
15
Functional linear models for
scalar responses

15.1 Introduction

In this chapter, we consider a linear model defined by a set of functions,
but where the response variable is scalar or multivariate. This contrasts
with Chapter 13, where the responses and the parameters were functional,
but, because of the finite and discrete covariate information, the linear
transformation from the parameter space to the observation space was still
specified by a design matrix Z as in the conventional multivariate general
linear model

y = Zb + ε . (15.1)

We now consider a functional extension of linear regression where the pre-
diction of the scalar values yi is based on functions zi. This problem is
of interest in its own right, and also raises issues about more complicated
problems in subsequent chapters.

For illustration, let us predict total annual precipitation for a Canadian
weather station from the pattern of temperature variation through the year.
To this end, let yi = LogPreci be the logarithm of total annual precipitation
at weather station i, and let zi = Tempi be its daily temperature function.
We now replace the regression vector b in (15.1) by a function β, so that
the model now takes the form

LogPrec = α +
∫ T

0
Temp(s)β(s) ds + ε . (15.2)
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Figure 15.1. The weight function β that allows perfect prediction of log total
annual precipitation from observed annual pattern of temperature.

We see that the summation implied in the matrix product Zb in (15.1) is
now replaced by an integration over a continuous index s in (15.2).

15.2 A naive approach: Discretizing the covariate
function

It might occur to us to treat the values of temperature at each observation
point as a separate covariate, and then just proceed with ordinary multiple
regression. This would certainly get us into trouble! To see why, suppose
that Tempij is the entry for the temperature at station i on day j, and we
wish to predict LogPreci by

LogPreci = α +
365∑
j=1

Tempijβj + ei i = 1, 2, . . . , 35. (15.3)

We can view this as a finely discretized version of the functional model being
considered. This is a system of 35 equations with 366 unknowns. Even if
the coefficient matrix is of full rank, there are still infinitely many sets of
solutions, all giving a perfect prediction of the observed data. Figure 15.1
plots the bj ’s for one such solution, and it is hard to imagine that we can
make much practical use out of such a result.

Returning to the functional model (15.2), we now understand that the
regression coefficient function β is bound to be under-determined on the
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basis of any finite sample (zi, yi). This is because, essentially, we have an
infinite number of parameters β(s) available by discretizing s finely enough,
but a finite number of conditions yi = α+

∫
ziβ to approximate. Usually it is

possible to find α̂ and β̂ to reduce the residual sum of squares (15.2) to zero.
Furthermore, if β∗ is any function satisfying

∫
ziβ

∗ = 0 for i = 1, . . . , N ,
then adding β∗ to β̂ does not affect the value of the residual sum of squares.

In the weather data example, a possible approach is to reduce the number
of unknowns in problem (15.3) by considering the temperatures on a coarser
time scale. It is unlikely that overall precipitation is influenced by details
of the temperature pattern from day to day, and so, for example, we could
investigate how the 12-vectors of monthly average temperatures can be used
to predict total annual precipitation. If Z is the 35 × 12 matrix containing
these values, we can then fit a model of the form ŷ = α̂ + Zβ̂, where ŷ
is the vector of values of log annual precipitation predicted by the model,
and β̂ is a 12-vector of regression parameter estimates. Since the number of
parameters to be estimated is now only 13, and thus less than the number
of observations N = 35, we can use standard multiple regression to fit the
model by least squares.

We can summarize the fit in terms of the conventional R2 = 1−SSE/SSY
measure, and this is 0.84, indicating a rather successful fit, even taking into
account the 13 parameters in the model. The corresponding F-ratio is 9.8
with 12 and 22 degrees of freedom, and is significant at the 1% level. The
standard error estimate is 0.34, as opposed to the standard deviation of the
dependent variable of 0.69.

Figure 15.2 presents the estimated regression function β, obtained by
interpolating the individual estimated coefficients β̂j as marked on the fig-
ure. It is still not easy to interpret this function directly, although it clearly
places considerable emphasis on temperature in the months of April, May,
August and September. The lack of any very clear interpretation indicates
that this problem raises statistical questions beyond the formal difficulty
of fitting an under-determined model. In any case, the model certainly uses
up a rather large proportion of the 35 degrees of freedom available in the
data.

