21

More general roughness penalties

21.1 Introduction

A theme central to this book has been the use of roughness penalties to in-
corporate smoothing, whether in the context of using discrete data to define
a smooth function in Chapter 5, functional principal components analysis
in Chapter 9, or imposing regularity on estimated regression functions in
the chapters on the functional linear model.

At the same time, the previous three chapters have dealt with the math-
ematical properties of linear differential operators L and with techniques
for estimating them from data. Principal differential analysis provides a
method of estimating low-dimensional functional variation in a sense anal-
ogous to principal components analysis, but by estimating an mth order
differential operator L rather than a projection.

Moreover, we have seen that by coupling L with a suitable set of con-
straints on the m linearly independent functions §; satisfying L&; = 0, we
can partition the space of smooth functions into two parts. This is achieved
by defining a constraint operator B such that B¢; # 0, and the only func-
tion satisfying Bx = Lz = 0 is « = 0. Then any function x having m
derivatives can be expressed uniquely as

x = ¢+ e where LE =0 and Be = 0. (21.1)

We might call this the partitioning principle.
It is time to put these two powerful ideas together, to see what practi-
cal value there is in using the partitioning principle to define a roughness
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penalty. We want to go beyond the standard practice of defining roughness
in terms of L = D?, and even beyond the slightly more general L = D™, to
consider what the advantages might be of using an arbitrary operator L,
perhaps in conjunction with some constraints captured in the companion
operator B. Specifically, when the goal is smoothing the data, we propose
using the criterion
n
PENSSE(z) = » [y; — (t;)]* + A x PENL (), (21.2)
J

where
PEN,, () — / (La)2(t) dt.

We begin with some examples.

21.1.1 The lip movement data

Consider the lip movement data introduced in Chapter 19 and plotted in
Figure 21.1. We are interested in how these trajectories, all based on ob-
servations of a speaker saying “bob,” vary from one replication to another.
But in the experiment, the syllable was embedded in the phrase, “Say bob
again,” and it is clear that the lower lip enters and leaves the period during
which the syllable is being formed at different heights. This is nuisance
variation that we would be happy to eliminate.

Moreover, there was particular interest in the acceleration or second
derivative of the lip, suggesting that we should penalize the fourth deriva-
tive by spline smoothing with L = D*. Any cubic polynomial trend in the
records is ignored if we do that. Now we want to define the shape compo-
nent v and endpoint component & of each record x in such a way that the
behavior of the record at the beginning and end of the interval of observa-
tion (normalized to be [0,1]) has minimal impact on the interior and more
interesting portion of the curve. One way of achieving this objective is to
require the shape components to satisfy the constraints

u(0) = Du(0) = 0 and u(1) = Du(1) = 0.

This means that the constraint is defined by the boundary constraint
operator Bp, defined as

Beo=| 4 , (21.3)

and the shape component u satisfies Bgu = 0.
We now have our two linear operators L = D* and B = Bp in hand,
and they are complementary in the sense that ker B N ker L = 0. That is,
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Figure 21.1. The right panel displays the 20 cubic polynomials ¢ that match the
lip position and derivative values at 0 and 1 for the smoothed versions of the
curves in Figure 19.1. The left panel shows the shape components u that have
zero endpoint positions and derivatives.

we have now unambiguously split any lip position record x into z = £ 4 u,
where Bu = 0, and £, a cubic polynomial because L& = D*¢ = 0, picks up
the endpoint variation by fitting the record’s function and derivative values
at both 0 and 1. Figure 21.1 displays the endpoint and shape components
for all 20 records.

21.1.2 The weather data

We noted in the introduction that a rather large part of the mean daily or
monthly temperature curve for any weather station can be captured by the
simple function

T(t) = c1 + casin(nt/6) + c3 cos(nt/6) (21.4)

and the same may be said for the log precipitation profiles. Functions of
this form can be annihilated by the operator

L= (n/6)*D + D>.

We could propose smoothing data using the criterion (21.2), where

PENL(J:):/(Lx)Q(t)dtz/[(7r/6)2Dx(t)+D3x(t]2(t) dt,

while paying attention to the periodic character of the data. What would
we gain from this? For one thing, as we have already noted in Section 18.4.3,
this procedure is likely to have considerable advantages in the estimation
of curves = from raw data.

