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Functional linear models

12.1 Introduction

We have been exploring the variability of a functional variable without

asking how much of its variation is explainable by other variables. It is now

time to consider the use of covariates. In classical statistics, the analysis of

variance, linear regression and the general linear model serve this purpose,

and we now extend the notion of a linear model to the functional context.
Linear models can be functional in one or both of two ways:

1. The dependent or response variable x with argument ¢ is functional.
2. One or more of the independent variables or covariates z is functional.

We will see in Chapter 13 that predicting a functional response with val-
ues z(t) by a conventional design matrix (functional analysis of variance) or
by a set of scalar variables (functional multiple regression) involves a fairly
straightforward modification of ways of thinking and computational strate-
gies already familiar in ordinary analysis of variance or multiple regression.
The main change is that regression coefficients now become regression
coefficient functions with values g;(t).

On the other hand, when one or more covariates are themselves func-
tional, a wider range of ways of using a functional covariate to explain a
response are available. Let us take a preliminary look at a few of these
situations here in this chapter before considering them in detail in later
chapters.
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Consider the weather at our 35 Canadian sites. The precipitation Prec(t)
measured over times ¢ will be the functional dependent variable, and either

e which of four climate zones the station falls in will be a categorical
independent variable

e or the temperature Temp(s) measured over times s will be the
functional independent variable.

12.2 A functional response and a categorical
independent variable

Does the shape of the mean annual precipitation profile depend on which
climate zone the station is in? With the zones Atlantic, Arctic, Continental
and Pacific, that answer is “almost certainly.” Still, we may feel the need to
see if the data reject the null hypothesis that there is no difference. And if
this happens, then we will want to characterize the differences in functional
terms.

In formal terms, we have a number N, of weather stations in each climate
zone g = 1,...,4, and the model for the mth precipitation function in the
gth group, indicated by Prec,,, is

Prec,q(t) = u(t) + ag(t) + emg(t). (12.1)

In this model, function p is the grand mean across all 35 weather sta-
tions, and the effect functions ag represent departures from the grand
mean specific to climate zones. The residual variation left over after we
have explained as much as we can using climate zones are captured in the
residual functions €,,4(t). Our task is to use the data Prec,,, as well as the
design matrix coding climate zone membership to estimate the functional
parameters p and oy.

Moreover, we may want to test more localized hypotheses such as “there
are no differences in mid-summer” or “the differences in mid-winter are
essentially differences in amount of precipitation rather than in the shape
of the precipitation profile.” That is, we may have interesting functional
contrasts specified in advance of looking at the data.

Finally, we can also have the familiar multiple comparisons problem, but
this time in functional form. That is, we may simply ask, “Over which time
intervals are there significant differences between climate zones?”

More generally, the model may involve a design matrix Z containing
values of p scalar independent variables rather than just 0’s and 1’s coding
category membership, or it may involve both types of predictors. As in the
multivariate linear model, these two situations are essentially the same,
and this applies here, too.
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From an application perspective, a functional response with scalar covari-
ates is a common situation, and our experience indicates that the majority
of functional linear model analyses are of this form. We will take up this
model in the next chapter, and there we will try to provide as many helpful
suggestions for analysis and inference as we can at this point. On the whole,
though, tools already familiar to us in working with multivariate data will
need only relatively obvious modifications to be adapted to the functional
response context.

12.3 A scalar response and a functional
independent variable

The converse of the situation considered above may apply. Consider the
question, “Does the total amount of precipitation depend on specific fea-
tures of the temperature profile of a weather station?” Here we can take
the response variable as being

365
Prectot; = / Prec;(t) dt,
0

where ¢ indexes the 35 weather stations.
Now the issue is how to weight information within the single covariate
Temp(s) across values of s. We do this using the linear model

365
Prectot; = a + / Temp, (s)B(s) ds +¢; . (12.2)
0

Here the constant « is the usual intercept term that adjusts for the origin
of the precipitation variable. The functional parameter of interest is again
the regression coefficient function .

This situation formally resembles conventional multiple regression if we
think of each time s as indexing a separate scalar independent variable,
namely Temp(s). But then we realize that we now have a potentially unlim-
ited number of independent variables at our disposal to predict 35 scalar
values. This seems ridiculous; over-fitting the data now seems inevitable.

The way out of the problem is to force the weighting of information across
s to be sufficiently smooth that we can know that a bad fit is in principle
possible. This smoothing over s will involve the reqularization process that
we have already seen in action in the spline smoothing chapter 5. Chapter 15
is given over to this situation.

Note that we will always use a different letter s for the argument for a
covariate function than we use for the dependent variable. Although in this
example context both s and ¢ index time in years over an annual cycle,
more generally they could index entirely different continua, such as space
for s and time for ¢.
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12.4 A functional response and a functional
independent variable

Now we throw open the gates. How does a precipitation profile depend on
the associated temperature profile? Now we consider how the functional
covariate value Temp(s) influences precipitation Prec(t) specifically at time
t. Here are some possibilities.

