
19
Fitting differential equations to
functional data: Principal differential
analysis

19.1 Introduction

Now that we have fastened a belt of tools around our waists for tinker-
ing with differential equations, we return to the problems introduced in
Chapter 17 ready to get down to some serious work.

Using a differential equation as a modelling object involves concepts
drawn from both the functional linear model and from principal com-
ponents analysis. A differential equation can certainly capture the shape
features in both the curve and its derivative for a single functional datum
such as the oil refinery observation shown in Figure 1.4. But because the
set of solutions to a differential equation is an entire function space, it can
also model variation across observations when N > 1. In this sense, it also
has the flavor of principal components analysis where we find a subspace
of functions able to capture the dominant modes of variation in the data.

We have, then, a question of emphasis or perspective. On one hand,
the data analyst may want to capture important features of the dynamics
of a single observation, and thus look within the m-dimensional space of
solutions of an estimated equation to find that which gives the best account
of the data. On the other hand, the goal may be to see how much functional
variation can be explained across multiple realizations of a process. Thus,
linear modelling and variance decomposition merge into one analysis in this
environment.

We introduce a new term here: principal differential analysis means the
fitting of a differential equation to noisy data so as to capture either the
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features of a single curve or the variation in features across curves. This
term was first used in Ramsay (1996a), and will be motivated in some detail
in Section 19.6. The abbreviation PDA will be handy, and will also serve
to remind us of the close connection with PCA.

19.2 Defining the problem

Our challenge is the identification of a linear differential operator

L = β0I + . . . + βm−1D
m−1 + Dm (19.1)

and its associated homogeneous differential equation

Dmx = −β0x − . . . − βm−1D
m−1x (19.2)

using a set of N functional observations xi along with, possibly, a set of as-
sociated functional covariates fi�, � = 1, . . . , L. We now call these covariates
forcing functions so as to keep the nomenclature already current in fields
such as engineering and physics. Although, in the examples used in this
chapter, the xi’s are univariate functions, and only one forcing function, if
at all, is used, we certainly have in mind that systems of differential equa-
tions and multiple forcing functions may be involved, and the differential
equations may be nonlinear.

First, consider the homogeneous case, where no forcing function is
present. We want to find the operator L that comes as close as possible
to satisfying the homogeneous linear differential equation

Lxi = 0, i = 1, . . . , N. (19.3)

In order to achieve this, we have to estimate up to m coefficient functional
parameters βj , j = 0, . . . , m − 1. Of course, some of these parameters may
be fixed, often to zero as we have already seen, and the constant coefficient
case is included within this framework by using a constant basis where
required.

Since we wish the operator L to annihilate as nearly as possible the given
data functions xi, we regard the function Lxi as being the residual from the
fit provided by the corresponding linear differential equation (19.2). The
least squares approach defines as the fitting criterion the sum of squared
norms of the residual functions Lxi:

SSEPDA(L|x) =
N∑

i=1

∫
[Lxi(t)]2 dt =

N∑
i=1

‖Lxi‖2. (19.4)

If an input forcing function fi has also been observed along with the
output xi for a system, then we aim to solve as closely as possible the
nonhomogeneous equation

Lxi = fi, i = 1, . . . , N.
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Figure 19.1. Twenty records of position of the center of the lower lip during the
uttering of the syllable “bob.”

The least squares fitting criterion now becomes

SSEPDA(L|x, f) =
N∑

i=1

∫
[Lxi(t) − fi(t)]2 dt =

N∑
i=1

‖Lxi − fi‖2 (19.5)

It will be evident, when we compare these criteria with those for the con-
current functional linear model (14.5), that we may use the same methods
here. Indeed, that is what we did in Chapter 17 for the oil refinery and
melanoma data. However, there are other estimation techniques available
that may be better. But before we consider these, we offer two examples
to illustrate some of the issues involved in PDA.

19.3 A principal differential analysis of lip
movement

There are several reasons why a PDA can provide important information
about the data and the phenomenon under study. Certainly, in many ap-
plications the differential equation Lx = 0 offers an interesting and useful
way of understanding the processes that generated the data.

Consider as an example to be used throughout this chapter the curves
presented in Figure 19.1. These indicate the movement of the center of
the lower lip as a single speaker said “bob.” The displayed curves are the
result of considerable preprocessing, including smoothing and the use of
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functional PCA to identify the direction in which most of the motion was
found. Details can be found in Ramsay, Munhall, Gracco and Ostry (1996).
We see in broad terms that lower lip motion shows three phases: an initial
rapid opening, a sharp transition to a relatively slow and nearly linear
motion, and a final rapid closure.