Since the space of functions satisfying (15.2) is infinite-dimensional, no
matter how large our sample size N is, minimizing the residual sum of
squares cannot, of itself, produce a meaningful or consistent estimator of
the parameters β in the model (15.2). Consequently, to provide an estimate
of β̂ that we can interpret or otherwise use, or even just identify uniquely,
we must use some method of regularization, and this is discussed in the
following sections.

In short, penalizing roughness when a functional covariate is involved is
no longer cosmetic, but an essential aspect of finding a useful solution. We
have already seen this issue discussed in Section 11.5 in functional canonical
correlation analysis, and we will consider it again in the next chapter.
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Figure 15.2. The regression function β for the approximation of annual mean log
precipitation by the temperature profiles for the Canadian weather stations.

15.3 Regularization using restricted basis functions

To reduce the degrees of freedom in the model still further, we now expand
the regression function β in terms of a set of basis functions θk(s), and
the Fourier basis is the logical choice here because of the the underlying
smoothness and stationarity of the seasonal variation in temperature. Let
θ be a vector of Fourier basis functions of length Kβ , so that

β(s) =
Kβ∑
k

bkθk(s) or β = θ′b. (15.4)

We choose some suitably large Kβ that does not entail any significant
loss of information, but hopefully keeps Kβ small enough so that we can
reasonably interpret β.

At the same time, let us assume that the covariate functions Tempi are
also expanded in terms of Fourier basis vector ψ of length Kz, so that

Tempi(s) =
Kz∑
k

cikψk(s) or Temp(s) = Cψ(s) , (15.5)

where coefficient matrix C is N by Kz. For the monthly and daily
temperature data, for example, Kz would be 12 and 365, respectively.
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Figure 15.3. Estimated regression weight functions β using Kβ = 12, 5, 4 and 3
basis functions.

Now the model can be expressed as

ŷi =
∫ T

0
Temp(s)β(s) ds =

∫ T

0
Cψ(s)θ(s)′b ds = CJψθb , (15.6)

where Kz by Kβ matrix Jψθ is defined by

Jψθ =
∫

ψ(s)θ′(s) ds . (15.7)

We can further simplify notation by defining the (Kβ + 1)-vector ζ =
(α, b1, . . . , bK)′ and defining the coefficient matrix Z to be the N ×(Kβ +1)
matrix Z = [1 CJψθ]. Then the model (15.1) becomes simply

ŷ = Zζ̂ (15.8)

and the least squares estimate of the augmented parameter vector ζ is the
solution of the equation

Z′Zζ̂ = Z′y . (15.9)

A convenient method of regularization that we used in Chapter 4 is to
truncate the basis by choosing a value Kβ < Kz. We can then fit ζ by least
squares, and the problem is now a standard multiple regression problem.

Figure 15.3 shows the result of carrying out this procedure for the daily
weather data with varying numbers Kβ of basis functions. The choice Kβ =
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12 is intended to correspond to the same amount of discretization as using
monthly average data, and we can see that the weight function is similarly
uninformative. To obtain results more likely to be meaningful, we have
to use a much smaller number of basis functions, and, by considering the
graphs for Kβ = 4 and Kβ = 3, it appears that a predictor for high
precipitation is a relatively high temperature towards the end of the year.

But the model complexity increases in discrete jumps as Kβ varies from
three to five, and we might want finer control. Also, to obtain reasonable
results, β must be rigidly constrained to lie in a low-dimensional parametric
family, and we may worry that we are missing important features in β as
a consequence. Section 15.4 develops a more flexible approach making use
of a roughness penalty method.

15.4 Regularization with roughness penalties

The estimated function β̂ in Figure 15.1 illustrates that fidelity to the
observed data, as measured by the residual sum of squares, is not the only
aim of the estimation. The roughness penalty approach makes explicit the
complementary, possibly even conflicting, aim of avoiding excessive local
fluctuation in the estimated function.