At the same time, the function LTemp in this example is interesting
in itself, and Ramsay and Dalzell (1991) refer to this as the harmonic
acceleration of temperature. They show by functional principal components
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Figure 21.2. The solid cycles are the smoothed daily temperature and log precip-
itation data, plotted against each other, for two Canadian weather stations. The
dotted curves are the estimated cycles based on strictly sinusoidal variation, tak-
ing the first three terms of the Fourier expansion of each observed temperature
and log precipitation curve. Letters indicate the middle of each month.

and linear regression analyses that LTemp, and the harmonic acceleration of
log precipitation, contain a great deal of information about the peculiarities
of weather at any station. In order to identify the component e uniquely,
though, we must choose a matching integral constraint operator By, and
for this application they chose

Jx(t)dt
Brz = | [x(t)sin(xt/6)dt |,

J x(t) cos(wt/6) dt

corresponding to the first three Fourier coefficients of the observed curves.
The three functions &; that span ker L are then 1, sin(7t/6) and cos(7t/6).
Given any curve z, the partition (21.1) is achieved by setting the component
& to be the first three terms in the Fourier expansion of x.

The solid curves in Figure 21.2 show, for two weather stations, plots
of smoothed daily temperature against smoothed daily log precipitation
through the year. The shifted sinusoidal components §;(¢) for temperature
and for log precipitation respectively become ellipses when plotted against
each other and yield the dotted curves in the figure.
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21.2 The optimal basis for spline smoothing

In Chapter 3 we reviewed the classic technique of representing functions by
fitting a basis function expansion to the data. We took pains to point out
that not all bases are equal: A good basis has basis functions which mimic
the general features that we know apply to the data, such as periodicity,
asymptotic linearity, and so on. When we get these features right, we can
expect to do a good job with a smaller number of basis functions.

We also pointed out that when the number n of data points is large,
computing an expansion in O(n) operations is critical, and in order to
achieve this, the basis functions should at least be nonzero only locally, or
have compact support. The B-spline basis is especially attractive from this
perspective.

In Section 5.6, we extended the basis function expansion concept to em-
ploy a partitioned basis (¢,1) along with a penalty on the size of the
component expanded in terms of the basis functions 1. But two properties,
relevance to the data and convenience of computation, remain essential.

We now bring these elements together: Use the partitioning principle to
define a set of basis functions that are optimal with respect to smoothing,
provide a recipe for an O(n) smoothing algorithm, and also show how these
can be put into compact support form to give the appropriate analogue of
B-splines. Further details are available in Heckman and Ramsay (2000).

We begin with a theorem that states that the optimal basis for spline
smoothing in the context of operators (B, L) is defined by the reproducing
kernel ko defined in Chapter 20.

Optimal Basis Theorem:

For any A > 0, the function x minimizing the spline smoothing crite-
rion (21.2) defined by a linear differential operator L of order m has the
expansion

o(t) =Y d;&i(t) + Y cika(ti ). (21.5)
7j=1 1=1

Equation (21.5) can be put a bit more compactly. As before, let & =
(&1,...,&m)"; define another vector function

k(t) = {ka(t1,1), ka(ta, t), ... ka(tn, 1)},

Then the optimal basis theorem says that the function = has to be of the
form z = d'¢€ + c’l~£, where d is a vector of m coefficients d; and c is the
corresponding vector of n coefficients ¢; in (21.5). We give a proof of the
optimal basis theorem, but as usual any reader prepared to take this on
trust should simply skip to the next section.
Proof:

Suppose z* is any function having square-integrable derivatives up to
order m. The strategy for the proof is to construct a function Z of the form
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(21.5) such that
PENSSE(Z) < PENSSE(z™)

with equality only if £ = z*. It then follows at once that we need never
look beyond functions of the form (21.5) if we want to minimize the spline
smoothing criterion PENSSE.

First of all, write 2* = u* + e* where u* € ker L and e* € ker B. Let
K be the subspace of ker B spanned by the n functions ko(%;,-), and let é
be the projection of e* onto K in the L-inner product. This means that
e* = é+ et, where

e=ck
for some vector ¢, and the residual e® in ker B satisfies the orthogonality
relation

(e,et), = /(L@(Lel) — 0 for all e in K. (21.6)

We now define our function & = u* + €, meaning that Z is necessarily of
the required form (21.5), and 2* — 7 is equal to the residual et.

