
18
Differential equations and operators

18.1 Introduction

The derivatives of functional observations have played a strong role from
the beginning of this book. For example, we chose to work with acceleration
directly rather than height for growth curves and handwriting coordinate
functions, and to inspect functions (π/6)2D Temp+D3Temp for temperature
profiles. We used D2β as a measure of curvature in an estimated regres-
sion function β so as to regularize or smooth the estimate, and applied
this idea in functional principal components analysis, canonical correla-
tion, and various types of linear models. When the objective was a smooth
estimate of a derivative Dmx, we used Dm+2x to define the roughness
penalty. Thus, derivatives can be used both as the object of inquiry and as
tools for stabilizing solutions.

In Chapter 17, we introduced the idea of incorporating derivatives into
linear models for functional data. We saw that this permitted a model for
the simultaneous variation in a function and one or more of its derivatives,
and in the oil refinery example in Section 17.2, the approach came up
with an elegant little model with only two parameters that fit the data
beautifully.

It is time to look more systematically at how derivatives might be
employed in modelling functional data. Are there other ways of using
derivatives, for example? Can we use mixtures of derivatives instead of
simple derivatives? Can we extend models so that derivatives can be used
on either the covariate or response side? Can our smoothing and regulariza-
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tion techniques be extended in useful ways? Are new methods of analysis
making explicit use of derivative information possible?

This chapter provides some background on differential equations and
their use in applications. Readers either considering differential equations
for the first time or whose memories of their first contact has dimmed
may appreciate this material. We begin with the simplest of input/output
systems commonly described by a differential equation. After considering
possible extensions, we review how linear differential operators may be used
in various ways and some basic theory. The last three sections, on constraint
functionals, Green’s functions and reproducing kernels, are more advanced.
They may therefore be profitable to those already having a working knowl-
edge of this field. We nevertheless consider these topics to be of potential
importance for statistical applications, and they play a role in subsequent
chapters.

18.2 Exploring a simple linear differential equation

An input/output system has an input function u that in some way modifies
an output function x. Perhaps you might like to return to the refinery data
in Figure 1.4 for an example.

Here is the simplest prototype for such equations:

Dx(t) = −βx(t) + αu(t) + ε(t). (18.1)

This is a functional linear model in which the dependent variable is the
derivative of output x, and the two independent variables are x itself and
input function u. To keep things as simple as possible, we have specified
that the regression coefficient functions are constant. Function ε allows for
noise and other forms of ignorable variation in the functional data. It is a
useful convention to place a minus before terms on the right side involving
output function x; most real-life systems modelled by differential equations
have positive values of β if we do this, reflecting their natural tendency to
return to their resting state.

We could, however, make things even simpler by dropping u from the
equation. Situations do arise where the goal is to model the behavior of a
function x and its derivatives without considering any external influences.
The no-input version of the equation,

Dx(t) = −βx(t) + ε(t), (18.2)

is said to be homogeneous, while (18.1) is called nonhomogeneous. Input
function u, when it is present, is often called a forcing function, and the
homogeneous version of the equation is said to be forced by αu.

Let x0 be a solution to the homogeneous equation. Given parameter
β and assuming that the noise function ε is zero, a moment of reflection
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reveals that the solution to Dx0 = −βx0, is

x0(t) = Ce−βt

for some nonzero constant C. If we knew the value of x0 at time t = 0,
then C = x0(0) and the solution is completely determined.

It is a bit harder to work out the solution of (18.1), or Dx = −βx + αu,
but here it is:

x(t) = Ce−βt + α

∫ t

0
e−β(t−s)u(s) ds . (18.3)

As with the homogeneous equation, constant C is simply x(0).
A graph helps us to see the role played by the two parameters α and

β. Engineers often study how an industrial process reacts to changes in
its inputs by stepping these inputs up or down abruptly. Accordingly, let
u(t) = 0 for 0 ≤ t ≤ 1, and u(t) = 1 for t > 1. Also, let’s set x(0) = C = 1.
Then solution (18.3) becomes

x(t) = e−βt, 0 ≤ t ≤ 1,

= e−βt + (α/β)[1 − e−β(t−1)], t > 1.

Figure 18.1 shows the solution x for β = 2, and β = 4, while fixing
α/β = 2. Over the first half of the interval, x behaves like x0, and we see
that the solution decays to zero in about 4/β time units. Over the second
half of the interval, the solution grows at an exponentially decreasing rate
towards an upper asymptote of α/β, often called the gain of the system.
Again, the gain level is achieved in about 4/β time units. The role of β
is now clear; it determines the rate of change in x in response to a step
change in u.