To this end, we can define the penalized residual sum of squares

PENSSEλ(α, β) =
N∑

i=1

[yi − α −
∫

zi(s)β(s) ds]2 + λ

∫
[Lβ(s)]2 ds , (15.10)

where L is a linear differential operator that is suitable for the problem.
In this situation, it is reasonable to expect that regression function β will
be periodic, just like the average temperature function that it multiplies.
Consequently, it seems appropriate to choose harmonic acceleration as the
type of roughness to penalize. That is, we choose

Lβ = (
2π

365
)2Dβ + D3β

so that in the limit, as λ → ∞, the regression function will approach a
shifted sinusoid. Sections 15.5 and 15.7 discuss the algorithmic aspects of
minimizing (15.10).

We can choose the smoothing parameter λ either subjectively or by an
automatic method such as cross-validation. To apply the cross-validation
paradigm in this context, let α

(−i)
λ and β

(−i)
λ be the estimates of α and β

obtained by minimizing the penalized residual sum of squares based on all
the data except (zi, yi). We can define the cross-validation score as

CV(λ) =
N∑

i=1

[
yi − α

(−i)
λ −

∫
zi(s)β

(−i)
λ (s)

]2
ds (15.11)
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Figure 15.4. The cross-validation score function CV(λ) for fitting log annual pre-
cipitation by daily temperature variation, with a penalty on the size of harmonic
acceleration. The logarithm of the smoothing parameter is taken to base 10.

and minimizing CV(λ) over λ gives an automatic choice of λ. In practice,
there are efficient algorithms for calculating the cross-validation score, and
Section 15.6 discusses these.

We used 65 basis functions to represent the temperature curves and 35
Fourier basis functions to represent β. With this number of basis functions
for β, it would be possible to exactly fit the data from the 35 weather
stations. However, we wanted to see how well cross-validation would help
us in arriving at a reasonable fit by penalizing harmonic acceleration. Fig-
ure 15.4 plots the cross-validation score against the logarithms of various
values of λ. The plot shows two distinct minima over the range of values
plotted. Not shown, however, is the fact that fitting the data exactly or
nearly exactly actually gave a smaller cross-validation score than either of
these minima. We chose λ = 1012.5 for the final fit, corresponding to the
lower minimum in the plot.

Figure 15.5 shows the estimated regression function along with point-
wise 95% confidence limits. The confidence intervals in the earlier summer
months contain zero, suggesting that the influence of temperature on pre-
cipitation in that period is not important. However, we see a strong peak
in the late fall followed by a valley in the early spring. This pattern is, in
effect, computing a contrast between fall and early spring temperatures,
with more emphasis on the autumn. This pattern favors weather stations
that are comparatively warm in October and cool in spring, and where,
moreover, spring comes early. This is just what we saw in Chapter 7 for
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Figure 15.5. The estimated weight function for predicting the log total annual
precipitation from the daily temperature pattern. The estimate was constructed
by the penalizing the size of harmonic acceleration, with the smoothing parameter
λ = 1012.5 chosen by cross-validation.

the Pacific and Atlantic stations with marine climates, where the seasons
are later than average and the fall weather is warm relative to the inland
stations.

In Figure 15.6, we have plotted the observed values yi against the fitted
values ŷi obtained using this functional regression. The squared correlation
between the predicted and actual values in the plot is 0.75. This simple
regression diagnostic seems to confirm the model assumptions. However,
we didn’t do so well for Kamloops, whose predicted value of about 2.9 is
well above its actual value of a bit under 2.5. But Kamloops is deep in
the Thompson River valley, and the rain clouds usually just pass on by.
Section 15.6 describes another diagnostic plot.

15.5 Computational issues

A basis function approach has appeal because it is especially simple to
apply, and moreover some problems in any case suggest a particular choice
of basis. The periodic nature of the temperature and precipitation data,
for example, seems naturally to call for the use of a Fourier series basis.
Our first strategy is therefore to represent the regularized fitting problem
in terms of a basis function expansion, and then to apply the concept of
regularization to this representation.
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Figure 15.6. Observed values yi of log annual precipitation plotted against the val-
ues ŷi predicted by the functional regression model with the smoothing parameter
chosen by cross-validation. The straight line corresponds to zero residuals.