To show that PENSSE(Z) < PENSSE(z*), note first that, by the defining
property of the reproducing kernel, for each 1,

2 (t;) — B(ti) = e (t:) = (ka(ti,-), e ) =0

by property (21.6), since ka(t;,-) is of course a member of K and so is
L-orthogonal to et.

Therefore z* and ¥ agree at the arguments ¢;, and so

PENSSE(z*) — PENSSE(Z) = A{PENy (z*) — PEN(Z)};
the residual sum of squares of the y; is the same about each of the two
functions «* and z. Since Lz* = Le* and Lz = Le, we have
PEN (z*) — PEN.(Z) = PEN(e*) — PENL(é)

(+etét+et)L—(6,6)r
(et etV +2(6,et)p = (et ety

since € is in K and is therefore L-orthogonal to e®. Therefore PENy (e*) >
PEN(€), and consequently PENSSE(z*) > PENSSE(Z). Equality holds only
if el € ker L; since we already know that el € ker B, this implies that
e’ =0 and that z* = Z. This completes the proof of the theorem.

21.3  An O(n) algorithm for L-spline smoothing

21.3.1 The need for a good algorithm

In principle, the optimal basis theorem should tell us exactly how to pro-
ceed. Since we know that the required function is of the form x = d'u+ 'k,
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we need only express PENSSE(z) in terms of ¢ and d and minimize to find
the best values of ¢ and d. How would this work out?

Let K be the matrix with values ka(¢;,¢;). From equation (20.14) it
follows that

PENL(2) = ((k, k) = ¢ Ke.

The vector of values z(t;) is Ud + K¢, where U is the matrix with val-
ues §;(t;). Hence, at least in principle, we can find « by minimizing the
quadratic form

PENSSE(z) = (y — Ud — Kc)'(y — Ud — Kc) + A\ Ke (21.7)

to find the vectors ¢ and d.

Unfortunately the matrix K is in practice usually extremely badly con-
ditioned, that is to say, the ratio of its largest eigenvalue to its smallest
explodes. A practical consequence of this is that the computations re-
quired to minimize the quadratic form (21.7) are likely to be unstable or
impossible.

Furthermore, in smoothing long sequences of observations, it is criti-
cal to devise a smoothing procedure that requires a number of arithmetic
operations that does not grow too quickly as the length of the sequence
increases. For example, the handwriting data has n = 1401 and so an al-
gorithm that was O(n?) would be impracticable and an O(n?) algorithm
virtually impossible with current computing power. By adopting a some-
what different approach, we can set out an algorithm that requires only
O(n) operations, and furthermore avoids the numerical problems inherent
in the direct minimization of (21.7).

The algorithm we use is based on the theoretical paper of Anselone and
Laurent (1967), but is also known as the Reinsch algorithm because of the
application to the cubic polynomial smoothing case (L = D?) by Rein-
sch (1967, 1970). It was subsequently extended by Hutchison and de Hoog
(1985). We do not attempt a full exposition of the rationale for this algo-
rithm here, but Heckman and Ramsay (2000) and Ramsay, Heckman and
Silverman (1997) can be consulted for details.

The algorithm requires the computation of values of two types of function
that we have already encountered:

1. &,7 = 1,...,m: a set of m linearly independent functions satisfy-
ing LE; = 0, that is, spanning ker L. As before, we refer to these
collectively as the vector-valued function &.

2. ko: the reproducing kernel function defined in Chapter 18 for the
subspace of functions e satisfying Bre = 0, where By is the initial
value constraint operator.

The functions &€ and ks are the user-supplied components of the algorithm
and are, of course, defined by the particular choice of operator L used in
the smoothing application.
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The algorithm splits into three phases:

1. an initial setup phase that does not depend on the smoothing
parameter A

2. a smoothing phase in which we smooth the data

3. a summary phase in which we compute performance measures for the
smooth

This division of the task is of practical importance because we may want to
try smoothing with many values of A, and do not want to needlessly repeat
either the initial setup phase or the final descriptive phase.