We can summarize the roles of these two parameters by comparing α to
the volume control on a radio playing a song carried by radio signal u; the
bigger α, the louder the sound. The bass/treble control, on the other hand,
corresponds to β; the larger β, the higher the frequency of what you hear.

We may rearrange differential equation (18.1) to put it in the form

Lx(t) = βx(t) + Dx(t) − αu(t) − ε(t) . (18.4)

Function x is a solution of the original equation when ε = 0 if and only if
Lx = 0. We call L = βI + D, where I is the identity operator, or Ix = x,
a linear differential operator, in this case with constant coefficients. This
alternative expression of the differential equation is handy, as we now know,
for defining roughness penalties, and using the roughness penalty

PEN(x) =
∫

[Lx(t)]2 dt

is equivalent to penalizing the failure of x to satisfy the differential equation
Dx = −βx corresponding to operator L.
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Figure 18.1. The solid and dashed lines are two solutions (18.3) to a first-order
constant-coefficient differential equation for two different values of the rate
constant β.

18.3 Beyond the constant coefficient first-order
linear equation

18.3.1 Nonconstant coefficients
Returning to Figure 18.1, we might be struck by an anti-symmetry: The
rate of decay over the first interval, Dx = −βe−βt is the negative of the rate
of increase over the second, Dx = βe−βt. Many systems, however, increase
more rapidly than they decrease, or vice versa. We acquire common cold
symptoms within hours and take days to recover from them, for example.
This suggests that allowing β to vary over time might be useful, and similar
arguments could be made for α. Then (18.1) becomes

Dx(t) = −β(t)x(t) + α(t)u(t) + ε(t). (18.5)

The solution to (18.5) is

x(t) = Cx0(t) +
∫ t

0
α(s)u(s)x0(t)/x0(s) ds, (18.6)

where

x0(t) = exp[−
∫ t

0
β(s) ds].
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The functional ratio x0(t)/x0(s) that occurs in the second term of (18.6)
defines the Green’s function for the differential equation; see Section 20.2
for details.

18.3.2 Higher order equations
More generally, the order of the derivative on the left side of (18.5) may be
m, with lower order derivatives appearing in the right side:

Dmx(t) = −β0(t)x(t) − β1(t)Dx(t) − . . . − βm−1(t)Dm−1x(t)
+α(t)u(t) + ε(t)

= −
m−1∑
j=0

βj(t)Djx(t) + α(t)u(t) + ε(t). (18.7)

These higher order systems are needed when there are more than two time
scales for events. This means that, in the case of a second order system,
there is a long-term trend, medium-term changes, and sharper shorter-term
events.

Figure 18.2 shows the forced second order equation

D2x(t) = −4.04x(t) − 0.4Dx(t) + 2u(t), (18.8)

where forcing function u(t) steps from 0 to 1 at time t = 2π. The
corresponding homogeneous solution is

x0(t) = e−0.2t[sin(2t) + cos(2t)].

There are three time scales involved here. The longest scale is the overall
oscillation level, first about 0 and then later about 0.5. The medium scale
trend is the exponential decay in the amplitude of the oscillation, and of
course the shortest scale is the oscillation with period π.

Consider handwriting; Ramsay (2000) observed that there were features
in script at four time scales:

1. The overall spatial position of the script, that is, the line on which it
is written, requiring some considerable seconds per line.

2. The movement of the script from left to right within a line, taking
place over several seconds.

3. The strokes and loops within the script, produced about eight times
a second.

4. Sharper transient effects due to the pen striking or leaving the paper,
lasting of the order of 10 milliseconds.

The differential equation developed in this study consequently was of the
third order.
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Figure 18.2. The solid line is the solution to the second order equation (18.8).
The dashed line is the corresponding homogeneous equation solution, and the
dotted line indicates the step function u forcing the equation.

18.3.3 Systems of equations
Often the processes that we study produce more than one output, and so
we need several output functions xi. As an example, suppose that β(t)
in (18.7) is also affected by u(t), and that we can develop a differential
equation that defines its behavior. We now have two differential equations,
one for x and one for β.

