
13
Modelling functional responses with
multivariate covariates

13.1 Introduction

We now consider how to use data on a set of scalar predictor variables or
covariates zj , j = 1, . . . , p to fit the features of a functional response or
outcome variable x. Both of the examples in this chapter can be described
as functional analyses of variance because the values of the covariates are
0’s and 1’s coding the categories of factor variables, but the techniques that
we develop here apply equally well to measured covariates.

13.2 Predicting temperature curves from climate
zones

Let’s have a look at the Canadian weather data introduced in Chapter 1.
Monthly means for temperature and precipitation are available for each
of 35 weather stations distributed across the country, and we can use the
smoothing techniques of Chapters 4 and 5 to represent each record as a
smooth function. Thus, two periodic functions, Temp and Prec, denoting
temperature and precipitation, respectively, are available for each station.

How much of the pattern of annual variation of temperature in a weather
station is explainable by its geographical area? Dividing Canada into At-
lantic, Continental, Pacific and Arctic meteorological zones, we want to
study the characteristic types of temperature patterns in each zone.
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This is an analysis of variance problem with four treatment groups. Mul-
tivariate analysis of variance (MANOVA) is the extension of the ideas of
analysis of variance to deal with problems where the dependent variable
is multivariate. Because our dependent variable is the functional observa-
tion Temp, the methodology we need is a functional analysis of variance,
abbreviated FANOVA.

In formal terms, we have a number of stations in each group g, and the
model for the mth temperature function in the gth group, indicated by
Tempmg, is

Tempmg(t) = µ(t) + αg(t) + εmg(t). (13.1)

The function µ is the grand mean function, and therefore indicates the
average temperature profile across all of Canada. The terms αg are the
specific effects on temperature of being in climate zone g. To be able to
identify them uniquely, we require that they satisfy the constraint∑

g

αg(t) = 0 for all t. (13.2)

The residual function εmg is the unexplained variation specific to the mth
weather station within climate group g.

We note in passing that the smoothing problem discussed in Chapters 3,
4, and 5 is contained within this model by using a single covariate whose
values are all ones.

We can define a 35 × 5 design matrix Z for this model, with one row
for each individual weather station, as follows. Use the label (mg) for the
row corresponding to station m in group g; this row has a one in the first
column, a one in column g + 1, and zeroes in the rest. Write z(mg)j for the
value in this row and in the jth column of Z.

We can then define a corresponding set of five regression functions βj by
setting β1 = µ, β2 = α1, and so on to β5 = α4, so that the functional vector
β = (µ, α1, α2, α3, α4)′. In these terms, the model (13.1) has the equivalent
formulation

Tempmg(t) =
5∑

j=1

z(mg)jβj(t) + εmg(t) (13.3)

or, more compactly in matrix notation,

Temp = Zβ + ε, (13.4)

where Temp is the functional vector containing the 35 temperature func-
tions, ε is a vector of 35 residual functions, and β is the 5-vector of
parameter functions. The design matrix Z has exactly the same struc-
ture as for the corresponding univariate or multivariate one-way analysis
of variance. The only way in which (13.4) differs from the corresponding
equations in standard elementary textbooks on the general linear model is
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that the parameter β, and hence the predicted observations Zβ, are vectors
of functions rather than vectors of numbers.

13.2.1 Fitting the model
If (13.4) were a standard general linear model, the standard least squares
criterion would say that β should be chosen to minimize the residual sum
of squares. To extend the least squares principle to the functional case, we
need only reinterpret the residual sum of squares in an appropriate way.
The quantity Tempi(t) − Ziβ(t) is now a function, and so the unweighted
least squares fitting criterion becomes

LMSSE(β) =
4∑
g

Ng∑
m

∫
[Tempmg(t) −

q∑
j

z(mg),jβj(t)]2 dt. (13.5)

Minimizing LMSSE(β) subject to the constraint
∑5

2 βj = 0 (equivalent to∑4
1 αg = 0) gives the least squares estimates β̂ of the functional parameters

µ and αg. Section 13.4 contains some remarks about the way LMSSE is
minimized in practice.

Figure 13.1 displays the resulting estimated region effects αg for the four
climatic zones, and Figure 13.2 displays the composite effects µ + αg. We
see that the region effects are more complex than the constant or even
sinusoidal effects that one might expect:

• The Atlantic stations appear to have a temperature around 5 degrees
C warmer than the Canadian average.

• The Pacific weather stations have a summer temperature close to the
Canadian average, but are much warmer in the winter.

• The Continental stations are slightly warmer than average in the
summer, but are colder in the winter by about 5 degrees C.

• The Arctic stations are certainly colder than average, but even more
so in March than in January.

The cross-hatched areas indicate 95% confidence regions for the location of
the curves at fixed points. These will be discussed in Section 13.4.

