
Appendix
Some algebraic and functional
techniques

This appendix covers various topics involving matrix decompositions, pro-
jections in vector and function spaces, and the constrained maximization of
certain quadratic forms through the solution of appropriate eigenequations.

A.1 Inner products 〈x, y〉
An advance in mathematical notation occurs when we separate the name
for an operation from explicit instructions on how to carry it out. Consider,
for example, the operation +. Suppose one opens a mathematics book at
a random page, and discovers the expression x + y. One might imagine
that everyone would always mean the same by x + y, but a moment’s
thought shows that computing the sum can involve very different techniques
depending on whether x and y are real numbers, complex numbers, vectors,
matrices of the same dimensions or functions. What really counts is that
any author who uses the symbol + can be assumed to mean an operation
that obeys the basic properties of addition, x+y = y +x and (x+y)+ z =
x + (y + z), and that this operation also interlocks with the multiplication
operation × through (x + y) × z = x × z + y × z and x × (y + z) =
x × y + x × z. The author assumes that we can actually carry out the
operation involved ourselves, or else in some exotic situations he or she
furnishes us with detailed instructions. The notation x+ y allows the basic
structure of addition to be assumed, almost subconsciously, leaving the
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details to be supplied in any particular case if necessary. Hiding the details
focusses our attention on what really matters.

A.1.1 Some specific examples
We now discuss a generic notation for inner products, extending the familiar
idea of the inner product of two vectors x and y. Consider the Euclidean
inner product operation x′y, where x and y are vectors of the same length.
The operation has the following simple properties:

Symmetry: x′y = y′x for all x and y,

Positivity: x′x ≥ 0 for all x, with x′x = 0 if and only if x = 0, and

Bilinearity: for all real numbers a and b, (ax + by)′z = ax′z + by′z for
all vectors x, y and z.

Of course, these properties follow from the instructions implied in the
definition

x′y =
∑

i

xiyi. (A.1)

However, it is important to note that the Euclidean inner product op-
eration, and the instructions defining it, are of critical importance in
multivariate data analysis because of the properties of symmetry, positiv-
ity and bilinearity, which can therefore be considered of more fundamental
significance than the definition (A.1) itself.

This basic role of symmetry, positivity and bilinearity is further empha-
sized when we realize that x′Wy, where W is a positive definite matrix
of appropriate order, also has these properties and, indeed, can be used
almost anywhere that we use x′y. So, for example, we use x′Σ−1y, where
Σ is a population covariance matrix, to define the multivariate normal dis-
tribution, to compute Mahalanobis distances, to define generalized least
squares estimates instead of ordinary least squares, and many other useful
things.

Now suppose that x and y are not vectors, but rather functions with
values x(t). The natural functional counterpart to x′y is

∫
x(t)y(t) dt, re-

placing the sum in (A.1) by an integral. Again we have an operation on
two functions x and y that is denoted by presenting the instructions for
computing its value, but we know that this, too, is symmetric in x and y,
linear in either function, and satisfies the positivity requirement. The same
conclusions can be drawn for the operation

∫
ω(t)x(t)y(t) dt, where ω is a

strictly positive weight function, and indeed for the more general operation∫ ∫
ω(s, t)x(s)y(t) ds dt if ω is strictly positive-definite, which simply means

that the positivity requirement for the inner product is satisfied.
It should by now be clear that we can achieve a great leap forward

in generality by using a common notation for these various real-valued
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operations that is understood to imply symmetry, positivity and bilinearity,
without bothering with the details of the computation. We call such an
operation an inner product, and we use the generic notation 〈x, y〉 for the
inner product of x and y. The fundamental properties of an inner product
are:

Symmetry: 〈x, y〉 = 〈y, x〉 for all x and y;

Positivity: 〈x, x〉 ≥ 0 for all x, with 〈x, x〉 = 0 if and only if x = 0;

Bilinearity: for all real numbers a and b, 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉
for all vectors x, y and z.

Note that bilinearity in the second argument follows from symmetry and
bilinearity in the first.

A.1.2 General properties: association, size, angle, distance
We can think of the inner product as defining a scalar measure of asso-
ciation between pairs of quantities x and y. The symmetric nature of the
measure means that it is, as we would usually require, invariant with re-
spect to the order of the quantities, and its bilinearity means that changing
the scale of either argument and/or using a sum as either argument leaves
the measure unchanged in its essential properties.

Positivity means that the inner product of any x with itself is essentially
a measure of its size. The positive square root of this size measure is called
the norm of x, written ‖x‖, so that

‖x‖2 = 〈x, x〉 (A.2)

with ‖x‖ ≥ 0. In the special case where x is an n-vector, and the inner
product is the Euclidean inner product (A.1), the norm of x is simply the
length of the vector measured in n-dimensional space. In the case of a

function f , a basic type of norm is ‖f‖ =
√∫

f2, and is called its L2 norm.
Whatever inner product is used, the standard properties of inner

products lead to the following properties of the norm:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0

2. ‖ax‖ = |a|‖x‖ for all real numbers a

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖.