19.3.1 The biomechanics of lip movement
Because the lower lip is part of a mechanical system, inevitably having
certain natural resonating frequencies and a stiffness or resistance to move-
ment, it seems appropriate to explore to what extent this motion can be
expressed in terms of a second order linear differential equation of the type
useful in the analysis of such systems,

Lxi = β0xi + β1Dxi + D2xi = 0. (19.6)

Discussions of second order mechanical systems can be found in most
applied texts on ordinary differential equations, such as Tenenbaum and
Pollard (1963).

The first coefficient, β0, essentially reflects the position-dependent force
applied to the system at position x. Coefficient values β0 > 0 and β1 = 0
correspond to a system with sinusoidal or harmonic motion, with β

1/2
0 /(2π)

cycles per unit time and wavelength or period 2πβ
−1/2
0 ; β0 is often called

the spring constant. The second coefficient, β1, indicates influences on the
system that are proportional to velocity rather than position, and are often
internal or external frictional forces or viscosity in mechanical systems.

The discriminant of the second order operator and the mechanical system
that it represents is defined as d = (β1/2)2 − β0, and is critical in terms of
its sign. When β1 is small, meaning that d is negative, the system is under-
damped, and tends to exhibit some oscillation that gradually disappears.
When d is positive because β1 is relatively large, the system is called over-
damped, and either becomes stable so quickly that no oscillation is observed
(β1 > 0), or oscillates out of control (β1 < 0). A critically damped system
is one for which d = 0, and it exhibits non-oscillatory motion that decays
rapidly to zero.

These mechanical interpretations of the roles of coefficient functions β0
and β1 are, strictly speaking, only appropriate if these functions are con-
stants, but higher-order effects can be ignored if they do not vary too
rapidly with t, in which case β0, β1, and d can be viewed as describing the
instantaneous state of the system. When β0 = β1 = 0 the system is in
linear motion, for which D2x = 0.

The techniques we develop were used to obtain the weight functions
displayed in Figure 19.2. These are of rather limited help in interpreting the
system, but one does note that β0 is positive except for a brief episode near
the beginning, and near zero in the central portion corresponding to the
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Figure 19.2. The two weight functions β0 and β1 for the second order linear
differential equation estimated from the lip movement data.
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Figure 19.3. Two solutions of the second order linear differential equation es-
timated for the lip movement data corresponding to initial values conditions
(x(0) = 1, Dx(0) = 0) and (x(0) = 0, Dx(0) = 1).
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near linear phase of lip movement. The two solutions to the homogeneous
differential equation Lu = 0 defined by the initial value conditions (x(0) =
1, Dx(0) = 0) and (x(0) = 0, Dx(0) = 1) are shown in Figure 19.3.

19.3.2 Visualizing the PDA results
How effective is the differential operator L at annihilating variation in the
xi? We can see this by plotting the empirical forcing functions Lxi. If
these are small and mainly noise-like, we can have some confidence that
the equation is doing a good job of representing the data. It is easier to see
how successful we have been if we have a null or benchmark hypothesis. A
reasonable choice is the model defined by β0 = . . . = βm−1 = 0. The Dmxi’s
are the empirical forcing functions corresponding to this null hypothesis,
and we can therefore compare the size of the Lxi’s to these derivatives.

Figure 19.4 shows the acceleration curves for the lip data in the left panel,
and the empirical forcing functions in the right. We see that the forcing
functions corresponding to L are indeed much smaller in magnitude, and
more or less noise-like except for two bursts of signal near the beginning
and end of the time interval.

The value of the criterion SSEPDA defined above is 7.7 × 106, while the
same measure of the size of D2xi’s is 90.4×106. If we call the latter measure
SSYPDA, then we can also summarize these results in the squared correlation
measure

RSQPDA = (SSYPDA − SSEPDA)/SSYPDA, (19.7)

the value of which is 0.92 for this problem.
While it is strictly speaking not the task of PDA to approximate the

original curves (this would be a job for PCA), we can nevertheless wonder
how well the two solution curves would serve this purpose. Figure 19.5
shows the least squares approximation of the first two curves in terms of
the two solution functions in Figure 19.3, and we see that the fit is fairly
satisfactory.