13.2.2 Assessing the fit
In estimating and plotting the individual regional temperature effects, we
have taken our first step towards achieving the goal of characterizing the
typical temperature pattern for weather stations in each climate zone. We
may wish to move on and not only confirm that the total zone-specific ef-
fect αg is nonzero, but also investigate whether this effect is substantial at
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Figure 13.1. The region effects αg for the temperature functions in the functional
analysis of variance model Tempmg(t) = µ(t) + αg(t) + εmg(t). The effects αg(t)
are required to sum to 0 for all t. The cross-hatched areas indicate 95% point-wise
confidence intervals for the true effects.
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Figure 13.2. The estimated climate zone temperature profiles µ + αg for the
temperature functions in the functional analysis of variance model (solid curves).
The dashed curve is the Canadian mean function µ.
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a specific time t. As in ordinary analysis of variance, we look to summa-
rize these issues in terms of error sum of squares functions LMSSE, squared
correlation functions RSQ, and F-ratio functions FRATIO. It is the depen-
dence of these quantities on t that makes the procedure different from the
standard multivariate case.

As in the multivariate linear model, the primary source of information
in investigating the importance of the zone effects αg is the sum of squares
function

SSE(t) =
∑
mg

[Tempmg(t) − Zmgβ̂(t)]2. (13.6)

This function can be compared to the error sum of squares function based
on using only the Canadian average µ̂ as a model,

SSY(t) =
∑
mg

[Tempmg(t) − µ̂(t)]2

and one way to make this comparison is by using the squared multiple
correlation function RSQ with values

RSQ(t) = [SSY(t) − SSE(t)]/SSY(t). (13.7)

Essentially, this function considers the drop in error sum of squares pro-
duced by taking climate zone into effect relative to error sum of squares
without using climate zone information.

We can also compute the functional analogues of the quantities entered
into the ANOVA table for a univariate analysis. For example, the mean
squared for error function MSE has values

MSE = SSE/df(error),

where df(error) is the degrees of freedom for error, or the sample size N less
the number of mathematically independent functions βq in the model. In
this problem, the zero sum restriction on the climate zone effects αg implies
that there are four degrees of freedom lost to the model, or df(error) = 31.

Similarly, the mean square for regression is the difference between SSY
(or, more generally, whatever reference model we employ that is a spe-
cialization of the model being assessed) and SSE, divided by the difference
between the degrees of freedom for error for the two models. Let the dif-
ference in degrees of freedom be denoted by df(regression), which in this
case is 3. Thus

MSR(t) =
SSY(t) − SSE(t)
df(regression)

.

Finally, we can compute the F-ratio function,

FRATIO =
MSR

MSE
. (13.8)
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Figure 13.3. The left panel contains the squared multiple correlation function RSQ
and the right panel the corresponding F-ratio function FRATIO. The horizontal
dotted line indicates the 5% significance level for the F-distribution with 3 and
31 degrees of freedom.

Figure 13.3 shows the two functions RSQ and FRATIO. We can see that the
squared correlation is relatively high and that the F-ratio is everywhere
substantially above the 5% significance level of 2.92. It is interesting to note
that the differences between the climate zones are substantially stronger in
the spring and autumn, rather than in the summer and winter as we might
expect.

Basically, then, most of the statistical machinery available for univariate
analysis of variance is readily applicable to this functional problem. We
can consider, for example, contrast functions, post-hoc multiple comparison
functions, F-ratios associated with constrained estimates of region effects,
and so on, essentially because the functional analysis of variance problem
is really a univariate ANOVA problem for each specific value of t.

One question not addressed in the discussion of this example is an over-
all assessment of significance for the difference between the climate zones,
rather than an assessment for each individual time t. We remind ourselves
that the classical significance level was designed to be used for a single
hypothesis test, rather than a continuum of them as in here. Although
there is no reasonable doubt here that climate zone has an important ef-
fect somewhere in the year, in other applications we will want to protect
ourselves more effectively against falsely declaring significance somewhere
in the interval. Section 13.3.3 provides an approach to this question using
simulation in the context of a different example.

A second question is, “How can we compute confidence intervals for the
estimated regression functions?” Because this topic involves substantial
mathematical detail, we put this off until Section 13.4.
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13.3 Force plate data for walking horses

This section describes some interesting data on equine gait. The data were
collected by Dr. Alan Wilson of the Equine Sports Medicine Center, Bris-
tol University, and his collaborators. Their kindness in allowing use of the
data is gratefully acknowledged. The data provide an opportunity to dis-
cuss various extensions of our functional linear modelling and analysis of
variance methodology. For further details of this example, see Wilson et al.
(1996).

13.3.1 Structure of the data
The basic structure of the data is as follows. It is of interest to study the
effects of various types of shoes, and various walking surfaces, on the gait of
a horse. One reason for this is simply biomechanical: the horse is an animal
particularly well adapted to walking and running, and the study of its gait
is of intrinsic scientific interest. Secondly, it is dangerous to allow horses to
race if they are lame or likely to go lame. Careful study of their gait may
produce diagnostic tests of incipient lameness which do not involve any
invasive investigations and may detect injuries at a very early stage, before
they become serious or permanent. Thirdly, it is important to shoe horses
to balance their gait, and understanding the effects of different kinds of shoe
is necessary to do this. Indeed, once the normal gait of a horse is known,
the measurements we describe can be used to test whether a blacksmith has
shod a horse correctly, and can therefore be used as an aid in the training
of farriers.

