various
phonemes are used as data. A roughness penalty of the form PEN((G) =
J{D?B(w)}?w(w)dw is used, with the weight function w(w) chosen to place
different emphasis on different frequencies w.

Their other application is the recognition of digits in handwritten postal
addresses and zip codes. In this case, the observations X; are functions
of a bivariate argument ¢, defined in practice on a 16 x 16 pixel grid.
The roughness penalty used is a discrete version of the Laplacian penalty

J [IV28(t))* dt.

11.8 Further readings and notes

The idea of canonical correlation between two function spaces has a rather
substantial history. Lancaster (1969) is considered an early statement of
the problem, considered in the context of a treatment of the chi-squared
distribution. Caillez, F. and Pages, J. P. (1976) and Dauxois and Pousse
(1976) are two explorations in French of functional canonical correlation,
the first being directed to applied statisticians, and the second being a
severely abstract treatise that is yet to be published in the conventional
sense. A recent contribution on the theoretical side is He, Miiller and Wang
(2003). Dauxois and Nkiet (2002) discuss some generalizations of canonical
correlation analysis within a Hilbert space framework.