21.3.2  Setting up the smoothing procedure

In the initial phase, we define two symmetric (n — m) x (n — m) band-
structured matrices H and C'C where m is the order of operator L. Both
matrices are band-structured with band width at most 2m+1, which means
that all entries more than m positions away from the main diagonal are
zero. Because of symmetry, these band-structured matrices require only
(n —m)(m + 1) storage locations.

We start by explaining how to construct the matrix C. For each i =
1,...,n —m, define the (m + 1) x m matrix U to have (I, ;) element
&i(tiy1), for I = 0,...,m. Thus U® is the submatrix of U consisting
only of rows 7,7 + 1,...,i 4+ [. Find the QR decomposition (as discussed
in Section A.3.3)

u® — Q(i)R(i),

where the matrix Q(i) is square, of order m + 1, and orthonormal, and
where the matrix R is (m+ 1) x m and upper triangular. Let the vector
¢ be the last column of Q(i); this vector is orthogonal to all the columns
of U In fact any vector having this property will do, and in special cases
the vector can be found by some other method. For polynomial spline
smoothing, for instance, coefficients defining divided differences are used.

Now define the n x (n — m) matrix C so that its ¢th column has the
m+1 values ¢ starting in row i; elsewhere the matrix contains zeroes. In
practice, the argument sequence t1,...,t, is often equally spaced, and in
this case it frequently happens that all the coefficient vectors ¢() are the
same, and hence need be computed only once. The band structure of C
immediately implies that C’C has the required band structure, and can be
found in O(n) operations for fixed m.

The other setup-phase matrix H is the (n — m) x (n — m) symmetric
matrix

H = C'’KC, (21.8)
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where K is the matrix of values ka(¢;,¢;). It turns out that H is also
band-structured with band width 2m — 1. This is a consequence of the
expression (20.15) for the reproducing kernel, which yields the following
two-part expression:

kg(ti,t){ 8; E> u(t) - fort; 2 ¢ (21.9)

)'F(t)u(t) fort; <t
for a certain matrix function F(¢). This in turn implies that
Kij = {UF(t;)u(t;)}i fori=j. (21.10)

Suppose k > j. Because C;j, is zero for i < k,

(C'K)yj = chkKU = ZCM{UF u(ti)}i,

substituting (21.10); notice that ¢ > j for all ¢ within the range of
summation k < i < n. It follows that for £ > j we have

(C'K)y; = {C'UF(t;)u(t;)}:i = 0.

So C'K is strictly upper-triangular. Because of the band structure of C
this means that the matrix H = (C'K)C has zero entries for positions m
or more below the main diagonal, and by symmetry H has the stated band
structure.

21.3.8 The smoothing phase

The actual smoothing consists of two steps:
1. Compute the vector z, of length n — m, that solves
(H+ AC'C)z = C'y, (21.11)
where the vector y contains the values to be smoothed.

2. Compute the vector of n values §; = x(t;) of the smoothing function
x at the n argument values using

g=1y— ACz. (21.12)

Because of the band structure of (H + AC'C) and of C, both of these
steps can be computed in O(n) operators, and references on efficient matrix
computation such as Golub and van Loan (1989) can be consulted for
details.

21.8.4 The performance assessment phase

The vector of smoothed values § and the original values y that were
smoothed are related as follows:

7 = y—ACH+AC'C)"'Cy
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= {I-)ACH+\C'C)"'C'}y. (21.13)
The matrix S defined by
S=I1-ACH+XC'C)"'C’ (21.14)

is often called the hat matriz, and in effect defines a linear transformation
that maps the unsmoothed data into its smooth image by

7 = Sy.

Various measures of performance depend on the diagonal values in S. Of
these, the most popular are currently

GCV = SSE/(1 — n™ 'trace S)?, (21.15)

where
n
SSE= > lyi — (6] = ly — 3
i=1
and
n
V=" [y —x(t:)}/{1 - si})%, (21.16)
i=1
where s;; is the ith diagonal entry of S. We can compute both measures
GCV and CV in O(n) operations given the band-structured nature of the
matrices defining S, using methods developed by Hutchison and de Hoog
(1985).