In this experiment, horses walk on to a plate about 1 meter square set
into the ground and equipped with meters at each corner measuring the
force in the vertical and the two horizontal directions. We consider only
the vertical force. During the period that the horse’s hoof is on the ground
(the stance phase) the four measured vertical forces allow the instrument
to measure the point of resultant vertical force. The hoof itself does not
move during the stance phase, and the position of the hoof is measured by
dusting the plate with sawdust or is inferred from the point of force at the
end of the stride, when only the front tip of the hoof is in contact with the
ground.

The vertical force increases very rapidly at the beginning of the stance
phase but reduces more slowly at the end. Operationally, the stance phase
is defined as starting at the moment where the total vertical force first
reaches 30% of its maximum value and ending where it falls to 8% of its
maximum value. For each replication, the point of force is computed for
100 time points equally spaced in this time interval.

A typical functional observation is therefore a two-dimensional function
of time Force = (ForceX, ForceY) where t varies from 0 to 1 during the
stance phase, and ForceX(t) and ForceY(t) are the coordinates of the point
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Figure 13.4. A typical trace of the resultant point of force during the stance phase
of a horse walking onto a force plate. One hundred points equally spaced in time
are indicated on the curve. The arrows indicate the direction of time.

of force at time t. Here Y is the direction of motion of the horse, and X
measures distance in a perpendicular direction towards the body of the
horse. Thus the coordinates are defined as if looking at the plate from
above if a left foot is being measured, but with the X direction reflected if
a right foot is being measured.

The data set consists of 592 separate runs and involves 8 horses, each of
which has a number of measurements on both its right and left forelimbs.
The nine shoeing conditions are as follows: first, the horse is observed un-
shod; it is then shod and observed again; then its shoe is modified by the
addition of various wedges, either building up its toe or heel or building up
one side or the other of its hoof. Not every horse has every wedge applied.
In the case of the toe and heel wedges, the horse is observed immediately
after the wedge is fitted and one day later, after it has become accustomed
to the shoe. Finally the wedges are removed and the horse is observed with
a normal shoe.

Figure 13.4 shows a typical (ForceX, ForceY) plot. This realization is
among the smoother curves obtained. The 100 points that are equally
spaced in time are marked on the curve, and the direction of time is indi-
cated by arrows (also evenly spaced in time). We can see, not surprisingly,
that the point of force moves most rapidly near the beginning and end of
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the stance phase. The accuracy of a point measurement was about 1 mm
in each direction.

13.3.2 A functional linear model for the horse data
The aim of this experiment is to investigate the effects of various shoeing
conditions, and particularly to study the effects of the toe and heel wedges,
which change as the horse becomes accustomed to the wedge. We fit a
model of the form

Forceijkl = µ + αij + θk + εijkl, (13.9)

where all the terms are two-dimensional functions of t, 0 ≤ t ≤ 1. The
suffix ijkl refers to the data collected for the lth observed curve for side j
of horse i under condition k.

For any particular curve, use labels x and y where necessary to denote
the x and y coordinates of the vector function. The following identifiability
constraints are placed on the various effects, each valid for all t:

∑
i,j

αij(t) =
9∑

k=1

θk(t) = 0. (13.10)

We estimate the various effects by carrying out a separate general linear
model fit for each t and for each of the x and y coordinates. Since the data
are observed at 100 discrete times in practice, each Forceijkl corresponds
to two vectors, each of length 100, one for the x coordinates and one for the
y coordinates. The design matrix relating the expected value of Forceijkl

to the various effects is the same for all 200 observed values, so although the
procedure involves the fitting of 200 separate models, considerable economy
of effort is possible. The model (13.9) can be written as

Force = Zβ + ε, (13.11)

where Force and ε are both vectors of length 592, each of whose elements
is a two-dimensional function on [0, 1]. The vector β is a vector of the
26 two-dimensional functions µ, αij and θk, and Z is a 592 × 26 design
matrix relating the observations Force to the effects β. The identifiabil-
ity constraints (13.10) are incorporated by augmenting the matrix Z by
additional rows corresponding to the constraints, and by augmenting the
data vector Force by zeroes. Standard theory of the general linear model
of course then gives as the estimator

β̂ = (Z′Z)−1Z′ Force. (13.12)

Figure 13.5 plots the estimated overall mean curve µ = (µx, µy) in the
same way as Figure 13.4. Although the individual observations are some-
what irregular, the overall mean is smooth, even though no smoothing is
incorporated into the procedure.
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Figure 13.5. Estimate of the overall mean curve (µx, µy) obtained from the 592
observed point-of-force curves using model (13.9).
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Figure 13.6. The estimated residual variance in the x coordinate (solid curve)
and the y coordinate (dotted curve) as the stance phase progresses.
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Figure 13.7. The effects of the application of a toe wedge, x coordinate in the
upper panel and y coordinate in the lower. Solid curves are the immediate effect,
and dashed curves are the effect on the following day.

