17

Derivatives and functional linear
models

17.1 Introduction

This chapter is an introduction to the idea of a differential equation, and
aims to provide for readers unfamiliar with differential equations some of
the basic ideas that will carry them forward into the next chapters. We
begin with an example where we see the advantages of modelling the rate
of change of a function as the dependent variable. Of course, by term “rate
of change” we mean a derivative of a function, and in this case the first
derivative. Models for derivatives are often termed models for the dynamics
of a system, or dynamic models.

We will see how these dynamic models, expressed as differential equa-
tions, permit us to model both the function itself and one or more of its
derivatives at the same time. How does this differ from what we have al-
ready been doing, say, with the growth data? There, by contrast with a
truly dynamic model, we begin with a model for the observed data, the
height measurements. To be sure, we selected this model with an eye to
looking at derivatives, but fundamentally we modelled the data and then
let the derivatives emerge as by-products. Now, however, and in the next
chapters, we look at linking derivatives and function values together so
as to take away the privileged place of the function as the object to be
estimated.
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Figure 17.1. The upper panel shows the level of material in a tray of a distillation
column in an oil refinery, and the lower level shows the flow of material being
distilled into the tray. The points are measured values, and the solid lines are
smooths of the data using regression splines. Time is in minutes.

17.2  The oil refinery data

A distillation column or cracking tower in an oil refinery converts crude oil
to refined petroleum products like gasoline by boiling the crude and passing
the vapor through a series of trays where, at each level, the condensate
becomes more refined. Figure 17.1 shows the output from tray number 47
in the upper panel in response to the input shown in the lower panel. Both
functions have been centered on their values at time 0, the time and flow
units are unknown, and input flow has been measured in the downward
direction.

We see that the output changes slowly in response to an abrupt change in
input, although it is clearly headed toward some stable upper level between
four and five units. It seems to have a fair amount of inertia, and the results
are analogous to those of a person pushing a car on level ground. Otherwise
there does not seem to be much to understand here; we increase the flow
into a tank with an outlet, and the level rises.

The refinery data show variation on two time scales: The long-term scale
involves the overall change in level from zero to near five that takes place
over several hundred time units, and the the shorter time scale covers period
from time 67 to where the new level is achieved, covering about one hundred
units. We would like to find a way to model both the long-term change in
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Figure 17.2. The regression coefficient function § for model (17.1) for the oil
refinery data.

the output, and the rate of change over the shorter period that produces
this change.

Here are a few technical asides on how we smoothed these data. Both
functions show a sharp break at time number 67; the upper curve has a dis-
continuous derivative, and the lower curve is itself discontinuous. In order
to have the smooth curve for the output to have a derivative discontinuity
at 67, we used order four splines and placed three coincident knot values
at that time. There was also one knot positioned midway between 0 and
67, and three equally spaced knots between 67 and 193. These knot choices
imply a total of eleven basis functions. The lower curve was fit with order
one splines with a single interior knot placed at 67.

Suppose that we model these data using the concurrent functional linear
model described in Chapter 14, so that

Tray(t) = Reflux(¢)5(t) + €(t). (17.1)

We used nearly the same basis system for the single regression coefficient
B(t) except that we dropped the interior knot in the first interval, thus
using ten splines. Figure 17.2 displays the estimated regression function.
After time 67, 8 simply mirrors the behavior of the output, and we have
little interest in its behavior before time 67, where it captures some of the
data’s wanderings around zero. The fit to the data, not shown, is virtually
the same as that shown in Figure 17.1.

This seems disappointing. We haven’t learned much from the shape of
the regression function that we couldn’t see in the original data. In fact, a
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Figure 17.3. The first estimated derivative of Tray 47 level is shown as a solid
line, and the fit to this derivative from model (17.2) is shown as a dashed line.

little thought convinces us that simply making § negatively proportional
to Tray is going to work just fine.

Now let’s take a different approach, involving explicit use of tray 47’s
first derivative as computed from the smooth in Figure 17.1, and shown in
Figure 17.3. There is a fair amount of variability in this derivative estimate,
but we do see something like exponential decay in the derivative after time
67, which seems consistent with what we see in Figure 17.1.

We propose to make this derivative the dependent variable, and to use
two independent variables, namely Tray level itself and the input, Reflex
flow. The model is therefore

DTray(t) = —(1(t)Tray(t) + [2(t)Reflux(t) + €(t). (17.2)

It is the usual practice in formulating a linear differential equation model
to place a minus sign in front of coefficient functions such as 3 (t).