Or, as another example, suppose that an engineer develops a feedback
loop for the process permitting the output x to have an effect on the input
u. For example, a doctor adjusts the medication u of the patient according
to changes in the symptoms x. Then u and x can each be expressed as a
differential equation, and in each equation the other variable now plays the
role of an input. That is,

Dx(t) = −βx(t)x(t) + αx(t)u(t)
Du(t) = −βu(t)u(t) + αu(t)x(t). (18.9)

In fact, any differential equation of order m can be expressed as a system
of m first-order equations. For a second order system,

D2x(t) = −β0(t)x(t) − β1(t)Dx(t),
(18.10)
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for example, define y(t) = Dx(t). Then we have the equivalent system of
two linear differential equations

Dx(t) = y(t)
Dy(t) = −β1(t)y(t) − β0(t)x(t). (18.11)

18.3.4 Beyond linearity
Equation (18.7) is a linear differential equation in the sense that each
derivative or input function is multiplied by a coefficient function, and
the products added to yield the output. That is, it is linear in the same
sense that the models in Chapters 12 to 16 are linear.

The general form of a nonlinear differential equation of the first order is

Dx(t) = f [t, x(t), u(t)]

for some function f .
Linear differential equations are easier to work with. They have solu-

tions for all values of t, and their properties are much better understood
by mathematicians than nonlinear equations. However, simple nonlinear
systems can define remarkable and often complex behavior in a solution x.
The world of nonlinear dynamics is vast and fascinating, but unfortunately
beyond the scope of this book.

The term “linear” is often used in engineering and elsewhere to refer
only to linear constant coefficient systems. In this restricted case, the use
of Laplace transformations leads to expressing the behavior of solutions in
terms of transfer functions.

18.4 Some applications of linear differential
equations and operators

In this section, we review a number of ways in which linear differential
equations and operators are useful in functional data analysis. Many of
these we have already encountered, but a few new ones are also suggested.
We will assume that the linear differential operator is in the form

Lx =
m−1∑
j=0

βjD
jx + Dmx. (18.12)

18.4.1 Differential operators to produce new functional
observations

Derivatives of various orders and mixtures of them are of immediate in-
terest in many applications. We have already noted that there is much
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Figure 18.3. The left panel shows the gross domestic product of the United States
in trillion US dollars. The solid curve mostly obscured by the dots is a poly-
nomial smoothing spline constructed with a penalty on the integrated squared
fourth derivative, and the dotted curve is a purely exponential trend fit by least
squares. The solid curve in the right panel is the estimated first derivative of
GDP. The dashed curve in this panel is the value of the differential operator
L = β GDP + D GDP.

to be learned about human growth by examining acceleration profiles.
There is an analogy with mechanical systems; a version of Newton’s third
law, a(t) = F (t)/M, asserts that the application of some force F (t) at
time t on an object with mass M has an immediate impact on accelera-
tion a(t). However, force has only an indirect impact on velocity, through
v(t) = v0 + M−1

∫ t

0 F (u)du, and an even less direct impact on what we
directly observe, namely position, s(t) = s0 + v0t + M−1

∫ t

0

∫ u

0 F (z) dz du.
From the standpoint of mechanics, the world that we experience is two
integrals away from reality! The release of adrenal hormones during pu-
berty tends to play the role of the force function F , and so does a muscle
contraction with respect to position of a limb or other part of the body.

18.4.2 The gross domestic product data
The gross domestic product (GDP) of a country is the financial value of
all goods and services produced in that country, whether by the private
sector of the economy or by government. Like most economic measures,
GDP tends to exhibit a percentage change each year in times of domestic
and international stability. Although this change can fluctuate considerably
from year to year, over long periods the fluctuations tend to even out
for most countries and the long-range trend in GDP tends to be roughly
exponential.

We obtained quarterly GDP values for 15 countries in the Organization
for Economic Cooperation and Development (OECD) for the years 1980
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Figure 18.4. The solid curves are the derivatives of GDP of the United Kingdom
and Japan estimated by order 4 smoothing splines. The dashed curves are the
corresponding values of the differential operator L = βx + Dx.

through 1994 (OECD, 1995). The values for any country are expressed in
its own currency, and thus scales are not comparable across countries. Also,
there are strong seasonal effects in GDP values reported by some countries,
whereas others smooth them out before reporting.