The general linear model fitted for each coordinate at each time point
allows the calculation of a residual sum of squares, and hence an estimated
residual variance, at each point. The residual variance curves MSEx and
MSEy for the x and y coordinates are plotted in Figure 13.6. It is very
interesting to note that the residual variances in the two coordinates are
approximately the same size, and vary in roughly the same way, as the
stance phase progresses.

13.3.3 Effects and contrasts
We can now explain how the linear model can be used to investigate various
effects of interest. We concentrate on two specific effects, corresponding to
the application of the toe wedges, and illustrate how various inferences can
be drawn. In Figure 13.7, we plot the effects of the toe wedge immediately
after it has been applied and the following day. The x and y coordinates
of the relevant functions θk are plotted separately. It is interesting to note
that the y effects are virtually the same in both cases: The application of
the wedge has an immediate effect on the way in which the point of force
moves in the forward-backward direction, and this pattern does not change
appreciably as the horse becomes accustomed to the wedge. The effect in
the side-to-side direction is rather different. Immediately after the wedge
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is applied, the horse tends to put its weight to one side, but the following
day the effect becomes much smaller, and the weight is again placed in the
same lateral position as in the average stride.

To investigate the significance of this change, we now consider the con-
trast between the two effects, which shows the expected difference between
the point of force function for a horse 24 hours after a toe wedge has been
applied and that immediately after applying the wedge. Figure 13.8 shows
the x and y coordinates of the difference of these two effects. The standard
error of this contrast is easily calculated. Let u be the vector such that
the estimated contrast is the vector function Contrast = u′β̂, so that the
component of u corresponding to toe wedge 24 hours after application is
+1, that corresponding to toe wedge immediately after application is −1,
and all the other components are zero. Define a by a2 = u′(Z′Z)−1u. The
squared point-wise standard errors of the x and y coordinates of the es-
timated contrasts are then a2MSEx and a2MSEy, respectively. Plots of ±2
times the relevant standard error are included in Figure 13.8. Because the
degrees of freedom (592 − 26 + 2) for residual variance are so large, these
plots indicate that point-wise t tests at the 5% level would demonstrate
that the difference in the y coordinate of the two toe wedge effects is not
significant, except possibly just above time 0.8, but that the x coordinate
is significantly different from zero for almost the whole stance phase.

How should we account for the correlation in the tests at different times
in assessing the significance of any difference between the two conditions?
We can consider the summary statistics

Mx = sup
t

|Contrastx(t)/a
√
MSEx(t)|

and

My = sup
t

|Contrasty(t)/a
√
MSEy(t)|.

The values of these statistics for the data are Mx = 5.03 and My = 2.01.
A permutation-based significance value for each of these statistics was ob-
tained by randomly permuting the observed toe wedge data for each leg
of each horse between the conditions immediately after fitting of wedge
and 24 hours after fitting of wedge, keeping the totals the same within
each condition for each leg of each horse. The statistics Mx and My were
calculated for each random permutation of the data. In 1000 realizations,
the smallest value of Mx observed was 3.57, so the observed difference in
the x direction of the two conditions is highly significant. A total of 177 of
the 1000 simulated My values exceeded the observed value of 2.01, and so
the estimated p-value of this observation was 0.177, showing no evidence
that the y coordinate of point of force alters its time behavior as the horse
becomes accustomed to the wedge.



13.4. Computational issues 235

0.0 0.2 0.4 0.6 0.8 1.0

-6
-4

-2
0

2
4

Proportion of stance phase

x 
ef

fe
ct

 (
m

m
)

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

Proportion of stance phase

y 
ef

fe
ct

 (
m

m
)

Figure 13.8. Solid curves are the differences between the effect of a toe wedge
after 24 hours and its immediate effect. Dotted curves indicate plus and minus
two estimated standard errors for the point-wise difference between the effects.
The upper panel contains x coordinates and the lower the y coordinates.

13.4 Computational issues

13.4.1 The general model
We explain how to compute the least squares estimates in the functional
linear model. Let Y be an N -vector of functional observations, and let the
q-vector β contain the regression functions. In the force-plate data example,
the individual elements of both Y and β were themselves two-dimensional
functions. We assume that Z is an N × q design matrix, and that the
expected value of y(t) for each t is modelled as Zβ(t). The functional
linear model is then

y(t) = Zβ(t) + ε(t) . (13.13)

Any linear constraints on the parameters β, such as the requirement
in the temperature data example that the individual climate zone effects
sum to zero, are expressed as Lβ = 0 for some suitable matrix L with q
columns. By using a technique such as the QR-decomposition, described in
Section A.3.3 of the Appendix, we may then say that

β = Cα (13.14)
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for some matrix C. In this case we find ourselves back at the basic model
(13.13), except that Z is now replaced by ZC and β by α.