12.4.1 Concurrent

We might only use the temperature at the same time s = ¢ because we
imagine that precipitation now depends only on the temperature now. Qur
model is

Prec;(t) = a(t) + Temp, (¢)5(t) + €;(t). (12.3)

We might call this model concurrent or point-wise. Should we use
regularization to force § to be smooth in t7

This model has already been discussed in some detail prior to the first
edition of this book by Hastie and Tibshirani (1993) under the name of the
varying coefficient model. It deserves here a chapter of its own, 14, in part
because we will show that all functional linear models can be reduced to
this form.

12.4.2  Annual or total

We may prefer to allow for temperature influence on Prec(t) to extend over
the whole year. The model expands to become

365
Prec;(t) = a(t) + /0 Temp, (5)B(s,t) ds + €;(t). (12.4)

We face the additional complexity of the regression coefficient function 3
being bivariate; the value [(s,t) determines the impact of temperature at
time s on precipitation at time ¢.

We suspect from the discussion of the scalar response and functional
covariate that it may be essential to smooth § as a function of s. But what
is the difference between s-smoothing and smoothing with respect to t7

12.4.8  Short-term feed-forward

We may choose for reasons of parsimony to use only the temperature now
and over an interval back in time in order to allow for some cumulative
effects. For example, it may be that what counts is whether the temperature
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has been falling rapidly up to time ¢. The model expands to
t

Prec;(t) = a(t) + / Temp, (s)0(s,t) ds + €;(t). (12.5)
t—6

Here § is the time lag over which we use temperature information. In

addition to being bivariate, now 3 is only defined over the somewhat

complicated trapezoidal domain: ¢ € [0,365],t —§ < s < ¢.

Since in this situation the data are periodic, so we won’t have particular
problems with s being negative at t = 0 since we can borrow information
from the previous year. But for non-periodic data, we would want to remove
the triangle implied by s < 0 from the domain.

12.4.4 Local influence

Finally, after some reflection, we may open up the model to allow integra-
tion over s within a t-dependent set ;. Why? Well, for example, if the
temperature first falls rapidly, and then rises rapidly immediately after,
and if the time ¢ in question is in the middle of the summer, this may be a
thunderstorm, and will therefore have the potential for a very large amount
of rainfall within a short time period. The model may therefore be

Prec;(t) = a(t) + / Temp, (s)B(s,t) ds + €;(t). (12.6)
Q

Here there is the potential complexity of the domain over which g is defined

that will challenge our computational resources.

These examples indicate that the functional linear model has the po-
tential to be rather complex. Indeed, there is no reason why the covariate
z might not be a function of both s and ¢. For example, we may predict
rainfall at a station by integrating information over both space and time if
we are on the Canadian prairies where precipitation in the summer tends
to be convective, meaning thunder storms, hail storms and tornadoes that
tend to be spatially limited and to follow curvilinear tracks.

12.5 What about predicting derivatives?

We may choose to model the rate of change in precipitation, DPrec instead
of precipitation itself. When a model is designed to explain a derivative
of some order, we call it a dynamic model. In this case, the model is a
differential equation, meaning simply that a derivative is involved.

When the response is a derivative, then there is the potential for the
function itself to be a useful covariate. For example, the concurrent linear
model

DpPrec;(t) = Prec;(t)B(t) + €;(t) (12.7)
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is a called a homogeneous first order linear differential equation in
precipitation, and if we also include an influence of temperature,

DPrec;(t) = Prec;(t)Fo(t) + Temp, (t) 31 (t) + € (1), (12.8)

the equation is said to be monhomogeneous rather than homogeneous.
Temperature in the equation is called a forcing function.

The final chapters in the book will take up the story of differential
equations, and we will see that the power of functional data analysis is
remarkably extended in this way.

12.6 Overview

Although we dedicate separate chapters to these situations for the good rea-
son that each involves some specialized techniques and issues, at a broader
level the differences between the various models outlined above are more
apparent than real. For example, a scalar response can always be expressed
as a functional response with a constant basis, and the same is true for
a scalar covariate. Of course, specialized computational issues arise as we
take advantage at an algorithmic level of the fact that scale variables are
involved.

A central theme common to all functional linear models is that of smooth-
ing regression coefficient functions. Functional linear models usually involve
more predictive power than we want to use for a finite amount of noisy data.
Deciding how much to smooth and how to define smoothness itself will be
a central issue in most applications.

Probably the most fundamental issue is the nature of the potentially ¢-
specific domain € in (12.6). Both the point-wise and total influence models
are comparatively easy to deal with computationally, as we shall see. But
localized feed-forward influence is often essential, and already well repre-
sented in statistics in the form of ARIMA and state-space models in time
series analysis.