The left panel of Figure 18.3 displays the GDP of the United States.
The seasonal trend, if any, is hardly visible, and the solid line indicates
a smooth of the data using a penalty on D4 GDP. It also shows a best
fitting exponential trend, C exp(γt), with rate constant γ = 0.038. Thus,
over this period the U.S. economy tended to grow at about 4% per year.
The right panel displays the first derivative of GDP as a solid line. The
economy advanced especially rapidly in 1983, 1987 and 1993, but there
were slowdowns in 1981, 1985 and 1990.

If we define Lx to be βx+Dx, then we may say even more compactly that
Lx = 0 implies exponential growth. When studying processes that exhibit
exponential growth or decay to some extent, it can be helpful to look at Lx
defined in this way; the extent to which the result is a nonzero function with
substantial variation is a measure of departure from exponential growth,
just as the appearance of a nonzero phase in D2x for a mechanical system
indicates the application of a force.

The right panel of Figure 18.3 shows the result of applying this differ-
ential operator to the U.S. GDP data. The result is clearly not zero; there
seem to be three cycles of shorter term growth in GDP that depart from the
longer-term exponential trend. Figure 18.4 shows the comparable curves for
the United Kingdom and Japan, and we note that the U.K. had only one
boom period with an uncertain recovery after the recession, while Japan
experienced a deep and late recession.
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18.4.3 Differential operators to regularize or smooth models
Although we have covered this topic elsewhere, we should still point out
that we may substitute Lx for D2x in any of the regularization schemes
covered so far. Why? The answer lies in the homogeneous equation Lx =
0; functions satisfying this equation are deemed to be ultrasmooth in the
sense that we choose to ignore any component of variation of this form in
calculating roughness or irregularity. In the case of the operator D2, linear
trend is considered to be so smooth that any function may have an arbitrary
amount of it, since the penalty term λ

∫
(D2x)2 is unaffected. Suppose, on

the other hand, that we are working with a process that is predominantly
exponential growth with rate parameter β. We may choose in this case to
do nonparametric regression with the fitting criterion

PENSSEλ(x) = n−1
n∑

j=1

[yj − x(tj)]2 + λ

∫
[βx(t) + Dx(t)]2 dt

in order to leave untouched any component of variation of this form.
More generally, suppose we observe a set of discrete data values generated

by the process

yj = x(tj) + εj ,

where, as in previous chapters, x is some unobserved smooth function that
we wish to estimate by means of nonparametric regression, and εj is a
disturbance or error assumed to be independently distributed over j and
to have mean zero and finite variance. Suppose, moreover, that we employ
the general smoothing criterion

PENSSEλ(x̂) = n−1
∑

j

[yj − x̂(tj)]2 + λ

∫
(Lx̂)2(t) dt (18.13)

for some differential operator L.
It is not difficult to show (see Wahba, 1990) that, if we choose x̂ to

minimize PENSSEλ, then the integrated squared bias

Bias2(x̂) = {
∫

E[x̂(t) − x(t)] dt}2

cannot exceed
∫

(Lx)2(t) dt. This is useful, because if we choose L so as to
approximate Lx = 0, then the bias is likely to be small. It then follows that
we can use a relatively large value of the smoothing parameter λ, leading
to lower variance, without introducing excessive bias. Also, we can achieve
a small value of the integrated mean squared error

IMSE(x̂) =
∫

E[x̂(t) − x(t)]2 dt

since

IMSE(x̂) = Bias2(x̂) + Var(x̂),
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where

Var(x̂) =
∫

E{x̂(t) − E[x̂(t)]}2 dt.

The conclusion, therefore, is that if we have any prior knowledge at all
about the predominant shape of x, it is worth choosing a linear differential
operator L so as to annihilate functions having that shape. We show how to
construct customized spline smoothers of this type in the next two chapters.

This insight about the role of L in the regularization process also leads
to the following interesting question: Can we use the information in N
replications xi of functional observations such as growth or temperature
curves to estimate an operator L that comes close in some sense to satisfying
Lxi = 0? If so, then we should certainly use this information to improve
on our smoothing techniques. This matter is taken up in Chapter 21.

18.4.4 Differential operators to partition variation
Linear differential operators L of the form (18.12) of degree m have m
linearly independent solutions ξj of the homogeneous equation Lξj = 0.
There is no unique way of choosing these m functions ξj , but any choice
is related by a linear transformation to any other choice. The set of all
functions z for which Lz = 0 is called the null space of L, and the functions
ξj form a basis for this space. The notation kerL is often used to indicate
this null space.