Finally, we return to the discriminant function d = (β1/2)2 − β0, pre-
sented in Figure 19.6, and its interpretation. This system is more or less
critically damped over the interval 0.18 ≤ t ≤ 0.26, suggesting that its
behavior may be under external control. But in the vicinities of t = 0.08
and t = 0.30, the system is substantially under-damped, and thus behav-
ing locally like a spring. The period of the spring would be around 30
to 40 msec, and this is in the range of values estimated in studies of the
mechanical properties of flaccid soft tissue. These results suggest that the
external input to lip motions tends to be concentrated in the brief period
near t = 0.20, when the natural tendency for the lip to close is retarded in
order to allow for the articulation of the vowel.
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Figure 19.4. The left panel displays the acceleration curves D2xi for the lip
position data, and the right panel the forcing functions Lxi.
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Figure 19.5. The solid curves are the first two observed lip position functions,
and the dashed lines are their approximations on the basis of the two solution
functions in Figure 19.3.
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Figure 19.6. The discriminant function d = (β1/2)2 − β0 for the second order
differential equation describing lip position.

19.4 PDA of the pinch force data

In this section we take up an example in which the estimated linear differ-
ential operator is compared with a theoretically defined operator. The data
in this example consisted of the 20 records of brief force impulses exerted by
the thumb and forefinger in the experiment in motor physiology described
in Section 1.5.2. For the purposes of this discussion, the force impulses were
preprocessed to transform time linearly to a common metric, and to remove
some simple shape variation. The resulting curves are displayed in Figure
19.7. Details concerning the preprocessing stages can be found in Ramsay,
Wang and Flanagan (1995).

There are some theoretical considerations which suggest that the model

yi(t) = Ci exp[− log2 t/(2σ2)] (19.8)

offers a good account of any specific force function. In this application,
the data were preprocessed to conform to a fixed shape parameter σ2 of
0.05. Functions of the form (19.8) are annihilated by the differential op-
erator L0 = [(tσ)−1 log t]I + D. A goal of this analysis is to compare this
theoretical operator with the first order differential operator L = β0I + D
estimated from the data, or to compare the theoretical weight function
ω0(t) = (tσ)−1 log t with its empirical counterpart β0.

We smoothed the records using splines, with the size of the third deriva-
tive being penalized in order to get a smooth first derivative estimate. It is
clear from Figure 19.7 that the size of error variation is not constant over
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Figure 19.7. Twenty recordings of the force exerted by the thumb and forefinger
during a brief squeeze of a force meter. The data have been preprocessed to
register the functions and remove some shape variability, and the values displayed
are for the 33 values t = 0.4(.05)2.0.

time. Accordingly, we estimated the residuals in a first smoothing step, and
smoothed the logs of their standard deviations to estimate the variation of
the typical residual size over time. We then took the weights σ2

j in the
weighted spline smoothing criterion

PENSSEλ(x|y) =
∑

j

[yj − x(tj)]2/σ2
j + λ‖D3x‖2 (19.9)

to be the squares of the exponential-transformed smooth values. Finally, we
re-smoothed the data to get the spline smoothing curves and their deriva-
tives. Figure 19.8 displays the discrete data points, the smoothing function,
and also the theoretical function (19.8) fit by least squares for a single
record. The theoretical function fits very well, but in the right panel we
see that the discrepancy between the theoretical model and the smoothing
spline fit is nevertheless smooth and of the order of the largest deviations of
the points from this flexible spline fit. While this discordance between the
model and the spline is less than 2% of the size of the force itself, we are
nevertheless entitled to wonder if this theoretical model can be improved.

We applied both the point-wise and basis expansion procedures for es-
timating β0 to the smooth functions and their derivatives, as described in
Section 19.5. The basis used for the basis expansion procedure was

φ(t) = (t−1 log t, 1, t − 1, (t − 1)2)′,
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Figure 19.8. The left figure contains the data values for the first record (the
points), the smoothing spline (solid curve), and the least squares fit by the model
(19.8) (dotted curve). The right display shows the residuals arising from fitting the
points by a spline function (the points) and the difference between the theoretical
model and the spline (solid curve).
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Figure 19.9. The weight function estimated by the basis expansion method for
the pinch force data is indicated by the solid line, the theoretical function by the
dotted line, and the point-wise estimates by the dots.