Our aim is to minimize the least squares fitting criterion

LMSSE(β) =
∫

[y(t) − Zβ(t)]′[y(t) − Zβ(t)] dt , (13.15)

It is possible that an order N weighting matrix W should be included in
this expression between the two factors on the right in order to allow for
possible variation of importance across replications, for dependencies. How-
ever, most situations assume independence and constant error variation,
and so we will not bother with this feature in our discussion.

13.4.2 Pointwise minimization
If there are no particular restrictions on the way in which β(t) varies as
a function of t, we can minimize LMSSE(β) by minimizing ‖y(t) − Zβ(t)‖2

individually for each t. That is, we calculate β̂(t) for a suitable grid of
values of t using ordinary regression analysis, and then interpolate between
these values. This was the technique used in the force plate example, where
the grid of values was chosen to correspond with the discretization of the
original data. The fact that the same design matrix is involved for each t
makes for considerable economy of numerical effort.

13.4.3 Functional linear modelling with regularized basis
expansions

We have already noted, however, that the use of regularized basis function
expansions gives us continuous control over smoothness while still permit-
ting as much high frequency detail in the model as the data require. The
use of roughness penalties or regularization can play an important role in a
functional linear model. In particular, one may adopt the philosophy that
the representation of the response functions should be allowed to be of high
resolution, and that smoothness is imposed only on the functional param-
eters to be estimated in β. In this way, we do not risk smoothing away
important information that may impact the estimate of β when smoothing
the data giving rise to y.

Let us now assume that the observed functions yi and regression func-
tions βj are expressed in basis expansion form, as the coefficients of a
Fourier series or B-spline or some other basis system. This means that

y(t) = Cφ(t),

where

• the N -vector y contains the N observed response functions,
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• the Ky-vector φ contains the linearly independent basis functions,
and

• the N by Ky matrix matrix C contains the coefficients of expansion
of function yi in its ith row.

Let us now expand the estimated parameter vector β̂ in terms of a basis
vector θ of length Kβ , expressing β̂ = Bθ for a q × Kβ matrix B. In some
cases, we may choose to use the same basis that was used to expand the
response functions, in which case θ = φ, and consequently some of what
follows becomes simpler. However, there are plenty of situations where we
need to keep the two basis systems separate.

Note, though, that we have made things somewhat easier on ourselves by
assuming that the same basis system θ is used for all q regression functions
βj . In the next chapter, we will relax this constraint, but for the time
being this assumption has the advantage of keeping the notation reasonably
simple.

Now suppose that we use a linear differential operator L to define a
roughness penalty for β as

PENL(β) =
∫

[Lβ(s)]′[Lβ(s)] ds . (13.16)

In addition, we need to define these four matrices:

Jφφ =
∫

φφ′ , Jθθ =
∫

θθ′ , Jφθ =
∫

φθ′

R =
∫

(Lθ)(Lθ)′ . (13.17)

Note that we dropped “(s)” and “ds” from the expressions in (13.17);
this makes the expressions more readable, and the context makes it clear
that what we really mean is an expression like (13.16) where they were
left in. Note, too, that since φ is a column vector of length Ky of basis
functions, φφ′ is a square matrix of order Ky containing all possible pairs
of these functions, and consequently Jφφ is constant symmetric order Ky

matrix of integrated products, and similarly for the other three matrices.
We can then obtain the following expressions for the penalized least

squares criterion:

PENSSE(y|β) =
∫

(Cφ − ZBθ)′(Cφ − ZBθ) +

λ

∫
(LBθ)′(LBθ) . (13.18)

The operation of integration and the summations implied by the matrix
products in these expressions can be interchanged, and consequently we
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can re-expressing this as

PENSSE(y|β) = trace (C′CJφφ) + trace (Z′ZBJθθB′) −
2 trace (BJθφC′Z) + λ trace (BRB′) , (13.19)

where the operation trace is defined as

traceA =
∑

i

aii

for a square matrix A. One of the properties of the trace is that its value
remains the same under any cyclic permutation of the matrix factors, so
that, for example, trace (BRB′) = trace (B′BR).

13.4.4 Using the Kronecker product to express B̂

We now need to compute the derivative of (13.19) with respect to matrix B
and set the result to zero. Using the fact that the derivative of trace (B′A)
with respect to matrix B is A, we find that B satisfies the matrix system
of linear equations

(Z′ZBJθθ + λBR) = Z′CJφθ . (13.20)

The solution B to this equation can be expressed explicitly in conven-
tional matrix algebra if we use Kronecker products. The Kronecker product
A⊗C is the super or composite matrix consisting of sub-matrices aijC. Its
usefulness in this situation derives from the fact that the matrix expression
ABC′ can be re-expressed as

vec (ABC′) = (C ⊗ A)vec (B) ,

where vec (B) indicates the vector of length qKθ obtained by writing matrix
B as a vector column-wise. Moreover, the Kronecker product is also bilinear
in the sense that

vec (A1BC′
1 + A2BC′

2) = (C1 ⊗ A1 + C2 ⊗ A2)vec (B).

