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Green’s functions and reproducing
kernels

20.1 Introduction

We now introduce two concepts that are useful for both computation and
theory. Green’s functions are important because they permit the solution
for a nonhomogeneous linear differential equation Lx = u to be explicitly
represented and calculated, no matter what the forcing function u. Well,
this is a slight overstatement, since what we mean is that the explicit solu-
tion is available provided that we know the solution to the corresponding
homogeneous equation Lx = 0. But it is often the case that we do, and even
if we only have available an approximation to the homogeneous solution, it
can still be the case that we want to compute solutions for a wide range of
forcing functions. Green’s functions can, therefore, make a real difference
in applications.

A reproducing kernel is a somewhat more theoretical concept, but many
texts, such as Gu (2002) and Wahba (1990) use the notion freely, and one
often encounters the term reproducing kernel Hilbert space in the litera-
ture using spline functions. In fact, the term has a standard abbreviation,
namely RKHS. So it can be useful to know what it means. We try in this
chapter to demystify reproducing kernels by showing their relationship to
Green’s functions.

In Chapter 21 we will use both Green’s functions and reproducing kernels
to develop new designer bases associated with any specific choice of linear
differential operator L. These bases will, like B-splines, be nonzero only over
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a small number of adjacent intervals. That is, they have band-structured
coefficient matrices, and permit smoothing in order n operations.

20.2 The Green’s function for solving a linear
differential equation

It often happens in engineering and science that the researcher has a ho-
mogeneous linear differential equation corresponding to a linear differential
operator L that has either been worked out using fundamental principles or
determined empirically. This equation describes the internal or endogenous
dynamics of some system. What he or she wants to know, however, is that
the consequences will be of adding an external or exogenous influence u to
the system, and there are a wide variety of these potentially available. For
example, a rocket may be a well-understood system as long as it is on the
launching pad, but what will happen when it is in flight under the influence
of atmospheric turbulence?

That is, what we want to know is the solution of the nonhomogeneous
equation

Lx = u (20.1)

for known L but arbitrary u? In effect, we want to reverse the effect of
applying operator L because we have a forcing function u and we want to
find x.

Of course, we recognize that the solution is not unique; if we add to any
solution x some linear combination of the functions ξj ∈ ker L that span
the null space, ker L, of L, then this function also satisfies the equation.

But let us assume that the investigator has a set of known conditions
defining a constraint operator B, and that these satisfy the complemen-
tarity condition (18.31). Typically, these will be initial value conditions
describing, for example, the status of the rocket on the launching pad. Let
m be the order of the equation. Then these constraints will be in the form

Bx = b (20.2)

for some known fixed m-vector b.
Define the matrix A as the result of applying constraint operator B to

each of the ξj ’s in turn:

A = Bξ′, (20.3)

so that the element in row i and column j of A is the ith element of vector
Bξj . Since every ξ in kerL can be written as

ξ(t) =
∑

j

cjξj(t) = ξ′c
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for an m-vector of coefficients c, then by the definition of A we have that

Bξ = b = Ac.

The conditions we have specified ensure that A is invertible, and
consequently we have that

c = A−1b.

Now suppose that ν satisfies Lν = u and also Bν = 0. That is, ν ∈ ker B,
and in this sense is the complement of ξ ∈ ker L. Then

x(t) = ξ(t) + ν(t)

satisfies

Lx = u subject to Bx = b.

Consequently, if we can solve the problem

Lν = u subject to ν ∈ ker B, (20.4)

we can find a solution subject to the more general constraint Bx = b.

20.2.1 The definition of the Green’s function
It can be shown that there exists a bivariate function G(t; s) called the
Green’s function, associated with the pair of operators (B, L) that satisfies

ν(t) =
∫

G(t; s)Lx(s) ds for ν ∈ ker B. (20.5)

Thus, for Lν = u, the Green’s function defines an integral transform

Gu =
∫

G(t; s)u(s) ds (20.6)

that inverts the linear differential operator L. That is, GLν = ν, given that
Bν = 0.

Before giving a general recipe for computing the Green’s function G, let’s
look at a few specific examples. The first is nearly trivial: If our interval is
[0, T ] and our constraint operator is the initial value constraint B0x = x(0),
then for L = D,

G(t; s) = 1, s ≤ t, and 0 otherwise.

That is, for ν such that ν(0) = 0,

ν(t) =
∫ t

0
Dν(s) ds =

∫ t

0
u(s) ds.

Now consider the first order constant coefficient equation (18.1). Looking
at the solution (18.3) for α(t) = 1, we see by inspection that

G(t; s) = e−β(t−s), s ≤ t, and 0 otherwise.
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Progressing from this situation to the variable coefficient version (18.5) is
now easy:

G(t : s) = ξ(t)/ξ(s), s ≤ t, and 0 otherwise.