15.5.1 Computing the regularized solution
Suppose that we expand the covariate functions zi to Kz terms relative to
basis functions ψm and the regression function β to Kβ terms relative to
basis functions θk, as in (15.5) and (15.4), respectively. Define a matrix R
as

R =
∫

[D2φ(s)][D2φ′(s)] ds . (15.12)

In the Fourier case, note that R is diagonal, with diagonal elements ω4
k as

in Section 9.4.1. In general, the penalized residual sum of squares can be
written as

PENSSEλ(α, β) = ‖y − α − CJψθb‖2 + λb′Rb. (15.13)

where Jψθ was defined in (15.7). As before, we deal with the additional
parameter α by defining the augmented vector ζ = (α,b′)′, and at the
same time use Z as the N × (Kz + 1) coefficient matrix [1 CJψθ]. Finally,
let the penalty matrix R be augmented by attaching a leading column and
row of Kz + 1 zeros to yield R0. In terms of these augmented arrays, the
expression (15.13) further simplifies to

PENSSEλ(ζ) = ‖y − Zζ‖2 + λζ′R0ζ. (15.14)
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It follows that the minimizing value ζ̂ satisfies

(Z′Z + λR0)ζ̂ = Z′y. (15.15)

15.5.2 Computing confidence limits
We can again follow the procedure that we used in previous chapters to
compute sampling standard errors for the coefficients in b and the intercept
α in the composite parameter vector ζ. Things are simpler here in one sense
since there is no intermediate step of smoothing the response variable.
Consequently, we can drop the mapping y2cMap.

The matrix corresponding to y2bMap can be simply lifted from (15.15),
and is (Z′Z+λR0)−1Z′. The variance-covariance matrix Σe computed from
the residuals is now a scalar estimate σ2

e of the mean squared residual. The
sampling variance of ζ̂ is given by

Var[ζ̂] = σ2
e(Z′Z + λR0)−1Z′Z(Z′Z + λR0)−1 . (15.16)

15.6 Cross-validation and regression diagnostics

We have already noted the possibility of choosing the smoothing parameter
λ by cross-validation. Various economies are possible in calculating the
cross-validation score CV(λ) as defined in (15.11).

Let S be the so-called hat matrix of the smoothing procedure which maps
the data values y to their fitted values ŷ for any particular value of λ. A
calculation described, for example, in Section 3.2 of Green and Silverman
(1994), shows that the cross-validation score satisfies

CV(λ) =
N∑

i=1

(
y − ŷi

1 − Sii

)2

.

If N is large and we are considering an expansion in a moderate number
K of basis functions, then we can find the diagonal elements of S directly
from

S = Z(Z′Z + λR)−1Z′.

From S, we can also compute an indicator of the effective degrees of
freedom used up in the approximation. Either traceS or traceS2 were rec-
ommended for this purpose by Buja, Hastie, and Tibshirani (1989). For the
fit in Figure 15.5, defined by minimizing the cross-validation criterion, the
effective degrees of freedom are estimated to be trace S = 4.7.

Another important use of the hat matrix S is in constructing various
regression diagnostics. The diagonal elements of the hat matrix are of-
ten called leverage values; they determine the amount by which the fitted
value ŷi is influenced by the particular observation yi. If the leverage value
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Figure 15.7. Deleted residuals from the fitted prediction of log annual
precipitation from overall temperature pattern.

is particularly high, the fitted value needs to be treated with some care.
Two standard ways of assessing the regression fit are to examine the raw
residuals yi − ŷi and the deleted residuals (yi − ŷi)/(1−Sii); the latter give
the residual between yi and the value predicted from the data set with case
i deleted. We refer readers to works on regression diagnostics such as Cook
and Weisberg (1982).

Figure 15.7 shows a plot of deleted residuals against fitted values for the
log precipitation and temperature example, with the smoothing parameter
chosen by cross-validation. The three observations with small predicted
values have somewhat larger leverage values (around 0.4) than the others
(generally in the range 0.1 to 0.2). This is not surprising, given that they
are somewhat isolated from the main part of the data.