chosen after some experimentation; the first basis function was suggested by
the theoretical model, and the remaining polynomial terms served to extend
this model as required. Figure 19.9 shows the theoretical, the point-wise
and the global estimates of the weight functions. These are admittedly close
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Figure 19.10. The left panel displays the forcing or impulse functions Lyi pro-
duced by the theoretical operator, and the right panel shows the corresponding
empirical operator functions.
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Figure 19.11. The solid line indicates the square root of the mean squared forcing
function for the estimated operator, and the dotted line the same quantity for
the theoretical operator.

to one another, at least in the central ranges of adjusted time, but again
we observe some slight but consistent differences between the theoretical
and empirical weight functions.
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However, the forcing functions Lyi, displayed in Figure 19.10, show a
systematic trend for the theoretical operator, while the empirical forcing
functions exhibit much less pattern. Figure 19.11 displays the root-mean-
squares of the two sets of forcing functions, and this permits us to see more
clearly that the estimated operator is superior in the epochs just before and
after the peak force, where it produces a forcing function about half the
size of its theoretical counterpart. It seems appropriate to conclude that
the estimated operator has produced an important improvement in fit on
either side of the time of maximum force. Ramsay, Wang and Flanagan
(1995) conjecture that the discrepancy between the two forcing functions
is due to drag or viscosity in the thumb-forefinger joint.

19.5 Techniques for principal differential analysis

We turn now to some methods for estimating the weight functions βj defin-
ing the linear differential operator that comes closest to annihilating the
observed functions in the sense of criterion (19.4). All but the final method
assume that we have already estimated the function and its derivatives up
to order m by smoothing the raw discrete data.

19.5.1 PDA by point-wise minimization
The first approach yields a point-wise estimate of the weight functions βj

computable by standard least squares estimation. Define the point-wise
fitting criterion

PSSEL(t) =
∑

i

[Lxi(t) − fi(t)]2 =
∑

i

[
m∑

j=0

βj(t)Djxi(t) − fi(t)]2, (19.10)

where, as above, βm(t) = 1 for all t. If t is regarded as fixed, this following
argument shows that this is simply a least squares fitting criterion.

First define the m-dimensional coefficient vector

β(t) = (β0(t), . . . , βm−1(t))′,

the N × (m + 1) point-wise design matrix Z with rows

zi(t) = {−xi(t), . . . ,−Dm−1xi(t), fi(t)}

and the N -dimensional dependent variable vector y with elements

yi(t) = Dmxi(t).

We can express the fitting criterion (19.10) in matrix terms as

PSSEL(t) = [y(t) − Z(t)β(t)]′[y(t) − Z(t)β(t)].
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Then, holding t fixed, the least squares solution minimizing PSSEL(t) with
respect to values βj(t) is

β(t) = [Z(t)′Z(t)]−1Z(t)′y(t). (19.11)

The existence of these point-wise values β(t) depends on the determinant
of Z(t)′Z(t) being bounded away from zero for all values of t, and it is
wise to compute and display this determinant as a routine part of the
computation. Assuming that the determinant is nonzero is equivalent to
assuming that Z(t) is of full column rank for all t.

Of course, if m is not large, then we can express the solution in closed
form. For example, for m = 1 we have

β0(t) = −
∑

i

xi(t)(Dxi)(t)/
∑

i

x2
i (t) (19.12)

and the full-rank condition requires that for each value of t some xi(t) be
nonzero.

Some brief comments about the connections with Section 18.5.2 are in
order. There, we were concerned with finding a linear operator of order m
that annihilated a set of exactly m functions ui. In order for this to be
possible, an important condition was the nonsingularity of the Wronskian
matrix values W(t) whose elements were Djui(t). We obtain the matrix
Z(t) from the functions xi in the same way, but it is no longer a square
matrix, since in general we will have N > m. However, the condition that
Z(t) is of full column rank is entirely analogous.

19.5.2 PDA using the concurrent functional linear model
The point-wise approach can pose problems in some applications. First,
solving the equation Lu = 0 requires that the βj ’s be available at a fine
level of detail, with the required resolution depending on their smooth-
ness. Whether or not these functions are smooth depends in turn on the
smoothness of the derivatives Djxi. Since we often estimate these deriva-
tives by smoothing procedures that may not always yield smooth estimates
for higher order derivatives, the resolution we require may be very fine in-
deed. Moreover, for larger orders m, computing the functions βj point-wise
at a fine resolution level can be computationally intensive, since we must
solve a linear equation for every value of t for which w is required. We
need an approximate solution which can be quickly computed and which
is reasonably regular or smooth.