20.2.2 A matrix analogue of the Green’s function
Readers of this book may be familiar enough with matrix algebra to wel-
come a closely related concept in that domain. Suppose that we have, for
n > m an n − m by n matrix L of rank n − m. If n is very large, then we
approach the functional situation where n → ∞.

Then there exists a subspace of n-vectors ξ ∈ kerL such that

Lξ = 0,

and that space is of dimension m. This means that we can construct a n
by m matrix Z whose columns span this subspace such that LZ = 0.

Also, we can always find an m by n matrix B of rank m such that there
exists a space of dimension m of n vectors ν such that

Bν = 0 ;

and, moreover, such that the only vector x satisfying simultaneously Lx = 0
and Bx = 0 is x = 0. For example, one way to compute such a matrix B is
through the singular value decomposition of L, but there are many other
ways in which to define B, which is not uniquely defined, just as the defining
conditions and operator B for differential equations are not unique.

Corresponding to a particular choice of B, we can find an n by n − m
matrix N such that BN = 0.

Now suppose that we have an arbitrary n-vector u. Then it follows that

ν = N(LN)−1u (20.7)

solves the equation

Lν = u

and, moreover, ν ∈ kerB since BN = 0. Matrix

G = N(LN)−1 (20.8)

is the analogue of the Green’s function G(s; t).
A special choice of B leads to an interesting result. Let B be chosen so

that N = L′. In that case, G = L′(LL′)−1 and G′ is the pseudo-inverse of
L.

20.2.3 A recipe for the Green’s function
We can now offer a recipe for constructing the Green’s function for any
linear differential operator L of the form (18.12) and the initial value con-
straint BI of the corresponding order. First, compute the Wronskian matrix
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W(t) defined in (18.26). Secondly, define the functions

v(t) = (v1(t), . . . , vm(t))′

to be the vector containing the elements of the last row of W−1. Then, it
turns out that initial value constraint Green’s function G0(t; s) is

G0(t; s) =
m∑

j=1

ξj(t)vj(s) = ξ(t)′v(s), s ≤ t, and 0 otherwise. (20.9)

Let’s see how this works for

L = βD + D2.

The space ker L is spanned by the two functions ξ1(t) = 1 and ξ2(t) =
exp(−βt). The Wronskian matrix is

W(t) =
[

ξ1(t) Dξ1(t)
ξ2(t) Dξ2(t)

]
=

[
1 0
exp(−βt) −β exp(−βt)

]

and consequently

W−1(t) =
[

1 0
β−1 −β−1 exp(βt)

]
,

from which we have

v(s) = −β−1[−1, exp(βs)]′

and finally

G0(t; s) = −β−1[e−β(t−s) − 1], s ≤ t, and 0 otherwise. (20.10)

We can verify that this is the required Green’s function by integration by
parts.

We do not discuss in any detail the case of any constraint functions
B other than initial value constraints. Under boundary or periodic con-
straints, it may be that additional conditions are required on the function
f or on the constraint values c, but nevertheless we can extend the basic
ideas of Green’s functions.

20.3 Reproducing kernels and Green’s functions

A bivariate function called the reproducing kernel plays a central role in
the theory of spline functions, and we will use reproducing kernels in Chap-
ter 21 to define a basis function system φ specific to any linear differential
operator L used to define a roughness penalty.
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20.3.1 What is a reproducing kernel?
We remarked in Section 18.6.3 that the concept of an inner product under-
lies perhaps about 95% of all applied mathematics and statistics. There is
no possibility here of doing more than recalling the most basic elements of
inner product spaces, and perhaps no particular need, either.

A Hilbert space is a collection of objects x for which there exists:

• linear combinations ax1 + bx2,

• an inner product 〈x1, x2〉 for any pair x1 and x2

• a property called completeness, namely that convergent sequences of
elements converge to elements within the space.

Both vectors and functions as used in applied work are typically elements of
Hilbert spaces, and Section 18.6.3 gave some functional examples of useful
inner products.

There is a sense, however, in which the Hilbert space is too loose a
concept. This revolves around the linear mapping

ρt(x) = x(t),

which we called the evaluation mapping in Section 5.5. If a function x is
smooth, we imagine that knowing x(t) tells us a great deal about x(t + δ)
when perturbation δ is sufficiently small. Unfortunately, such need not be
the case for Hilbert spaces in general.

Consequently, we need to focus on the more specialized Hilbert space
for which the evaluation map is continuous. It would be nice to imagine
that these would be called something like smooth Hilbert spaces, or con-
tinuous Hilbert spaces, but alas, mathematics does not tend to generate
its nomenclature in such a kindly way! Instead, spaces of this nature are
called reproducing kernel Hilbert spaces, not surprisingly often abbreviated
to RKHSs.

It is a basic theorem in functional analysis, called the Riesz representation
theorem, that if a linear mapping ρ(x) in a Hilbert space is continuous, then
there exists a function k in the space such that

ρ(x) = 〈x, k〉 .