Consider, for example, the derivative operator L = Dm: The mono-
mials {1, t, . . . tm−1} are a basis for the null space, as is the set of m
polynomials formed by any nonsingular linear transformation of these. Like-
wise the functions {1, e−βt} are a solution set for βDx + D2x = 0. And
{1, sin ωt, cos ωt} were cited as the solution set or null space functions for
Lx = ω2Dx + D3x = 0 in Chapter 1.

This means, then, that we can use linear differential operators L to par-
tition functional variation in the sense that Lx splits x into two parts, the
first consisting of what is in x that can be expressed in terms of a linear
combination of the null space functions ξj , and the second being whatever
is orthogonal to these functions.

This partitioning of variation is just what happens, as we already know
from Section 4.4, with basis functions φk and the projection operator P
that expands x as a linear combination of these basis functions. That is,

Px = x̂ =
m∑

k=1

ckφk

also splits any function x into the component x̂ that is an optimal com-
bination of the basis functions in a least squares sense, and an orthogonal
residual component x− x̂ = (I −P )x. The complementary projection oper-
ator Q = I −P therefore satisfies the linear homogeneous equation Qx̂ = 0,
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as well as the m equations Qφk = 0. Thus the projection operator Q and
the differential operator L have analogous properties.

But there are some important differences, too. First, the projection op-
erator P does not pay any attention to derivative information, whereas L
does. Second, we have the closely related fact that Q is chosen to make Qx
small, while L is chosen to make Lx small. Since Lx involves derivatives up
to order m, making Lx small inevitably means paying attention to the size
of Dmx. If we think there is important information in derivatives, then it
seems right to exploit this in splitting variation.

It is particularly easy to compare the two operators, differential and
projection, in situations where there is an orthonormal basis expansion for
the function space in question. Consider, for example, the space of infinitely
differentiable periodic functions defined on the interval [0, 1] that would be
natural to model our temperature and precipitation records. A function x
has the Fourier expansion

x(t) = c0 +
∞∑

k=1

[c2k−1 sin(2πkt) + c2k cos(2πkt)].

Suppose our two operators L and Q are of order 3 and designed to eliminate
the first three terms of the expansion, that is, vertically shifted sinusoidal
variation of period 1. Then

Qx(t) =
∞∑

k=2

[c2k−1 sin(2πkt) + c2k cos(2πkt)]

while

Lx = 4π2Dx + D3x

=
∞∑

k=2

8π3k(k2 − 1)[−c2k−1 cos(2πkt) + c2k sin(2πkt)].

Note that applying Q does not change the expansion beyond the third term,
while L multiplies each successive pair of sines and cosines by an ever-
increasing factor proportional to k(k2 − 1). Thus, L actually accentuates
high-frequency variation while Q leaves it untouched; functions that are
passed through L are going to come out rougher than those passing through
Q.

The consequences for smoothing are especially important: If we penalize
the size of ‖Lx‖2 in spline smoothing by minimizing the criterion (18.13),
the roughening action of L means that high-frequency components are
forced to be smaller than they would be in the original function, or than
they would be if we penalized using Q by using the criterion

PENSSEQ
λ (x̂) = n−1

∑
j

[yj − x̂(tj)]2 + λ

∫
(Qx̂)2(t) dt. (18.14)
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But customizing a regularization process is only one reason for splitting
functional variation, and in Chapter 19 we look at a differential opera-
tor analogue of principal components analysis, called principal differential
analysis, that can prove to be a valuable exploratory tool.

18.4.5 Operators to define solutions to problems
We have already considered a number of situations in Chapter 6 requiring
smoothing functions x that had constraints such as positivity, monotonic-
ity, values in (0,1), and so forth. We saw there that functions having these
constraints can often be expressed as solutions to linear or nonlinear differ-
ential equations. This insight helped us to modify conventional linear least
squares smoothing methods to accommodate these constraints.

18.5 Some linear differential equation facts

So far in this chapter, we have set the scene for the use of linear differential
operators and equations in FDA. We now move on to a more detailed
discussion of techniques and ideas that we use in this and the following
chapters. Readers with some familiarity with the theory of linear ordinary
differential equations may wish to skip on to the next two chapters, and
refer back to this material only where necessary.