One of the main applications of these two criteria, both of which are
types of discounted error sums of squares, is as a guide for choosing the
value of the smoothing parameter . It is relatively standard practice to
look for the value that minimizes one of these two criteria, just as various
variable selection procedures attempt to minimize discounted error sums of
squares in standard regression analysis. Interestingly, the GCV measure was
originally introduced by Craven and Wahba (1979) as an approximation
to the CV criterion that could be computed in O(n) operations; now CV is
also available in n operations, but GCV still tends to be preferred in practice
for other reasons. For example, various simulation studies have indicated
that GCV tends to be a better basis for choosing the smoothing parameter
A, possibly because GCV makes use of smoothing itself by replacing the
variable values 1 — s;; by the average 1 — n~!trace S.

Also of great value is a measure of the effective number of degrees of
freedom of the smoothing operation. Two measures are

DF, = trace S and DF, = trace S'S = trace S%. (21.17)

These dimensionality measures were introduced and discussed by Buja et
al. (1989). It can be shown that in the limit as A — oo, both measures
become simply m, and similarly, as A — 0, both measures converge to
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n. In between, they give slightly different impressions of how much of the
variation in the original unsmoothed data remains in the smoothed version.

21.3.5 Other O(n) algorithms

There is an intimate connection between the theory of splines and the
theory of stochastic differential equations (Wahba, 1978, 1990, Weinert,
Bird and Sidhu, 1980). This leads to the possibility of using the Kalman
filter, a technique widely used in engineering and other fields to extract an
estimate of a signal from noisy data, to compute a smoothing spline. Ansley,
Kohn and Wong (1993), using a Kalman filtering algorithm described in
Ansley and Kohn (1989), give some examples of computing an L-spline
in O(n) operations. However, except for fairly simple cases, this algorithm
appears to be difficult to implement, and its description involves substantial
mathematical detail. Nevertheless, we feel that it is important to call the
reader’s attention to this stimulating literature on smoothing by state-space
methods.

21.4 A compact support basis for L-splines

In this section our concern is the construction of compact support basis
functions from the reproducing kernel basis functions ko (;, -). A basis made
up of such functions may, for example, be useful for techniques such as the
regularized principal components analysis described in Section 9.4.1, and
has many numerical advantages, analogous to those of B-splines.

For any fixed i = 1,...,n — 2m, consider the sequence of 2m + 1 basis
functions based on the reproducing kernel:

ka(tive, ), £=0,...,2m.

Let béi),é = 0,...,2m be a corresponding sequence of weights defining a
new basis function

2m
bi=> b ka(tive,). (21.18)
£=0
The properties we are seeking are
Yi(t) = 0,t < t; and ¢;(t) = 0, > tiyom.
But from the first line of (21.9), we see the first of these is achieved if

2m
Zbgl)é-]i(tH*Z) :Oa jl = 17"'7m (2119)
=0



370 21. More general roughness penalties

and at the same time the second line of (21.9) indicates that the second
property is satisfied if

2m

SN Gt gt = 0, o =1, om, (21.20)

£=0 ji=1

where fj, j, (tiye) is entry (j1,j2) of F(tiye).

Now these are two sets of m linear constraints on the 2m + 1 coeflicients
b(l)7 and we know that in general we can always find a coefficient vector
bfi) that satisfies them. The reason that there are only 2m constraints for
2m + 1 coeflicients is that the linear constraints can only define the vector
b@ up to a change of scale.

Let the (2m + 1) x 2m matrix V(¥ have in its first m columns the
values &;, (ti4¢), 71 = 1,...,m and in its second set of m columns the values
S5 =1 & (tire) Fir g (tive), j2 = 1, ,m. Then the constraints (21.19) and
(21.20) can be written in the matrix form

(b(i))’V(i) =0.

As in the calculation of the vectors ¢(¥) in Section 21.3.2, the required vector
b(i()_)is simply the last column of the Q matrix in the QR decomposition of
v,

If the argument values are unequally spaced, this calculation of the co-
efficient vectors b must be carried for each value of i from 1 to n — 2m.
However, in the frequently encountered case where the t; values are equally
spaced, only one coeflicient calculation is required, and the resulting set of
coefficients b serves for all n — 2m compact support splines ;.