It may also be desirable to circumvent the restriction that the rank of
Z be full, especially if the failure is highly localized within the interval of
integration. As a rule, an isolated singularity for Z(t)′Z(t) corresponds to
an isolated singularity in one or more weight functions βj , and it may be
desirable to bypass these by using weight functions sure to be sufficiently
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smooth. More generally, we may seek weight functions more smooth or
regular than those resulting from the point-wise solution.

Finally, the point-wise procedure only works if the number of functional
observations N exceeds the number of columns of the point-wise design ma-
trix Z. But we often need to fit a differential equation to a single functional
observation, and we want a method that will accommodate this case.

A strategy for identifying smooth weight functions βj is to approximate
them by using a fixed set of basis functions. This takes us directly back
to Chapter 14 on the concurrent linear model, where the computational
procedure is exactly what we need here. The only differences between PDA
and the analyses in Chapter 14 is that here the dependent variable is Dmx,
and the lower order derivatives can appear on the independent variable side
of the equation.

19.5.3 PDA by iterating the concurrent linear model
The application of the concurrent functional linear model to this prob-
lem presupposes that the estimated derivatives Djxi are reasonable. The
melanoma analysis in Chapter 17 suggests, however, that it may be worth
re-estimating the derivatives once an initial differential equation has been
estimated. We can do this by using the corresponding linear differential
operator to define the roughness penalty. This cycle can be repeated as
many times as are required in order to achieve stable derivative estimates.

A simulated data experiment illustrates the consequences of this iterative
refinement of the roughness penalty using PDA. A sample of 1000 sets of
functional data were generated using the tilted sinusoid model

xi(tj) = ci1 + ci2tj + ci3 sin(6πtj) + ci4 cos(6πtj) + εij

for the 101 values tj = (0, 0.01, . . . , 1). The coefficients cik, k = 1, . . . , 4
were independently generated from a normal distribution with mean zero.
The standard deviations were 1 for k = 1, 3 and 4, and 4 for ci2 . The
errors εij were independent standard normal deviates. Figure 19.12 shows
the first set of samples.

The errorless curves are annihilated by the operator

Lx = (6π)2D2x + D4x,

where (6π)2 = 355.3. How well can we estimate this operator from these
data? Does estimating this operator buy us anything in terms of the quali-
ties of the estimates of the curves and their derivatives? For example, how
well is the second derivative estimated when we use an estimated operator
L rather than the default choice L = D4?

The initial operator was consequently L = D4, and was used to define
the initial penalty matrix R. The basis system that we used to estimate
the true curves and their derivatives consisted of 105 order 6 B-spline basis
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Figure 19.12. The dots indicate the data generated by adding independent
standard normal deviates to the tilted sinusoid shown as the solid line.

functions with knots at the sampling points tj . We cycled through the
following process five times:

1. The value of the smoothing parameter λ minimizing the GCV cri-
terion was found using a numerical optimization method. In order
to avoid rounding error problems, an upper limit on the allowable
estimate was set to 10 − log10 traceR.

2. The data were smoothed using this value of λ.

3. A principal differential analysis was performed based on the con-
current linear model method described above. All four coefficient
functions βj , j = 0, 1, 2, 3 were estimated using the constant basis
for each.

4. The linear differential operator estimated by PDA was then used to
redefine the penalty matrix R.

The estimated λ after the first cycle was 10−9.9, and after the second cycle
it came up against the upper limit that we imposed, which for these data
was 10−8.8. Subsequent iterations hardly changed the results at all.

After the first iteration, defined by L = D4, the PDA estimated the
operator as

Lx = 2360.3x − 123.8Dx + 376.1D2x − 0.3D3x + D4x
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Figure 19.13. The solid curve is the standard error of estimate for the second
derivative of the tilted sine data after five iterations, and the dashed line is after
the first iteration.

and after all five iterations, the estimate was

Lx = 310.4x − 125.4Dx + 357.0D2x − 0.4D3x + D4x.

The estimate after one iteration is quite good, judging by the coefficients
for the key derivatives of order 2 and 3 that determine the period and
phase of the sinusoid, and only slightly improved by going through all five
iterations. For the record, we also tried fixing the first two coefficients to
zero, but the estimates of the second two coefficients were not appreciably
better.