18.5.1 Derivatives are rougher
First, it is useful to point out a few things of general importance. For
example, taking a derivative is generally a roughening operation, as we
have observed in the context of periodic functions. This means that Dx
has in general rather more curvature and variability than x. It is perhaps
unfortunate that our intuitions about functions are shaped by our early
exposure to polynomials, where derivatives are smoother than the original
functions, and transcendental functions such as et and sin t, where taking
derivatives produces essentially no change in shape. In fact, the general
situation is more like the growth curve accelerations in Figure 1.2, which are
much more variable than the height curves in Figure 1.1, or the roughening
effect of applying the third order linear differential operator to temperature
functions displayed in Figure 1.7.

By contrast, the operation of partial integration essentially reverses the
process of differentiation (except for the constant of integration), and there-
fore is a smoothing operation. It is convenient to use the notation D−1x
for

D−1x(t) =
∫ t

t0

x(s) ds,
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relying on context to specify the lower limit of integration t0. This means,
of course, that D−1Dx = x.

18.5.2 Finding a linear differential operator that annihilates
known functions

We have already cited a number of examples where we had a set of known
functions {ξ1, . . . , ξm} and where at the same time we were aware of the
operator L that solved the homogeneous linear differential equations Lξj =
0, j = 1, . . . , m. Suppose, however, that we have the ξj ’s in mind but that
the L that annihilates them is not obvious, and we want to find it.

The process of identifying the linear differential operator that sets m
linearly independent functions to 0, as well as other aspects of working
with linear differential operators, can be exhibited through the following
example: Suppose we are considering an amplitude-modulated sinusoidal
signal with fixed period ω. Such a signal would be of the form

x(t) = A(t)[c1 sin(ωt) + c2 cos(ωt)]. (18.15)

The function A determines the amplitude pattern. If A is regarded as a
known time-varying function, the constants c1 and c2 determine the overall
size of the amplitude of the signal and also the phase of the signal.

Our aim, for given ω and A(t), is to find a differential operator L such
that the null space of L consists of all functions of the form 18.15. Because
these functions form a linear space of dimension 2, we seek an annihilating
operator of order 2, of the form

Lx = β0x + β1Dx + D2x.

The task is to calculate the two weight functions β0 and β1.
First, let’s do a few things to streamline the notation. Define the vector

functions ξ(t) and β(t) as

ξ(t) =
[

A(t) sin(ωt)
A(t) cos(ωt)

]
and β(t) =

[
β0(t)
β1(t)

]
. (18.16)

Also, let us use S(t) to stand for sin(ωt) and C(t) for cos(ωt). Then

ξ =
[

AS
AC

]
. (18.17)

The required differential operator L satisfies the vector equation Lξ = 0.
Recall that the first and second derivatives of S are ωC and −ω2S, re-

spectively, and that those of C are −ωS and −ω2C, respectively. Then the
first two derivatives of ζ are, after a bit of simplification,

Dξ =
[

(DA)S + ωAC
(DA)C − ωAS

]
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and

D2ξ =
[

(D2A)S + 2ω(DA)C − ω2AS
(D2A)C − 2ω(DA)S − ω2AC

]
. (18.18)

The relation Lξ = 0 can be expressed as follows, by taking the second
derivatives over to the other side of the equation:

β0ξ + β1Dξ = −D2ξ (18.19)

or, in matrix notation [
ξ Dξ

]
β = −D2ξ. (18.20)

This is a linear matrix equation for the unknown weight functions β0 and
β1, and its solution is simple provided that the matrix

W(t) =
[

ξ(t) Dξ(t)
]

(18.21)

is nowhere singular, or in other words that its determinant |W(t)| does
not vanish for any value of the argument t. This coefficient matrix, which
plays an important role in linear differential operator theory, is called the
Wronskian matrix, and its determinant is called the Wronskian for the
system.

Substituting the specific functions AS and AC for this example for ξ1 and
ξ2 gives

W =
[

AS (DA)S + ωAC
AC (DA)C − ωAS

]
. (18.22)

Thus the Wronskian is

|W| = AS[(DA)C − ωAS] − AC[(DA)S + ωAC] = −ωA2 (18.23)

after some simplification. We have no worries about the singularity of W(t),
then, so long as the amplitude function A(t) does not vanish.

The solutions for the weight functions are then given by

β = −W−1D2ξ.