The motivation here is to model the behavior of the rate of change of the
output as a function of both the output level and the input. This time we
will impose extreme simplicity on both the regression functions by using a
constant basis for each. The results that we obtain are 3;(¢) = 0.02 and
Ba(t) = —0.20. Figure 17.3 shows the fit to the first derivative offered by
this model, and we have captured nicely the idea of zero derivative up to
time 67 and exponential decay afterwards.

Model (17.2) is an example of a first order linear differential equation
with constant coefficients. This is to say that the equation links the first
derivative to the function value and the input function, and that the linking
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equation is linear with coefficients that are constant. In order to see how
well the result fits the data, we need to solve equation (17.2) for Tray. For-
tunately, any basic text on differential equations will give us the solution,
which is, using y(¢) to stand for Tray(¢) and wu(t) to stand for Reflux(t),

y(t) = e [y(0) — (Ba/f1) / eP15u(s) ds). (17.3)

We can simplify this further by specifying that y(0) = 0, u(t) = 0,t < 67,
and u(t) = —0.4924,t > 67 to get

y(t) = 0.4924%[1 — e M=6D] ¢ > 67, and 0 otherwise. (17.4)

1
The fit to the data offered by this equation is shown in Figure 17.4. The
two parameter values define a model that fits the data beautifully, and
predicts that the new level that Tray is approaching is 4.7.
Here’s a summary of what we learn from the model by studying equations
(17.3) and (17.4):

e When there is no input, Tray level will decay exponentially with a
rate constant of —0.02 from whatever its level is at time 0.

e When Reflux increases by one unit, the level of Tray 47 will increase
at an exponentially declining rate (rate constant again —0.02) to a
new level 0.2/0.02 = 10 units higher. This is the long-term change in
the output.

e The time from increase in Reflux to the time Tray achieves its new
level is about 4/0.02 = 200 time units, and this is the shorter term
period in which the actual change takes place.

e (31 is the rate constant, and therefore controls the rate of change of
Tray level. It models the dynamic behavior of Tray.

e 35, along with 1, controls the ultimate change; the long-term gain
per unit increase in Reflux flow is B2 /0;.

17.3 The melanoma data

Figure 17.5 presents age-adjusted melanoma incidences for 37 years from
the Connecticut Tumor Registry (Houghton et al. 1980). The solid line is a
smoothing spline fit by penalizing the size of the fourth derivative D*z and
choosing the penalty parameter by minimizing generalized cross-validation
or GCV. Two types of trends are obvious: a steady linear increase and
a periodic component. The latter is related to sunspot activity and the
accompanying fluctuations in solar radiation. If we look closely, though, we
can also see that there are some changes in the periodic trend; the peaks
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Figure 17.4. The fit to the data defined by model (17.2) is shown as a solid line,
and the data as points.
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Figure 17.5. Age-adjusted incidences of melanoma for the years 1936 to 1972. The
solid curve is the polynomial smoothing spline fit to the data penalizing the norm
of the fourth derivative, with the smoothing parameter chosen by minimizing the
GCV criterion.
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around 1950 and 1960 seem stronger than those near 1940 and 1970, and
perhaps the length of each cycle changes a little, too.

In short, there are three time scales here: the unlimited time over which
linear trend is maintained, the short-term sunspot cycle of about ten years,
and the medium term covering the range of years in the data in which the
cycles themselves change.

We again want to find a simple model that will capture changes on
these three time spans, and that will also tell us something about the
dynamics of the cyclical variation. We already know that a straight line
solves the differential equation D?z = 0 and that sin(wt) and cos(wt) solve
the equation D?r = —w?x for some period 2m/w. We can put these two
ideas together working with the fourth order equation D*zx = —w?D?z.
Let’s add one more parameter to define the differential equation

Dz = —3,D?*x — 3, D3z, (17.5)

where 31 = —w? and B, called the damping coefficient, allows for an expo-
nential decay in the oscillations by multiplying sin(wt) and cos(wt) by the
factor exp(—/32t/2) where t = year — 1935.

Here’s an algorithm for estimating the unknown coefficients 3 and (s:

1. Start by smoothing the data, as we have already done, using smooth-
ing splines penalized by using D* with the smoothing parameter A
that minimizes GCV.