The Appendix contains a discussion of properties of the Kronecker product
that have been used to obtain these expression, and other properties that
will be used subsequently.

Consequently, applying these relations to the two terms involving B on
the left side of (13.20), we obtain

[Jθθ ⊗ (Z′Z) + R ⊗ λI]vec (B) = vec (Z′CJφθ) . (13.21)

Now we have a system of qKθ linear equations expressed in the conventional
way that must be solved to obtain the elements of B. The solution is

vec (B) = [Jθθ ⊗ (Z′Z) + R ⊗ λI]−1vec (Z′CJφθ) . (13.22)

In (13.21) and (13.22) we have assumed a single smoothing parameter λ
to impose the same level of smoothness on each component βj , j = 1, . . . , q
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of the vector β, but we may need the additional flexibility of controlling
the smoothness of each component independently by using a smoothing
parameter λj using a separate roughness penalty for each component. This
involves the following minor modification of (13.21): Replace λI in this
expression by the diagonal matrix Λ containing the λj ’s in its diagonal.

Constraining β to be smooth is not the same thing as constraining the
fit ŷ to be smooth, and this latter strategy may be more important in some
situations. Again a modification of (13.21) will serve: Replace I by Z′Z, in
which case (13.22) simplifies to

vec (B) = [(Jθθ + λR) ⊗ (Z′Z)]−1vec (Z′CJφθ) . (13.23)

As in Chapter 5, smoothing parameters may be chosen by cross-
validation, generalized cross-validation and other methods.

13.4.5 Fitting the raw data
We have been assuming that the response variable y(t) is a result of previ-
ously smoothing the discrete data, but in some applications we may prefer
to go straight from the raw response data matrix Y to estimates of the re-
gression coefficient functions. The penalized least squares criterion in this
case is

‖Y − ZBΘ′‖2 + λ‖Lβ(t)‖2,

where Θ is the N by Kβ matrix of values of the basis functions for β
evaluated at the sampling points for the response functions. The normal
equations to be solved are in this case

(Z′Z)B(Θ′Θ) + λBR = Z′YΘ , (13.24)

or, using Kronecker products,

[(Θ′Θ) ⊗ (Z′Z) + R ⊗ λI]vec (B) = (Θ′ ⊗ Z′)vec (Y) . (13.25)

13.5 Confidence intervals for regression functions

13.5.1 How to compute confidence intervals
The technique for computing point-wise confidence limits for regression
functions is essentially the same as we used in Section 5.5. Recall that we
required there two mappings. The first was the mapping y2cMap from the
raw data vector y to the coefficient vector c, corresponding to the n by K
matrix Sφ,λ in the equation

c = Sφ,λy.

We still need this mapping here, but we now assume that there are
N replications, and consequently that the raw data reside in an N by n



240 13. Modelling functional responses with multivariate covariates

matrix Y to be mapped to the N by Ky matrix C of coefficients of the
basis function expansions of the functions N functions xi. Consequently,
as in Section 5.5, the y2cMap is represented by the matrix equation

C = YSφ,λ .

This may be re-expressed in Kronecker product notation as

vecC = (Sφ,λ ⊗ I)vecY,

and this permits us to express what we can now denote as Y2CMap as

Y2CMap = Sφ,λ ⊗ I. (13.26)

However, we now have a new linear mapping, namely that of the linear
model itself, which maps a coefficient matrix B to an N by n fit to the
data Ŷ by

Ŷ = ZBΘ′.

We therefore need an expression for the mapping C2BMap that maps the
coefficient matrix C for the response functions to the q by Kβ coefficient
matrix B for the regression function vector β.

Finally, we will want to compute confidence intervals for some functional
contrast or linear probe ρ(β), and this will require a mapping that we can
indicate by B2RMap that maps the coefficient matrix B to ρ(β). For example,
we may want to estimate the standard error of a regression function at a
value t, and this is the value of the evaluation function ρt(β). But we may
also be interested in functional contrasts that probe for special effects that
interest us as well.

The last stage in actually computing confidence limits is the computing of
the composite mapping Y2RMap = B2RMap ◦ C2BMap ◦ Y2CMap and applying
it to each side of Σe to get an estimate of the sampling variance of the
quantity of interest.

Now let us derive each of these matrix mappings, and put them together
as required. That is, we compute the matrix mapping the raw data to
the coefficients of the basis function expansions for the βj ’s, and then we
multiply this by the matrix mapping the regression coefficients to whatever
quantities or functionals that interest us.