This takes a couple of sheets of paper to work out, or may be solved using
symbolic computation software such as Maple (Char et al. 1991) or Mathe-
matica (Wolfram, 1991). Considerable simplification is possible because of
the identity S2 + C2 = 1, and the final result is that

β =
[

ω2 + 2(DA/A)2 − D2A/A
−2DA/A

]
,

so that, for any function x,

Lx = [ω2 + 2(DA/A)2 − D2A/A]x − 2[(DA)/A](Dx) + D2x. (18.24)

Note that the weight coefficients in (18.24) are, as we should expect, scale
free in the sense that multiplying A(t) by any constant does not change
them.



322 18. Differential equations and operators

Consider two simple possibilities for amplitude modulation functions.
When A(t) is a constant, both derivatives vanish, the operator reduces to
L = ω2I + D2 and Lx = 0 is the equation for simple harmonic motion. On
the other hand, if A(t) = e−λt so that the signal damps out exponentially
with rate λ, then things simplify to

β =
[

ω2 + λ2

2λ

]
or Lx = (ω2 + λ2)x + 2λDx + D2x. (18.25)

This is the equation for damped harmonic motion with a damping
coefficient 2λ.

The example illustrates the following general principles: First, the order
m Wronskian matrix

W(t) =
[

ξ(t) Dξ(t) . . . Dm−1ξ(t)
]

(18.26)

must be invertible, implying that its determinant should not vanish over
the range of t being considered. There are ways of dealing with isolated
singularities, however. Second, finding the vector of weight functions β =
(β0(t), . . . , βm−1(t))′ is then is a matter of solving the system of m linear
equations

W(t)β(t) = −Dmξ(t),

again with the possible aid of symbolic computation software.

18.5.3 Finding the functions ξj satisfying Lξj = 0
Let us now consider the problem converse to that considered in Sec-
tion 18.5.2. Given a linear differential operator L of order m, we might
wish to identify m linearly independent solutions ξj to the homogeneous
equation Lx = 0. We can do this directly by elementary calculus in sim-
ple cases, but more generally there is a variety of analytic and numerical
approaches to this problem. For full details, see a standard reference on
numerical methods, such as Stoer and Bulirsch (2002).

Specifically, given (18.7), a common procedure is to use a numerical
differential equation solving algorithm, such as one of the Runge-Kutta
methods, to solve the equation for initial value constraints, described be-
low, of the form B0x = Ii, where Ii is the ith column of the identity matrix
of order m. This will yield m linearly independent solutions ξi that can be
used as a basis for obtaining all possible solutions.
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18.6 Initial conditions, boundary conditions and
other constraints

18.6.1 Why additional constraints are needed to define a
solution

We have already noted that the space of solutions of the linear differential
equation Lx = 0 is, in general, a function space of dimension m, called the
null space of L, and denoted by kerL. We now assume that the linearly
independent functions ξ1, . . . , ξm form a basis of the null space.

Any specific solution of Lx = 0 requires m additional pieces of infor-
mation about x. For example, we can solve the equation βDx + D2x = 0,
defining a shifted exponential, uniquely provided that we are able to specify
that

x(0) = 0 and Dx(0) = 1,

in which case

x(t) =
1
β

(1 − e−βt).

Alternatively, x(0) = 1 and Dx(0) = 0 implies that x0 = 1 and α = 0, or
simply that x = 1.

We introduce the notion of a constraint operator B to specify the m
pieces of information about x that we require to identify a specific function
x as the unique solution to Lx = 0. This operator simply evaluates x or its
derivatives in m different ways. The most important example is the initial
value operator used in the theory of ordinary differential equations defined
over an interval T = [0, T ],

Initial Operator: B0x =

⎡
⎢⎢⎢⎣

x(0)
Dx(0)
...
Dm−1x(0)

⎤
⎥⎥⎥⎦ . (18.27)

When B0x is set to an m-vector, initial value constraints are defined. In the
example above, we considered the two cases B0x = (0, 1)′ and B0x = (1, 0)′,
implying the two solutions given there.

The following boundary value operator is also of great importance in
applications involving linear differential operators of even degree:

Boundary Operator: BBx =

⎡
⎢⎢⎢⎢⎢⎣

x(0)
x(T )
...
D(m−2)/2x(0)
D(m−2)/2x(T )

⎤
⎥⎥⎥⎥⎥⎦ . (18.28)
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Specifying BBx = c gives the values of x and its first (m− 2)/2 derivatives
at both ends of the interval of interest.

The periodic constraint operator is

Periodic Operator: BP x =

⎡
⎢⎢⎢⎣

x(T ) − x(0)
Dx(T ) − Dx(0)
...
Dm−1x(T ) − Dm−1x(0)

⎤
⎥⎥⎥⎦ . (18.29)

Functions satisfying BP x = 0 are periodic up to the derivative Dm−1 over
T , and are said to obey periodic boundary conditions.