From the properties of the inner product also follows the Cauchy-Schwarz
inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ =
√

〈x, x〉〈y, y〉.
This inequality links the inner product with the derived size measure or
norm, and also leads to the cosine inequality:

−1 ≤ 〈x, y〉/(‖x‖‖y‖) ≤ 1.
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The cosine inequality links the inner product to the geometrical concept
of angle; the angle between x and y can be defined to be the angle θ such
that

cos θ =
〈x, y〉

‖x‖‖y‖ .

Where x and y are n-vectors and the inner product is Euclidean inner
product, θ is the angle between x and y in the usual geometric sense.
Similarly, the cosine of the angle between two functions f and g can be

defined as
∫

fg/
√

(
∫

f2)(
∫

g2). The use of the cosine inequality to justify
the idea of the angle between two vectors or functions further illuminates
the notion that 〈x, y〉 is a association measure. Once we have obtained a
scale invariant coefficient by dividing by ‖x‖‖y‖, we have a useful index of
the extent to which x and y are measuring the same thing.

The particular relation 〈x, y〉 = 0, called orthogonality, implies that x
and y can be considered as being at right angles to one another. Because of
bilinearity, orthogonality remains unchanged under any rescaling of either
quantity. Orthogonality plays a key role in the operation of projection that
is discussed in Section A.2.1.

From the inner product, we also derive a measure of distance between x
and y

dxy = ‖x − y‖ =
√

〈x − y, x − y〉

that has extremely wide applications; again, in the Euclidean case, distance
corresponds to the usual geometric definition.

Thus, the simple algebraic properties of symmetry, positivity and bilin-
earity of the inner product lead easily to very useful definitions of the size
of a quantity x, and of the angle and distance between x and y. We can be
confident that, no matter how we define 〈x, y〉 in a particular application,
the essential characteristics of these three measures remain unchanged.

The nature of the inner product depends on something more fundamental
about x and y: They are elements of a vector space in which elements can be
added, can be multiplied by real numbers to yield new vectors, and in which
addition distributes with respect to scalar multiplication. The ensemble of
a vector space and an associated inner product is called an inner product
space.

Finally, of the three properties, only symmetry and bilinearity are really
crucial. We can often get by with relaxing positivity to the weaker condi-
tion that 〈x, x〉 ≥ 0, so that 〈x, x〉 may be zero for some x’s that are not
themselves zero. Then the inner product is called a semi-inner product and
the norm a seminorm. Most properties of inner products remain true for
semi-inner products.
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A.1.3 Descriptive statistics in inner product notation
As an example of how inner products can work for us, we consider how
standard descriptive statistics can be expressed in inner product notation.
Consider the space of possible univariate samples x = (x1, . . . , xN ) of size
N . Define the inner product to be the Euclidean inner product

〈x, y〉 =
∑

i

xiyi = x′y.

Let 1 indicate the vector of size N all of whose elements are unity. Then
some familiar univariate descriptive statistics become

Mean: x̄ = N−1〈x, 1〉. Note that x̄, being a multiple of an inner product,
is a scalar and not a vector. The vector of length N all of whose
elements are x̄ is x̄1.

Variance: s2
x = N−1〈x − x̄1, x − x̄1〉 = N−1‖x − x̄1‖2

Covariance: sxy = N−1〈x − x̄1, y − ȳ1〉

Correlation: rxy = sxy/(sxsy).

It is easy to show that the covariance sxy is itself a semi-inner product
between x and y. It is then an immediate consequence of the cosine in-
equality that the correlation coefficient satisfies the well-known correlation
inequality

−1 ≤ rxy ≤ 1.

Now suppose that we stop using the Euclidean inner product, but instead
go for

〈x, y〉 =
∑

i

wixiyi,

where wi is a nonnegative weight to be applied to observation i. What dif-
ference would this make? None at all, except of course we must now divide
by the constant

∑
i wi instead of N in defining x̄, s2

x, and sxy. The essential
characteristics of these statistics depend on the characteristics of the inner
product, and not on precisely how the inner product is actually calculated.
Of course, the precise weighting affects the values of the statistics, but
the essential meanings of the various descriptive statistics, for example as
measures of location, scale and dependence remain basically unchanged.

We can generalize this idea further: Suppose that the sequence of ob-
servations is known to be correlated, with covariance matrix Σ. Then we
can use 〈x, y〉 = x′Σ−1y to provide a basis for descriptive statistics that
compensate for the known covariance structure on the observations.

Now consider these same statistics in the context of x being a function
with values x(t), where argument t takes values within some real interval
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such as [0, T ]. Thus the index i taking N possible values has been replaced
by the index t taking an infinity of values. Define the inner product as

〈x, y〉 =
∫ T

0
x(t)y(t) dt,

where we assume that the functions are sufficiently well behaved that the
integral is always defined and finite. Then the various descriptive statistics
continue to be defined as above, except that we divide by

∫ T

0 dt = T
instead of N and the vector 1 is replaced by the function 1 = 1(t) which
takes the value of unity for all t. In the functional case, x̄ becomes the
mean level of the function x, s2

x becomes a measure of its variation about
its mean level, and sxy and rxy measure the correspondence between the
variation of x and y. Moving to

〈x, y〉 =
∫ T

0
ω(t)x(t)y(t) dt,

for some positive weight function ω, and dividing by
∫

ω(t) dt really
wouldn’t change these interpretations in any essential way, except that
different parts of the range of t would be regarded as being of different
importance.