The most striking benefit is in terms of the precision of the function
and derivative estimates. The ratios of the first iteration integrated mean
squared error to that on the fifth iteration are 1.2, 2.0, 3.8, 5.3 and 8.1
for derivatives of order 0, 1, 2, 3 and 4, respectively. The function values
are modestly improved, but the improvement brought about by iterative
refinement of L increases with the order of the derivative. To see better
both the improvement and how it is achieved, we turn to Figure 19.13
which shows the point-wise standard errors of the second derivatives after
the first and fifth iterations. The big impact is at the endpoints, where
estimating a linkage between the function value and the second derivative
greatly diminishes the standard error. Because function value estimates
are less affected by having half the number of neighbors at the endpoints
than are derivatives, estimating this linkage passes along the function value
stability to the derivatives.
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These results are probably better than we would encounter in practice,
mainly because the true curves could all be annihilated in principle by a lin-
ear differential operator within the family of those that we could estimate.
A similar study of growth curves generated by the Jolicoeur model used in
Chapters 5 and 6 came up with a much more modest improvement in the
second derivative because the variation from curve to curve is more com-
plex than can be modelled with a single order four operator. Nevertheless,
the improvements there were also more pronounced at the endpoints.

19.5.4 Assessing fit in PDA
Since the objective of PDA is to minimize the norm ‖Ly‖ of the forcing
function associated with an estimated differential operator, and since the
quality of fit can vary over the domain T , it seems appropriate to assess
fit in terms of the point-wise error sum of squares PSSEL(t) as defined in
(19.10). As in linear modelling, the logical baseline against which we should
compare PSSEL is the error sum of squares defined by a theoretical model
and its associated weight functions ωj :

PSSE0(t) =
∑

i

[
m−1∑
j=0

ωj(t)(Djyi)(t) + (Dmyi)(t)]2. (19.13)

In the event that there is no theoretical model at hand, we may use ωj = 0,
so that the comparison is simply with the sum of squares of the Dmyi.
From these loss functions, we may examine the point-wise squared multiple
correlation function

RSQ(t) =
PSSE0(t) − PSSEL(t)

PSSE0(t)
(19.14)

and the point-wise F-ratio

FRATIO(t) =
(PSSE0(t) − PSSEL(t))/m

PSSE0(t)/(N − m)
. (19.15)

19.6 Comparing PDA and PCA

19.6.1 PDA and PCA both minimize sums of squared errors
Once we have found the operator L, we can in general define m linearly
independent functions ξ1, . . . , ξm that span the null space of L, so that
any function x that satisfies Lx = 0 can be expressed precisely as a linear
combination of the ξj . This means that the functions ξj form a basis for
this space of solutions. Just how we compute such a basis is taken up in
Chapter 18.
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Let us assume that we have a sample of N observed functions xi, where
N = 1 is allowed. If these functions are not necessarily solutions to (19.3),
then we can quantify the extent to which they approach being solutions by
the size of the forcing functions εi defined by

Lxi = εi.

An example of this idea was given in Figure 1.7 where we applied the
harmonic acceleration operator to four temperature profiles and discovered
that these forcing functions were substantially nonzero.

The algorithm that we used in Section 17.3 aimed, at each iteration, to
find the operator L that minimized the integrated square of the residual
function ε. Why? Because it used the concurrent functional linear model
developed in Chapter 14 to minimize a measure of discrepancy between the
derivative that acted as the dependent variable and the fit based on two
lower order derivatives that acted as independent variables. In effect, this
minimizes a sum of squares measure for the corresponding L operator.

Consequently, we have a technique for choosing L so as to make the
Lxi as small as possible. If the technique is successful, then the residual
functions will be small relative to the highest order of derivative. We should
then expect to obtain a good approximation of the xi by expanding them
in terms of the ξj that span the subspace defined by the corresponding
differential equation.

This is closely reminiscent of PCA, where the first m principal component
functions ξj also define an m-dimensional subspace for approximating the
given data.

19.6.2 PDA and PCA both involve finding linear operators
We can pursue the comparison between PCA and PDA further by noting
that PCA can also be considered to involve the identification of a linear
operator, which we can denote by Q, such that the equation Qxi = 0 is
solved as nearly as possible. To see this, recall from Chapter 8 that the
goal of functional PCA is to find a set of m basis functions ξj such that
the least squares criterion

SSEPCA =
N∑

i=1

∫
[xi(t) −

m∑
j=1

fijξj(t)]2 dt (19.16)

is minimized with respect both to the basis functions ξj and with respect
to the coefficients of the expansions of each observed principal component
score fij .