Observant readers may note that we have lost 2m basis functions by this
approach. We may deal with this difficulty in various ways. One approach
is to say that a little bit of fitting power has been lost, but that if n is
large, this may have little impact on the smoothing function, and what
little impact it has is at the ends of the interval. Alternatively, however, we
can use a technique employed in defining polynomial B-splines, and add m
additional argument values at each end of the interval. For computational
convenience in the equally spaced argument case, we can make these simply
a continuation of the sequence in both directions. This augments the basis
in order to retain the full fitting power of the original reproducing kernel
basis.

21.5 Some case studies

21.5.1 The gross domestic product data

The gross domestic product data introduced in Chapter 18 share with many
economic indicators the overall tendency for exponential growth. If we wish
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to smooth the de-seasonalized GDP record of the United States displayed
in Figure 18.3, the operator L = —yD + D? annihilates & (t) = 1 and
& (t) = €7, so these are obvious choices for the functions spanning ker L.
A reasonable choice for the matching constraint operator is simply By, such
that Bru = {u(0), Du(0)}, implying that the coefficients of &; and & are
specified by the initial value and slope of the smoothed record.

In this case, we might decide to estimate parameter v by estimating the
slope of the relationship between log GDP and time by ordinary regression
analysis. Another possibility is to fit all or part of the data by nonlinear
least squares regression using the two functions & and &;. That is, we
minimize the error sum of squares with respect to the coefficients ¢; and
co of ¢1& + € and with respect to v which, of course, determines &;.
Since for any fixed v value, the minimizing values of the coefficients can
be computed directly by linear least squares, it makes sense to use a one-
dimensional function minimizing routine such as Brent’s method (Press
et al. 1992) to find the optimal v value; each new value of v within the
iterative method implies a linear regression to get the associated values of
c1 and cy. The resulting least squares estimate of  for the U.S. data, based
on the values from 1980 to 1989, when the growth was more exponential,
is 0.054.

Using this value of 7, we used the method of Section 21.3 to find the
L-smoothing spline shown in Figure 21.3. We minimized the GCV criterion
to obtain the value A = 0.053. The DF; measure of equivalent degrees of
freedom was 39.6, so we purchased the excellent fit of the spline at the price
of a rather large number of degrees of freedom.

By comparison, the cubic smoothing spline that minimizes GCV produces
almost identical results in terms of GCV and DF; values. This is perhaps not
too surprising since the curve is only slightly more exponential than linear.
But the results are rather different when we smooth with the fixed value
of DF; = 10, corresponding to A = 22.9. The L-spline fit using this more
economical model is just barely visible in Figure 21.3, and GCV = 0.00068.
The cubic polynomial spline with DF; = 10 yields GCV = 0.00084, and its
poorer fit reflects the fact that some of its precious degrees of freedom were
used up in fitting the mild exponential trend.

21.5.2 The melanoma data

These data, displayed in Figure 17.5, represent a more complex relationship,
with a cyclic effect superimposed on a linear development. The interesting
operator is

L =w?D?+ D* (21.21)
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US GDP (trillion $)

1980 1982 1984 1986 1988 1990 1992 1994
Year

Figure 21.3. The line indicates the spline smooth of the U.S. GDP data using
L = —0.054D + D? and the minimum GCV value for smoothing parameter A. The
dashed line indicates the L-spline fit corresponding to DF; = 10.

for some appropriate constant w, since this would annihilate the four
functions

u(t) = (1,¢,sinwt, coswt)’.
Using the techniques of Chapter 18, the reproducing kernel is

ka(s,t) = w [(ws)?(wt/2 — ws/6) — wt + ws + wt cos ws
+ws coswt + sinws — sinwt + sin(wt — ws)
—(sinws coswt)/2 + s cos(wt — ws)/2],
s<t. (21.22)

We estimated the parameter w to be 0.650 by the nonlinear least squares
approach. This corresponds to a period of 9.66 years, roughly the period
of the sunspot cycle affecting solar radiation and consequently melanoma.
When we smooth the data with the spline defined by the operator (21.21)
and select A so as to minimize GCV, it turns out that A\ becomes arbitrarily
large, corresponding to a parametric fit using only the basis functions &,
consuming four degrees of freedom, and yielding GCV = 0.076. The poly-
nomial smoothing spline with order m = 4, displayed in Figure 17.5, is
a minimum-GCV estimate corresponding to DF; = 12.0 and GCV = 0.095.
Thus, polynomial spline smoothing required three times the degrees of free-
dom to produce a fit that was still worse in GCV terms than the L-spline
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Figure 21.4. The gross domestic product for Sweden with seasonal variation. The
solid line is the smooth using operator L = (—yD+D?)(w*I4+D?), and the dashed
line is the smooth for L = D*, the smoothing parameter being determined by
minimizing the GCV criterion in both cases.

smooth. Of the two order-4 methods, the operator (21.21) is much to be
preferred to L = D*.