The integral constraint operator is

Integral Operator: BIx =

⎡
⎢⎢⎢⎣

∫
ξ1(t)x(t) dx∫
ξ2(t)x(t) dx

...∫
ξm(t)x(t) dx

⎤
⎥⎥⎥⎦ , (18.30)

where ξ1, . . . , ξm are m linearly independent weight functions.

18.6.2 How L and B partition functions
Whatever constraint operator we use, consider the problem of expressing
any particular function x as a sum of two components z and e, such that
Lz = 0 and Be = 0. When can we carry out this partitioning in a unique
way? This happens if and only if x = 0 is the only function satisfying both
Bx = 0 and Lx = 0. Or, in algebraic notation,

ker B ∩ ker L = 0. (18.31)

Thus, the two operators B and L complement each other; the equation
Lx = 0 defines a space of functions ker L that is of dimension m, and
within this space B is a non-singular transformation. Or, looking at it
the other way, the equation Bx = 0 defines a space of functions ker B of
codimension m, within which L is a one-to-one transformation.

Note that the condition (18.31) can break down. Consider, for example,
the operator L = ω2I + D2 on the interval [0, T ]. The space ker L contains
all linear combinations of sinωt and cos ωt. If ω = 2πk/T for some integer
k and we use boundary constraints, all multiples of sinωt satisfy BBx = 0,
and so the condition (18.31) is violated. Some functions, namely those that
satisfy x(0) = x(T ) and Dx(0) = Dx(T ), have infinitely many decomposi-
tions as z + e with Lz = Be = 0, and are called the eigenfunctions of the
differential operator.
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18.6.3 The inner product defined by operators L and B

All the functional data analysis techniques and tools in this book depend on
the notion of an inner product between two functions x and y. We have seen
numerous examples of how a careful choice of inner product can produce
more useful results, especially in controlling the roughness of estimated
functions, such as functional principal components or regression functions.
In these and other examples, it is important to use derivative information
in defining an inner product.

Let us assume that the constraint operator is such that the orthogonality
condition (18.31) is satisfied. We can define a large family of inner products
as follows:

〈x, y〉B,L = (Bx)′(By) +
∫

(Lx)(t)(Ly)(t) dt (18.32)

with the corresponding norm

‖x‖2
B,L = (Bx)′(Bx) +

∫
(Lx)2(t) dt. (18.33)

The condition (18.31) ensures that this is a norm; the only function x for
which ‖x‖B,L = 0 is zero itself, since this is the only function simultaneously
satisfying Bx = 0 and Lx = 0.

In fact, this inner product works by splitting the function x into two
parts:

x = z + e where z ∈ ker L and e ∈ ker B.

The first term in (18.33) simply measures the size of the component z,
since Be = 0 and therefore Bx = Bz, while the second term depends only
on the size of the component e since Lx = Le. The first term in (18.32)
is essentially an inner product for the m-dimensional subspace in which z
lives and which is defined by Lz = 0. The second term is an inner product
for the function space of codimension m defined by Be = 0. Thus, we can
write

‖x‖2
B,L = ‖z‖2

B + ‖e‖2
L.

With this composite inner product in hand, that is, with a particular
operator L and constraint operator B in mind, we can go back and revisit
each of our functional data analytic techniques to see how they perform
with this inner product. This is the central point explored by Ramsay and
Dalzell (1991), to which we refer the reader for further discussion.

18.7 Further reading and notes

It is beyond the scope of this book to offer more than a cursory treatment
of a topic as rich as the theory of differential equations, and there would be
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little point, since there are many fine texts on the topic. Texts on differen-
tial equations that are designed for engineering students tend to have two
advantages. The amount mathematical detail is kept minimal and one gets
to see differential equations applied to real world problems and is thereby
helped to see them as conceptual as opposed to technical tools.

Some of our favorites references that are also classics are Coddington
(1989), Coddington and Levinson (1955), Ince (1956) and Tenenbaum and
Pollard (1963). For advice on a wide range of computational and otherwise
practical matters we recommend Press et al. (1992).

For more general results for arbitrary constraint operators B, including
the integral operator conditions that we need in the following section, see
Dalzell and Ramsay (1993) and Heckman and Ramsay (2000).