Because the fitting criterion (19.16) is least squares, we can think of PCA
as a two-stage process: First identify a set of m orthonormal basis func-
tions ξj , and then approximate any specific curve xi by x̂i =

∑m
j=1 fijξj .

This second basis expansion step is the projection of each of the observed
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functions onto the m-dimensional space spanned by the basis functions ξj ,
and takes place after having first identified the optimal basis for these ex-
pansions. Thus x̂i is the image of xi resulting from applying a least squares
fit.

Suppose we indicate this projection as Pξ, with the subscript indicating
that the nature of the projection depends on the basis functions ξj . That
is, Pξxi = x̂i.

Associated with the projection Pξ is the complementary projection

Qξ = I − Pξ,

which produces as its result the residuals

Qξxi = xi − Pξxi = xi − x̂i.

Using these projection operators, we can alternatively and equivalently
define the PCA problem in a way that is much more analogous to the
problem of identifying the linear differential operator L: In PCA, one seeks
a projection operator Qξ such that the residual sum of squares

SSEPCA =
N∑

i=1

∫
[Qξxi(t)]2 dt (19.17)

is minimized. Indeed, one might think of the first m eigenfunctions as
the functional parameters defining the projection operator Qξ, just as the
weight functions β are the functional parameters defining L in PDA. These
eigenfunctions, and any linear combinations of them, exactly satisfy the
equation Qξξj = 0, just as the m functions ξj referred to above exactly
satisfy the equation Lβξj = 0, where we now add the subscript β to L to
remind ourselves that L is defined by the vector β containing the m weight
functions βj .

Principal differential analysis is defined, therefore, as the identification of
the differential operator Lβ that minimizes least squares criterion SSEPDA;
principal components analysis is defined as the identification of the projec-
tion operator Qξ that minimizes the least squares criterion SSEPCA. Both
operators are linear.

19.6.3 Differences between differential operators (PDA) and
projection operators (PCA)

Since the basic structures of the least squares criteria (19.17) and (19.4)
are the same, clearly the only difference between the two criteria is in terms
of the actions represented by the two operators Lβ and Qξ. Since Qξx is
in the same vector space as x, the definition of the operator identification
problem as the minimization of ‖Qξx‖2 is also in the same space, in the
sense that we measure the performance of Qξ in the same space as the
functions x to which it is applied.
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On the other hand, Lβ is a roughening transform in the sense that Lβx
has m fewer derivatives than x and is usually more variable. We may want
to either penalize or otherwise manipulate x at this rough level.

Put another way, it may be plausible to conjecture that the noise or
unwanted variational component in x is found only at the rough level Lβx.
Thus, a second motivating factor for the use of Lβ rather than Qξ is that
PDA process explicitly takes account of the smoothness of the data by first
roughening the data before minimizing error, while PCA does not.

Once we have found the operator L, we can in general define m linearly
independent functions u1, . . . , um that span the null space of L, and so
any function x that satisfies Lx = 0 can be expressed precisely as a lin-
ear combination of the uj . Hence, since L has been chosen to make the
Lxi as small as possible, we would expect to obtain a good approximation
of the xi by expanding them in terms of the uj . This is closely reminis-
cent of PCA, where the first m principal component functions ξj form a
good m-dimensional set for approximating the given data. The spirit of the
approximation is rather different, however.

We can pursue the comparison between PCA and PDA by noting that
PCA can also be considered to involve the identification of a linear operator,
which we can denote by Q, such that the equation Qxi = 0 is solved as
nearly as possible. To see this, recall from Chapter 8 that one method of
defining functional PCA is to propose to find a set of m basis functions ξj

such that the least squares criterion

SSEPCA =
N∑

i=1

∫
[xi(t) −

m∑
j=1

fijξj(t)]2 dt (19.18)

with respect both to the basis functions ξj and with respect to the coeffi-
cients of the expansions of each observed function, fij . Because the fitting
criterion (19.18) is least squares, we can think of PCA as a two-stage pro-
cess: first identify a set of m orthonormal basis functions ξj , and then
approximate any specific curve xi by x̂i =