21.5.3 The GDP data with seasonal effects

In the data provided by the U.S. and most other countries, the within-year
variation in GDP that is a normal aspect of most economies was removed.
But the data for Sweden, displayed in Figure 21.4, does retain this seasonal
variation. This suggests composing the operator — vD + D? used for the
U.S. GDP data with the de-seasonalizing operator w?I 4+ D? to obtain the
composite operator of order four

L = (—vD + D*)(wI + D?) = —w?D + w?D* —yD* + D*.  (21.23)
This annihilates the four linearly independent functions given by the
components of

u(t) = (1,expt, sinwt, coswt)'.

In this application we know that w = 27 for time measured in years, and
the nonlinear least squares estimate for v was 0.078.

The minimum GCV L-spline for these data is the solid line in the fig-
ure, and corresponds to GCV = 142.9,SSE = 5298, and DF; = 10.4.
This fairly low-dimensional spline tracks both the seasonal and long-term
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variation rather well. By contrast, the minimum GCV polynomial spline
corresponding to L = D* is shown by the dashed line, and corresponds
to GCV = 193.8,SSE = 8169, and DF; = 7.4. As both the curve itself and
the GCV value indicate, the polynomial spline was completely unable to
model the seasonal variation, and treated it as noise. On the other hand,
reducing the smoothing parameter A to the point where SSE was reduced
to the same value as was attained for the L-spline required DF; = 28.2, or
nearly three times the degrees of freedom. Again we see that building the
capacity to model important sources of variation into the operator L pays
off handsomely.

21.5.4  Smoothing simulated human growth data

One of the triumphs of nonparametric regression techniques has been their
capacity to uncover previously unsuspected aspects of growth in skeletal
height (Gasser, Miiller, Kohler, Molinari and Prader, 1984; Ramsay, Bock
and Gasser, 1995). In this illustration, spline smoothing using an estimated
differential operator was applied to simulated smoothing data. The objec-
tive was to see whether estimating the smoothing operator improves the
estimation of the height and height acceleration growth functions over an
a priori “off-the-rack” smoother.

To investigate how the performance of the L-spline would compare with
a polynomial spline in practice, we simulated data to resemble as much as
possible actual human growth curve records. We generated two samples: a
training sample of 100 records that was analyzed in a manner representative
of actual practice, and a validation sample of 1000 records to see how these
analyses would perform on data for which the analyses were not tuned.

The simulated data for both the training and validation samples con-
sisted of growth records generated by using the triple logistic parametric
nine-parameter growth model proposed by Bock and Thissen (1980).
According to this model, height h;(t) at age t for individual ¢ is

hi(t) = cij/[L + exp(—ai; (t — bij))]. (21.24)

Jj=1

This model, although not completely adequate to account for actual growth
curves, does capture their salient features rather well. The actual number
of parameters in the model turns out to be only eight, since parameter a; 1
can be expressed as a function of the other parameters.

We generated each record by first sampling from a population of coef-
ficient vectors having a random distribution estimated from actual data
for males in the Fels Growth Study (Roche, 1992). We computed the er-
rorless growth curves (in cm) for the 41 age values ranging from 1 to 21
in half-yearly steps, and generated the simulated data by adding indepen-
dent normal error with mean 0 and standard deviation 0.5 to these values.
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Figure 21.5. The three weight functions wo,wi, and ws for the operator
L = wol +w1 D+ waD?+ D?: The points indicate the point-wise-approximation,
and the solid line indicates the basis function expansion.

These simulated data had roughly the same variability as actual growth
measurements.