The first step, then, is to compute the matrix mapping Sφ,λy from the
data to these coefficients. This is, using the results in Section 5.5 for the
response functions,

Sφ,λy = Φ(Φ′Φ + λyRy)−1Φ′ ,

where λy is the smoothing parameter used to smooth the data and Ry is the
corresponding roughness penalty matrix. Matrix Sφ,λy

is then substituted
in (13.26) to obtain Y2CMap.
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From (13.25), we have the mapping from the data coefficients to the
regression function coefficients expressed as

vec (B) = [Jθθ ⊗ Z′Z + Rβ ⊗ λβI]−1(J′
φθ ⊗ Z′)vec (C′),

where λβ and Rβ are the smoothing parameter and roughness matrix as-
sociated with the regularization of the functions βj . The qKβ by NKy

matrix

C2BMap = Sβ = [Jθθ ⊗ Z′Z + Rβ ⊗ λβI]−1(J′
φθ ⊗ Z′) (13.27)

is the matrix mapping that we need.
These last two expressions can then be combined into

Y2BMap = vec (B) = Sβ(Sφ,λy ⊗ I)vec (Y′) . (13.28)

The variance of the raw data arranged as a vector is given by

Var[vec (Y′)] = Σe ⊗ I ,

where Σe is the variance-covariance matrix of the residual vectors ei and
I is of order N . Note that these residuals are for the linear model (13.13)
and not the residuals involved in smoothing the raw data for the response
variable.

We can now put this all together to get what we need in terms of the
coefficients of the expansions of the βj ;

Var[vec (B)] = Sβ(Sφ,λy ⊗ I)(Σe ⊗ I)(Sφ,λy ⊗ I)S′
β . (13.29)

If our objective is an estimate of Var[vec (β̂)], then this is

Var[vec (β̂)] = (Θ⊗I)Sβ(Sφ,λy ⊗I)(Σe ⊗I)(Sφ,λy ⊗I)S′
β(Θ⊗I)′ . (13.30)

If both Jθθ and Z′Z are invertible, then this expression can be simplified
to

Var[vec (β̂)] = [J−1
θθ J′

φθSφ,λyΣeSφ,λyJφθJ−1
θθ ] ⊗ (Z′Z)−1 . (13.31)

If the raw data are fit directly, the corresponding expression is

Var[vec (β̂)] = [Θ(Θ′Θ)−1Θ′ΣeΘ(Θ′Θ)−1Θ′] ⊗ (Z′Z)−1 . (13.32)

13.5.2 Confidence intervals for climate zone effects
We now illustrate this method for computing confidence intervals by es-
timating climate zone effects for the daily mean temperature data for 35
weather stations. We smoothed these data with a Fourier series basis with
65 basis functions without regularization in order to economize on computer
time and work with temperature profiles that were somewhat smoother
than those that we obtained in Chapter 5. The figures in Section 13.2 were
obtained using these functional responses.
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Figure 13.9. The points indicate daily estimates of the standard error of mea-
surement for the mean temperature data computed across 35 weather stations,
and the solid line is a positive smooth of these values.

Figure 13.9 shows the raw daily standard error estimates taken across
the 35 stations as well as a positive smooth of these estimates of the kind
that we discussed in Chapter 6. These vary between 0.4 degrees Celsius in
the summer to 0.7 in the winter. This is a fair amount of variation, and
so we put the reciprocal of the smoothed variances of measurement in the
diagonal of weight matrix W in (5.3), and then re-smoothed the data.

In the functional analysis of variance step, we defined Z to be the 35 by
5 matrix containing the value 1 in column 1, and coding membership in
the Atlantic, Pacific, Continental and Arctic regions in columns two to five
as above. We used 21 Fourier basis functions to represent the 5 regression
functions βj .

The order 365 variance-covariance matrix Σe for the residuals from the
linear model was estimated in the same way that we described in Chapter 2.

Figure 13.1 displays the 95% point-wise confidence limits on the esti-
mated curve climate zone effect function. We see, for example, that it is
only in the winter months that the temperature in Pacific zones can be
considered as significantly warmer than those represented by the inter-
cept function. For the record, a direct approximation of the raw average
temperatures produced function and confidence limit estimates that were
effectively indistinguishable from these results.



13.5. Confidence intervals for regression functions 243

13.5.3 Some cautions on interpreting confidence intervals
Many things can go wrong in interpreting confidence interval estimates such
as those in Figure 13.1, and it is important here to stress their limitations
so as to avoid misleading ourselves and others in applications leading to
serious decisions.

First of all, point-wise limits are not the same thing as confidence regions
for the entire estimated curve. As mentioned in Section 5.5, although can
envisage of pairs of curves between which there is a specified probability
that the entire true curve is to be found, this requires the use of compu-
tationally intensive resampling methods. Point-wise regions are useful, of
course, but they are based on the assumption that conclusions are only to
be drawn at that point. So when we indicated above that we could conclude
that summer temperatures in the Pacific zone are not much different from
the national average, this was, strictly speaking, an abuse of the concept
of a point-wise region.