∑m
j=1 fijξj . This second basis

expansion step is the projection of each of the observed functions onto the
m-dimensional space spanned by the basis functions ξ, and takes place af-
ter having first identified the optimal basis for these expansions. Thus x̂i

is the image of xi resulting from applying a least squares fit.
Suppose we indicate this projection as Pξ, with the subscript indicating

that the nature of the projection depends on the basis functions ξj . That
is, Pξxi = x̂i. Associated with the projection Pξ is the complementary
projection

Qξ = I − Pξ,

which produces as its result the residuals

Qξxi = xi − Pξxi = xi − x̂i.
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Using this concept, we can alternatively and equivalently define the PCA
problem in a way that is much more analogous to the problem of identifying
the linear differential operator L: In PCA, one seeks a projection operator
Qξ such that the residual sum of squares

SSEPCA =
N∑

i=1

∫
[Qξxi(t)]2 dt (19.19)

is minimized. Indeed, one might think of the first m eigenfunctions as
the functional parameters defining the projection operator Qξ, just as the
weight functions w are the functional parameters of the LDO L in PDA.
These eigenfunctions, and any linear combinations of them, exactly satisfy
the equation Qξξj = 0, just as the m functions uj referred to above exactly
satisfy the equation Lwuj = 0, where we now add the subscript w to L to
remind ourselves that L is defined by the vector w of m weight functions
βj .

Principal differential analysis is defined, therefore, as the identification
of the operator Lw that minimizes least squares criterion SSEPDA, just as
we can define PCA as the identification the projection operator Qξ that
minimizes the least squares criterion SSEPCA.

Since the basic structures of the least squares criteria (19.19) and (19.4)
are the same, clearly the only difference between the two criteria is in terms
of the actions represented by the two operators Lw and Qξ. Since Qξx is
in the same vector space as x, the definition of the operator identification
problem as the minimization of ‖Qξx‖2 is also in the same space, in the
sense that we measure the performance of Qξ in the same space as the
functions x to which it is applied.

On the other hand, Lw is a roughening transform in the sense that Lwx
has m fewer derivatives than x and is usually more variable. We may want
to either penalize or otherwise manipulate x at this rough level. Put another
way, it may be plausible to conjecture that the noise or unwanted varia-
tional component in x is found only at the rough level Lwx. Thus, a second
motivating factor for the use of Lw rather than Qξ is that PDA process
explicitly takes account of the smoothness of the data by first roughening
the data before minimizing error, while PCA does not.

As an example, imagine that we are analyzing the trajectories xi of
several rockets of the same type launched successively from some site. We
observe that not all trajectories are identical, and we conjecture that some
random process is at work that contributes variability to our observations.
Naively, we might look for that variability in the trajectories themselves,
but our friends in physics will be quick to point out that, first, the major
source of variability is probably in the propulsion system, and second since
the force that it applies is proportional to acceleration, we ought to study
the acceleration D2xi instead. That is, if the function xi is the trajectory
along a specific coordinate axis (straight up, for example), the systematic
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or errorless trajectory should obey the law

fi(t) = M(t)D2xi(t),

where M(t) is the mass of the rocket at time t. Alternatively,

−fi/M + D2xi = 0.

Taking a more empirical approach, however, we agree on the compromise
of looking for a second order linear differential equation

Lx = β0x + β1Dx + D2x

and, if our friends in physics are right, the systematic or errorless
component in the data should yield

β0xi = −fi/M and β1 = 0.

What we do understand, in any case, is that the sources of variability are
likely to be at the rough level D2xi, rather than at the raw trajectory level
xi.

Returning to the lip position curves, we might reason that variation in lip
position from curve to curve is due to variation in the forces resulting from
muscle contraction, and that these forces have a direct or proportional
impact on the acceleration of the lip tissue, and thus only indirectly on
position itself. Position is two derivatives away from the action, in short.

More generally, an important motivation for finding the operator Lw is
substantive: Applications in the physical sciences, engineering, biology and
elsewhere often make extensive use of differential equation models of the
form

Lxi = fi.

The result fi is often called a forcing or impulse function, and in physical
science and engineering applications is often taken to indicate the influence
of exogenous agents on the system defined by Lx = 0.

Section 19.5 presents techniques for principal differential analysis, along
with some measures of fit to the data. We also take up the possibility of
regularizing or smoothing the estimated weight functions βj .

19.7 Further readings and notes

Viele (2001) also analyzed the pinch force data with an alternative strategy
for testing whether the model (19.8) adequately fits the data.