The first step was to use the training sample to estimate the order three
L-spline that comes as near as possible to annihilating the curves. To this
end, the first analysis consisted of polynomial spline smoothing of the sim-
ulated data to get estimates of the first three derivatives. The smoothing
operator used for this purpose was D®, implying that the smoothing splines
were piecewise polynomials of degree 9. This permitted us to control the
roughness of the third derivative in much the same way as a cubic smooth-
ing spline controls the roughness of the smoothing function itself. The
smoothing parameter was chosen to minimize the GCV criterion, and with
this amount of replicated data, this value of its minimum is sharply defined.
Since our principal differential analysis estimate of the operator L required
numerical integration, we also obtained function and derivative estimates
at 201 equally-spaced values 1(.1)21.

We estimated a third-order differential operator L using both the point-
wise technique and the basis function expansion approach described in
Chapter 19. For the latter approach, we used the 23 order 4 B-splines
defined by positioning knots at the integer values of age. Figure 21.5
displays the estimated weight functions wg,w;, and ws for the operator
L = wol + w1 D + wyD? + D3. Although these are difficult to interpret,
we can see that wg is close to 0, suggesting that the operator could be
simplified by dropping the first term. On the other hand, w; is close to one
until the age of 15 when the growth function has strong curvature as the
pubertal growth spurt ends, and its strong variation after 15 helps the op-
erator to deal with this pronounced curvilinearity. The acceleration weight
wo varies substantially over the whole range of ages.
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Figure 21.6. The three solutions to the homogeneous equation Lu = 0 corre-
sponding to the linear differential operator L estimated for the simulated human

growth data.

Figure 21.6 shows three linearly independent solutions §; to Lu = 0. Lin-
ear combinations of these three functions can produce good approximations
to actual growth curves.

The next step was to use the estimated functions §; and the techniques of
Chapter 18 to estimate the Green’s function G and the reproducing kernel
ko associated with this operator. We approximated the integrals involved
using the trapezoidal rule applied to the values at the 201 argument values.

Now we were ready to carry out the actual smoothing of the training
sample data by using the two techniques, L-spline and polynomial spline
smoothing, both of order three, just much as one would in practice. For
both techniques, we relied on the GCV criterion to choose the smoothing

parameter. The polynomial smooth gave values of GCV,DF; and A of 487.9,
9.0 and 4.4, respectively, and the L-spline smooth produced corresponding
values of 348.2, 11.2 and 0.63.

How well would these two smoothing techniques approximate the curves
generating the data? To answer this question, we generated 1,000 new sim-
ulated curves using the same generation process, and applied these two
smoothers using the training sample values of A. Since we knew the values
of the true curves, we could estimate the root-mean-squared error criterion

RMSE(t) = /E{2(t) — 2(1)}2

by averaging the squared error across the 1,000 curves for a given specific
age t, and then taking the square root. This yielded the two RMSE curves
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Figure 21.7. The left panel displays root-mean-squared error (RMSE) as a func-
tion of age for the simulated growth data. The solid line is for smoothing using the
estimated differential operator L, and the dashed line is for polynomial smooth-
ing using L = D3. The right panel shows these results for the estimated height
acceleration.

displayed in Figure 21.7. We see that the estimate of both the growth curve
itself and its acceleration by the L-spline procedure is much better for all
but the final adult period, where the L-spline estimate of the acceleration
curve becomes rather noisy and unstable. The improvement in the estima-
tion of both curves is especially impressive prior to and during the pubertal
growth spurt: The mean square error for the polynomial smooth is about
four times that of the L-spline smooth. That is, using the L-spline is roughly
equivalent to using the polynomial smooth with quadruple the sample size.
same generation process, and applied these two smoothers using the train-
ing sample values of A. Since we knew the values of the true curves, we
could estimate the root-mean-squared error criterion

RMSE(t) = E{&(t) — z(¢)}?
by averaging the squared error across the 1,000 curves for a given specific
age t, and then taking the square root. This yielded the two RMSE curves
displayed in Figure 21.7. We see that the estimate of both the growth curve
itself and its acceleration by the L-spline procedure is much better for all
but the final adult period, where the L-spline estimate of the acceleration
curve becomes rather noisy and unstable. The improvement in the estima-
tion of both curves is especially impressive prior to and during the pubertal
growth spurt: The mean square error for the polynomial smooth is about
four times that of the L-spline smooth. That is, using the L-spline is roughly
equivalent to using the polynomial smooth with quadruple the sample size.