2. Compute the derivatives of the smooth up to order four.

3. Carry out a regression of the fourth derivative values, taken at each
year, on the corresponding values for the second and third derivatives.
The regression coefficients are estimates of 51 and (5.

4. Define the linear differential operator L as
Lz = (1 D%z + D32 4+ Dz, (17.6)

Operator L is just a re-arrangement of differential equation (17.5); x
satisfies the equation if and only if Lz = 0.

5. Now smooth the data using the roughness penalty defined by this
linear differential operator, and again choose A to minimize GCV.
Hopefully, because this operator will annihilate more of the varia-
tion in the data than D* would, the smooth will be better and the
estimates of the derivatives will also improve.

6. Check for convergence in the regression coeflicients, or in the value of
GCV. If convergence occurs, continue on to the last step; otherwise,
return to step 2.

7. As we did for the refinery data, see how well the smooth fits the data,
and also how well the data are fit by a solution to the differential
equation (17.5).
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Figure 17.6. The light dashed line is the minimum-GCYV fit to the data using a
roughness penalty on D*. The heavy solid line is the fit using a roughness penalty
on Lz, where L is defined by (17.6). The dotted line is the best fit for functions
satisfying differential equation (17.5).

This process effectively converged in five iterations, at which point £ and
Bo are 0.56 and 0.018, respectively. We can work out that w? = 332 /4 + 3,
and this corresponds to a period of 8.39 years. The period was estimated
in the first iteration as 11.22 years.

Now we’re in a position to compare the various fits to the data:

e The same fit as in Figure 17.5 using the D* operator.
e The smoothing fit using the converged value of operator L.

e The fit Lz satisfying Lx = 0, that is, satisfying the differential
equation (17.5).

Each of these fits are shown in Figure 17.6. The final smooth tracks the
data a bit better, especially between 1960 and 1965. But now we have a
good estimate of the trend that can be fit with an exponentially decaying
sinusoid plus linear trend, and we see that there are indeed phase differences
between the smooth and the strictly periodic fit. Actually, the exponential
decay is small, and scarcely visible in the plot.

The changes in the cycles resulting from iteratively updating the smooth-
ing function and its derivatives are more visible in the phase-plane plot in
Figure 17.7. In the right panel, showing the results for the estimated rough-
ness penalty, the amplitudes of the cycles are stronger and the behavior of
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Figure 17.7. Two phase—plane plots for the fit to the melanoma data. The left
panel is for the initial roughness penalty defined by the differential operator D*,
and the right panel is for the estimated operator L defined in (17.6).

the fit at the beginning and end of the curve is consistent with its behavior
elsewhere.

17.4 Some comparisons of the refinery and
melanoma analyses

Why was the differential equation (17.2) for the refinery data of order one
and (17.5) for the melanoma model of order four? The reason is that we
could express the shape of Tray in terms of only a single function, whereas
we required four component or basis functions to express the essential struc-
ture of the melanoma data. Of course, the melanoma model required only
two constants to be estimated, but that was because we could assume that
the multipliers of z and Dx were zero. They are there, after all, but are
just not estimated from the data.

On the other hand, the refinery data involved both an input and an
output. Hence, we needed a parameter to model the impact of a change in
the input, as well as a parameter to model the internal dynamics of the
output. In the melanoma data, there was no input (although we could well
have used sunspot activity records as an input), but the internal dynamics
were, in effect, four dimensional.
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In both problems we used two levels of fitting. The low-dimensional
fit was defined by the solution of a differential equation, and the higher-
dimensional fit was achieved by keeping smoothing parameter A low enough
that the roughness penalty did not overwhelm the data fit. This means that
we partitioned the functional variance into two parts: the low-dimensional
part captured by the differential equation, and the balance which is the
difference between the low- and high-dimensional fits. The differential
equations played key roles in this process.

For both models we estimated some parameters defining the differential
equation from the data. In effect, the process that we used for the refinery
data was simply a one-step version of the more sophisticated algorithm
that we used for the melanoma data.

Perhaps this is the most important conclusion to take away from this
chapter: We can use noisy data to estimate a differential equation that
expresses at least a substantial part of the variation in the data. This
problem is taken up in Chapter 19. First, though, you may want to read
the next chapter, which offers a review of a number of results about linear
differential equations and linear differential operators.