15.7 The direct penalty method for computing β

We now turn to a more direct way of using the roughness penalty approach
that computes β̂ direction without using basis functions. Our first task is
to show how we can set up this approach as a two-stage process involving:
(1) minimizing a simple quadratic expression to obtain the vector of values
ŷ approximating the data vector y, and (2) computing the smoothest linear
functional interpolant of these values.
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15.7.1 Functional interpolation
We have already seen that the observed data can in general be fitted exactly
by an infinite number of possible parameter choices (α, β). In some contexts,
it may be of interest to define a functional interpolant (α̃, β̃) to the given
data by the smoothest parameter function choice that fits the data exactly.
In any case, we need to consider this problem in defining the technique
used to compute the estimate for β in Figure 15.5. Therefore, we require
that estimate (α̃, β̃) minimizes ‖D2β‖2 subject to the N constraints

yi = α̃ + 〈xi, β̃〉. (15.17)

The functional interpolant is the limiting case of the regularized estimator
as λ → 0. In fact, the curve β̃ resulting from interpolating the weather data
is identical to that shown in Figure 15.1.

We can consider this minimization problem (15.17) as a way of quan-
tifying the roughness or irregularity of the response vector y relative to
the observed functional covariates xi. More generally, if z1, . . . , zN is any
sequence of values, then we can define the roughness of z relative to the
functional covariates xi as being the roughness of the smoothest function
βz such that

zi = αz + 〈xi, βz〉
for all i, for some constant αz. This method of defining the roughness of a
variate zi will be of considerable conceptual and practical use later.

15.7.2 The two-stage minimization process
Section 15.7.3 shows that we can define an order N matrix R in such a way
that the roughness of a variate z can be expressed as the quadratic form∫

[D2β(s)]2 ds = b′Rb.

Assuming this to be true for the moment, we can conceptualize the smooth-
ing problem as being solved by dividing the minimization of the penalized
residual sum of squares into two stages:

Stage 1: Find predicted values ŷ that minimize PENSSEλ(ŷ) =
∑

i(yi −
ŷi)2 + λŷ′Rŷ, the solution to which is

ŷ = (I + λR)−1y.

Stage 2: Find the smoothest linear functional interpolant (α, β) satisfying

ŷi = α +
∫

xi(s)β(s) ds. (15.18)

This two-stage procedure does indeed minimize PENSSEλ(α, β) by the
following argument. Write the minimization problem as one of first min-
imizing PENSSEλ(α, β) as a function of (α, β) but with ŷ fixed, and then
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minimizing the result with respect to ŷ. Formally, this is

min
ŷ

[min
α,β

{PENSSEλ(α, β)} ]

= min
ŷ

{
∑

(yi − ŷi)
2 + λ min

β

∫
[D2β(s)]2 ds}, (15.19)

where the inner minimizations over α and β are carried out keeping the
values of the linear functionals ŷi as defined in (15.18) fixed.

But according to our assumption, these inner minimizations yield (α, β)
as the smoothest functional interpolant to the variate ŷ, so we may now
write the equation as

PENSSEλ(α, β) = min
ŷ

{
∑

(yi − ŷi)
2 + λŷ′Rŷ}. (15.20)

Setting aside the question of how R is defined for a moment, one of the
advantages of the roughness penalty approach to regularization is that it
allows this conceptual division to be made, in a sense uncoupling the two
aspects of the smoothing procedure. However, it should not be forgotten
that the roughness penalty is used in the construction of the matrix R, and
so the functional nature of the covariates xi, and the use of

∫
(D2β)2 to

measure the variability of the regression coefficient function β, are implicit
in both stages set out above.

We can think of the two-stage procedure in two ways: First as a practical
algorithm in its own right, and second as an aid to understanding and
intuition. We also see in subsequent chapters that it has wider implications
than those discussed here.

In order to use the algorithm in practice, it is necessary to derive the
matrix R, and we now show how to do this.