Consequently, applying this idea to the evaluation map ρt(x), there must
exist a bivariate function k(s, t) such that k(·, t) is in the space for any t,
and that

ρt(x) = 〈x, k(·, t)〉 .

The term reproducing kernel comes from the consequence that

k(s, t) = 〈k(·, s), k(·, t)〉 .
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The existence of k(s, t) has many wide-ranging consequences, and plays
an especially important role in the history of the development of spline
smoothing.

So, given that we have a Hilbert space with a continuous evaluation map,
how do we find the reproducing kernel? The surprising result is: If you know
the Green’s function for the linear differential operator that defines inner
products of the type described in Section 18.6.3, you are almost there!

There are two reproducing kernels k(s, t) that we need to consider, one
for each of the function subspaces kerB and kerL. We now show how these
can be calculated, and we will put them to work in Chapter 21.

20.3.2 The reproducing kernel for ker B

The reproducing kernel for the kerB subspace, consisting of functions that
satisfy Bx = 0, has a simple relationship to the Green’s function G. First,
however, we need to explain what a reproducing kernel is in this context.

Given any two functions x and y in kerB, let us define the L-inner
product

〈x, y〉L = 〈Lx, Ly〉 =
∫

Lx(s)Ly(s) ds.

Let GI be the Green’s function as defined in Section 20.2.3, and define a
function k2(t, s) such that, for all t,

Lk2(t, ·) = GI(t; ·) and Bk2(t, ·) = 0. (20.11)

By the defining properties of Green’s functions, this means that

k2(t, s) =
∫

GI(s;w)GI(t; w) dw. (20.12)

The function k2 has an interesting property. Suppose that ν is any func-
tion in kerB, and consider the L-inner product of k2(t, ·) and ν. We have,
for all t,

〈k2(t, ·), ν〉L =
∫

Lk2(t, s)Lν(s) ds =
∫

GI(t; s)Lν(s) ds = ν(t) (20.13)

by the key property (20.5) of Green’s functions. Thus, in the space kerB
equipped with the L-inner product, taking the L-inner product of k2 using
its second argument with any function ν yields the value of ν at its first
argument. Overall, taking the inner product with k2 reproduces the func-
tion ν, and k2 is called the reproducing kernel for this function space and
inner product.

Chapter 21 shows that the reproducing kernel is the key to the important
question, “Is there an optimal set of basis functions for smoothing data?”
To answer this question, we need to use the important property

〈k2(s, ·), k2(t, ·)〉L = k2(s, t), (20.14)
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which follows at once from (20.13) setting ν(·) = k2(s, ·) and appealing to
the symmetry of the inner product.

We can put the expression (20.12) in a slightly more convenient form for
the purpose of calculation. Recalling the definitions of the vector-valued
functions ξ and v in Section 20.2.3, we have from (20.9), assuming that
s ≤ t, that

k2(s, t) =
∫ s

0
[u(s)′v(w)][v(w)′u(t)] dw = u(s)′F(s)u(t), (20.15)

where the order m symmetric matrix-valued function F(s) is

F(s) =
∫ s

0
v(w)v(w)′ dw. (20.16)

To deal with the case s > t, we use the property that k2(s, t) = k2(t, s).
The matrix analogue of the reproducing kernel k2(s, t) is

K2 = GG′,

since we see that for any ν ∈ ker B

K2L
′Lν = N(LN)−1(N′L′)−1N′L′Lν

= N(LN)−1Lν

= ν (20.17)

as required.

20.3.3 The reproducing kernel for ker L

Suppose now that f =
∑

aiξi and g =
∑

biξi are elements of ker L. We can
consider the B-inner product on the finite-dimensional space kerL, defined
by

〈f, g〉B = (Bf)′Bg = a′A′Ab.

Define a function k1(t, s) by

k1(t, s) = ξ(t)′(A′A)−1u(s).

It is now easy to verify that, for any f =
∑

i aiξi,

〈k1(t, ·), f〉B = ξ(t)′(A′A)−1A′Aa = ξ(t)′a = a′ξ(t) = f(t).

So k1 is the reproducing kernel for the space kerL equipped with the B-
inner product.

Finally, we consider the space of more general functions x equipped with
the inner product 〈·, ·〉B,L as defined in Section 18.6.3. It is easy to check
from the properties we have set out that the reproducing kernel in this
space is given by

k(s, t) = k1(s, t) + k2(s, t).
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20.4 Further reading and notes

Although the theory of reproducing kernel Hilbert spaces is considered to be
of relatively recent origin, and usually attributable to Aronszajn (1950), it
is in fact grounded in the theory of Green’s functions, a topic older by more
than a century (Green, 1828). The concept of a reproducing kernel appears
in most of the papers by G. Wahba, including Wahba (1990). More recently,
reproducing kernels are used extensively in Gu (2002). The interested and
highly motivated reader might want to consult a reference on functional
analysis with an applied orientation, such as Aubin (2000).