Secondly, the confidence region estimates that we have developed are
based on strong assumptions that may not be true. We have, as is usual
in the analysis of variance, implicitly assumed that the distribution of the
residuals is the same within each group. In fact, it is hard to imagine that,
given enough weather stations, we would not also see systematic differ-
ences in covariances and other aspects of dispersion from one climate zone
to another. In any case, the very idea of basing a confidence region on an
estimated covariance involves the strong assumption that the joint distri-
bution of two residuals is well summarized by a covariance, as would be
the case if they were normally distributed. In fact, if the actual residual
distribution is strongly skewed, if it has long tails, if it is multi-modal, or
any one of many other violations of what normality implies is operative,
these regions will not work as advertised. That is, in this case, we cannot
claim them to contain the true curve with the specified probability.

Thirdly, we are estimating something whose potential dimension can out-
strip any quantity of data that we can afford to collect. A curve can be made
arbitrarily complex given enough information. It seems likely, surely, that
someone working with ten times the number of weather stations, fifty years
worth of data, and taking spatial dependencies into account will discover
features of temperature curves that we could not capture with the num-
ber of basis functions that we used. Consequently, any claims that we may
make about the precision with which we have estimated these curves must
be understood to be conditional on the amount and quality of information
that we have at our disposal. There is no asymptotic sample size when it
comes to estimating a curve. Period. Although the results we have in this
section are what some texts would call “small sample” results, in fact, we
had to do here what is almost always done in practice, that is, substitute
a sample estimate for a population quantity, namely Σe. We really don’t
know what the full implication of this might be.
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We can put the problem this way. In classical statistics, we usually work
with a fixed number of parameters. But in nonparametric curve estimation,
the number of basis functions K has the characteristics of a random vari-
able. Two investigators working with different objectives, different number
of sampling points, different residual variance levels, different ranges, and
so forth are quite likely to work with different values of K. We really need,
therefore, to take into account variation in K in our interval estimates,
something that this chapter has not done. The interval estimation problem
is, as far as K is concerned, more suitable for a Bayesian approach than
for the classical methodology used here.

Elsewhere, moreover, we will have to substitute approximations for so-
called “exact” results. Because, for example, the monotone smoother is not
a linear function of the data, it was necessary to replace an exact calculation
of the mapping y2cMap by a first-order approximation. This is inevitably
a crude approximation in many situations, and always has the potential to
be misleading.

So what to do? In the end, there is probably no safe substitute for compu-
tationally intensive methods such as simulation, bootstrapping of various
kinds, and cross-validation methods. If these methods give results in essen-
tial agreement with these cheaper exact or asymptotically correct estimates,
perhaps we can breathe a sigh of relief and carry on. But we should always
assume that our decisions will only be reasonable until better data become
available.

13.6 Further reading and notes

Brumback and Rice (1998) reported a functional analysis of variance involv-
ing daily progesterone metabolite concentrations over the menstrual cycles
of 91 women enrolled in an artificial insemination clinic. The main exper-
imental factor was whether conception occurred (21) or not (70). Within
and between woman variation was also assessed. This work proceeded in-
dependently of Ramsay and Silverman (1997), but ended up using rather
similar methods, and identified some serious computational difficulties in-
volved with working with random functional factors. The discussion that
followed the paper highlighted a number of issues. We strongly recommend
reading this paper as a supplement to this chapter.

Faraway (1997) used functional ANOVA to study three–dimensional
movement trajectories in a complex industrial design setting. Muñoz Mal-
donado, Staniswalis, Irwin and Byers (2002) suggest three ways of testing
the equality of curves collected from samples of young and old rats. Another
application of functional ANOVA can be found in Ramsay, Munhall, Gracco
and Ostry (1996), where variation in lip movement during the production
of four syllables is analyzed at the level of both position and acceleration.
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Spitzner, Marron and Essick (2003) combine functional ANOVA with a
mixed-model approach to study human tactile perception. Fan and Lin
(1998) proposed a method for testing for significance when the response
variable is functional. Yu and Lambert (1999) fit tree models to functional
responses.

Li, Aragon, Shedden and Thomas Agnan (2003) offer an approach that
combines elements of the concurrent functional linear model discussed
in Chapter 14, principal components analysis and the varying-coefficient
model. This paper applies the sliced inverse regression or SIR method de-
veloped by Li (1991) to a functional response predicted by one or scalar
independent variables.

Chiou, Müller and Wang (2003) describe an interesting variant of the
functional linear model. They propose that principal components scores
fim, m = 1, . . . , M, associated with the response functions xi are related to
the covariate values zij through

fim = αm(
∑

j

βmjzij) + εim. (13.33)

This model combines a linear model for the arguments of the regression co-
efficient functions αm with a principal components model for the response.
Models in which argument values are themselves linear combinations of
covariates are often referred to as single index models. The med-fly life
history data to which the authors apply the model have been analyzed in
many fascinating and original ways, and a collection of the papers on these
data makes fascinating reading for anyone wishing to see functional data
analysis in action.