15.7.3 Functional interpolation revisited
In this section, we present an algorithmic solution to the linear functional
interpolation problem presented in Stage 2 in the two-stage procedure set
out in Section 15.7.2. That is, it is of interest to find the smoothest func-
tional interpolant (α̃, β̃) to a specified N -vector ŷ relative to the given
covariates zi, i = 1, . . . , N . For practical purposes, our algorithm is suitable
for the case where the sample size N is moderate, where matrix manipu-
lations of N × N matrices do not present an unacceptable computational
burden.

Let matrix Z be defined in terms of the functional covariates zi as de-
scribed in Section 15.3. In terms of basis expansions, we wish to solve the
problem

min{ζ′Rζ} subject to Zζ = ŷ. (15.21)
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We first define some more notation. By rotating the basis if necessary,
assume that the first M0 basis functions φν span the space of all functions f
that have roughness

∫
(D2f)2 = 0. In the Fourier case, this is true without

any rotation: The only periodic functions with zero roughness are constants,
so M0 = 1, and the basis φν consists of just the constant function.

Let K2 be the matrix obtained by removing the first M0 rows and
columns of K. Then K2 is strictly positive-definite, and the rows and
columns removed are all zeroes. In the Fourier case, K2 is diagonal.

Corresponding to the above partitioning, let Z1 be the matrix of the first
M0 + 1 columns of Z, and let Z2 be the remaining columns. Defining P
to be the N × N projection matrix P = I − Z1(Z′

1Z1)−1Z′
1 permits us

to define Z∗ = PZ2. In the periodic case, Z1 has columns (1, . . . , 1) and
(x̄1, . . . , x̄N ), where x̄i =

∫
zi(s) ds for each i. Thus P is the N ×N matrix

that projects any N -vector z to its residuals from its linear regression on
x̄i.

Continuing with this partitioning process, let ζ1 be the vector of the first
M0 + 1 components of ζ, and let ζ2 be the remaining components of ζ.
Then the constraint

Zζ = Z1ζ1 + Z2ζ2 = ŷ

implies, by multiplying both sides by Z′, that

Z′
1Z1ζ1 + Z′

1Z2ζ2 = Z′
1ŷ. (15.22)

Solving for ζ1 alone gives

ζ1 = (Z′
1Z1)−1Z′

1(ŷ − Z2ζ2) and Z1ζ1 = (I − P)(ŷ − Z2ζ2). (15.23)

In the periodic case, equation (15.23) indicates that ζ1 is obtained by linear
regression of the values ŷ − Z2ζ2 on the vector with components x̄i. Thus,
once ζ2 has been determined, we can find ζ1.

Now substitute solution (15.23) for ζ1 back into the constraint (15.22)
and rearrange to show that we can find ζ2 by solving the minimization
problem

min
ζ2

{ζ′
2K2ζ2} subject to Z∗ζ = Pŷ (15.24)

using the fact that ζ′Kζ = ζ′
2K2ζ2.

Let R be defined as the Moore-Penrose g-inverse

R = (Z∗K−1
2 Z∗′)+. (15.25)

The solution of the minimization (15.24) is then given by

ζ2 = K−1
2 Z∗′Rŷ (15.26)

and the minimum value of the objective function ζ′Rζ is therefore

ζ′Rζ = ζ′
2K2ζ2
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= ŷ′RZ∗′K−1
2 K2K−1

2 Z∗Rŷ

= ŷ′RR+Rŷ

= ŷ′Rŷ. (15.27)

This is the assumption we made above in defining the two-step procedure,
and moreover we have now defined the matrix R.

We can now sum up this discussion by setting out an algorithm for
functional interpolation as follows:

Step 1: Calculate matrices P = I − Z1(Z′
1Z1)−1Z′

1 and Z∗ = PZ2. In
effect, the columns of Z∗ are the residuals from a standard regression
of the corresponding columns of Z2 on the design matrix Z1.

Step 2: Compute R as defined in (15.25) above.

Step 3: Compute ζ2 from (15.26) and use (15.23) to find ζ1.

Of course, if all we require is the roughness of ζ, then we can find ŷ′Rŷ
from (15.25) without actually calculating ζ.

Finally, returning now to our two-stage technique for smoothing, we can
now carry out the first step by solving the equation

(I + λR)ŷ = y.

Note, by the way, that if R is either diagonal (as for the Fourier basis)
or band-structured (as for the B-spline basis), that this solution is rapidly
computable, and hence trying out various values for λ is quite feasible.

If we are dealing with a large data set by truncating or restricting the ba-
sis expansion to a reasonable dimensionality K as described in Section 15.3,
then we only wish in general to assess the roughness of variates of the form
Zζ for known ζ with ζj = 0 for j > m. It is usually more appropriate to
calculate ζ′Rζ for such variates directly if it is needed.

15.8 Functional regression and integral equations

Functional interpolation and regression can be viewed as a different for-
malization of a problem already considered in detail in Chapter 6, that of
reconstructing a curve given certain indirect observations. Suppose that g is
a curve of interest, and that we have noisy observations of a number of lin-
ear functionals li(g). Such a problem was explored by Engle, Granger, Rice
and Weiss (1986); see also Section 4.7 of Green and Silverman (1994). The
problem involved in reconstructing the effect of temperature t on electricity
consumption, so that g(t) is the expected use of electricity per consumer on
a day with average temperature t. Various covariates were also considered,
but these need not concern us here.

Electricity bills are issued on various days and always cover the previous
28 days. For bills issued on day i, the average consumption (after correcting
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for covariates) would be modelled to satisfy

1
28

EYi = 〈θi, g〉,

where θi is the probability density function of temperature over the previous
28 day period. By setting zi = 28θi and β = g, we see that this problem falls
precisely into the functional regression context, and indeed the method used
by the original authors to solve it corresponds precisely to the regularization
method we have set out.

More generally, regularization is a very well-known tool for the solution
of integral equations; see, for example, Section 12.3 of Delves and Mohamed
(1985).

15.9 Further reading and notes

The subject of this chapter is probably the area in functional data analy-
sis that has undergone the most development since the publication of the
first version of this volume. The STAPH group that meets regularly at
Paul Sabatier University in Toulouse has been especially active in terms of
both applications and theory. To learn more about their work, consult the
website http://www.lsp.ups-tlse.fr/Fp/Ferraty/staph.html.

Cardot, Faivre and Goulard (2003) predicted type of land use based on
the evolution of the reflectance of a parcel of land in a specified wavelength
over time as measured by satellite imagery. They also used functional prin-
cipal components analysis to reduce the dimensionality of the reflectance
curves prior to estimating the functional linear model, an approach first
developed in Cardot, Ferraty and Sarda (1999) and discussed further in
Cardot, Ferraty and Sarda (2003). Cardot, Goia and Sarda (2004) devel-
oped a test of the hypothesis that there is no effect on the outcome variable
by the predictor variable, and Cardot, Ferraty, Mas and Sarda (2004) re-
port further developments. Cardot, Faivre and Maisongrande (2004) use
a mixed effects formulation of this model. Ferraty, Goia and Vieu (2002)
forecast United States monthly electricity consumption, and Ferraty and
Vieu (2002) predict the fat content of meat samples from spectrometric
curves. Cardot (2002) used a roughness penalty that is similar to that used
by Eilers and Marx (1996).

Escabias, Aguilera and Valderrama (2004), James (2002) and Cardot
and Sarda (2004) look at the larger problem of how to adapt the gen-
eralized linear model to the presence of a functional predictor variable,
and offer a number of examples, including the situation considered here
of a continuous dependent variable. Escabias et al. (2004) combine the
functional linear model with principal components analysis to reduce the
dimensionality of the covariate space. James (2002) also describes an in-
teresting method for estimating the between-curve variation as well as the
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within-curve structure. Müller and Stadtmüller (2004) also investigate that
they call the generalized functional linear model. James and Hastie (2001)
consider linear discriminant analysis where at one of the of independent
variables used for prediction is a function, and where the curves are irreg-
ularly sampled. Ratcliffe, Leader and Heller (2002) and Ratcliffe, Heller
and Leader (2002) use the functional covariate foetal heart rate to model
continuous and binary outcome variables.