Finally, we note that even the divisors in these statistics can be defined
in inner product terms, meaning that our fundamental descriptive statistics
can be written in the unifying form

x̄ = 〈x, 1〉/‖1‖2

s2
x = ‖x − x̄1‖2/‖1‖2

sxy = 〈x − x̄1, y − ȳ1〉/‖1‖2.

A.1.4 Some extended uses of inner product notation
In this book, we take the somewhat unorthodox step of using inner product
notation to refer to certain linear operations that, strictly speaking, do not
fall within the rubric of inner products.

So far in our discussion, the result of an inner product has always been
a single real number. One way in which we extend our notation is the
following. Let x = (x1, . . . , xm)′ be a vector of length m, each element of
which is an element of some vector space, whether finite dimensional or
functional. Then the notation 〈x, y〉, where y is a single element of the
same space, indicates the m-vector whose elements are 〈x1, y〉, . . . , 〈xm, y〉.
Furthermore, if y is similarly a vector of length, say, n, then the notation
〈x, y′〉 defines the matrix with m rows and n columns containing the values
〈xi, yj〉, i = 1, . . . , m; j = 1, . . . , n. We only use this convention in situations
where the context should make clear whether x and/or y are vectors of
elements of the space in question.
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In the functional context, we sometimes write

〈z, β〉 =
∫

z(s)β(s) ds

even when the functions z and β are not in the same space. We hope that
the context of this use of inner product notation will make clear that a
true inner product is not involved in this case. The alternative would have
been the use of different notation such as (z, β), but we considered that the
possibilities of confusion justified avoiding this convention.

An important property is that 〈z, β〉 is always a linear operator when
regarded as a function of either of its arguments; generally speaking a
linear operator on a function space is a mapping A such that, for all f1 and
f2 in the space, and for all scalars a1 and a2, we have A(a1f1 + a2f2) =
a1Af1 + a2Af2.

A.2 Further aspects of inner product spaces

We briefly review two further aspects of inner product spaces that are useful
in our later development.

A.2.1 Projections
Let u1, . . . , un be any n elements of our space, and let U be the subspace
consisting of all possible linear combinations of the ui. We can characterize
the subspace U by using suitable vector notation. Let u be the n-vector
whose elements are the u1, . . . , un. Then every member of U is of the form
u′c for some real n-vector c.

Associated with the subspace U is the orthogonal projection onto U ,
which is defined to be a linear operator P with the following properties:

1. For all z, the element Pz falls in U , and so is a linear combination of
the functions u1, . . . , un.

2. If y is in U already, then Py = y.

3. For all z, the residual z − Pz is orthogonal to all elements v of U .

From the first two of these properties, it follows at once that PP = P 2 = P .
From the third property, it is easy to show that the operator P maps each
element z to its nearest point in U , distance being measured in terms of the
norm. This makes projections very important in statistical contexts such
as least squares estimation.
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A.2.2 Quadratic optimization
Some of our functional data analysis methodology require the solution of
a particular kind of constrained optimization problem. Suppose that A is
a linear operator on a function space satisfying the condition

〈x, Ay〉 = 〈Ax, y〉 for all x and y.

Such an operator is called a self-adjoint operator.
Now consider the problem of maximizing 〈x, Ax〉 subject to the con-

straint ‖x‖ = 1. In Section A.5, we set out results relating this optimization
problem to the eigenfunction/eigenvalue problem Au = λu. We then go on
to consider the more general problem of maximizing 〈x, Ax〉 subject to a
constraint on 〈x, Bx〉 for a second self-adjoint operator B.

A.3 Matrix decompositions and
generalized inverses

We describe two important matrix decompositions, the singular value
decomposition and the QR decomposition. Both of these are standard tech-
niques in numerical linear algebra, and can be carried out within packages
such as S-PLUS and MATLAB R©. We do not give any details of the way the
decompositions are computed; for these see, for example, Golub and Van
Loan (1989) or the standard numerical linear algebra package LINPACK
(Dongarra et al., 1979).

A.3.1 Singular value decompositions
Suppose Z is an m×n matrix. For many purposes it is useful to carry out a
singular value decomposition (SVD) of Z. This expresses Z as the product
of three matrices

Z = UDV′ (A.3)

where, for some integer q ≤ min(m, n),

• U is m × q and U′U = Iq, where Iq is the identity matrix of order q;

• D is a q × q diagonal matrix with strictly positive elements on the
diagonal;

• V is n × q and V′V = Iq.

The diagonal elements d1, d2, . . . , dq of D are called the singular values of
Z, and the SVD can always be carried out in such a way that the diagonal
elements d1, d2, . . . , dq satisfy

d1 ≥ d2 ≥ . . . ≥ dq > 0. (A.4)
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In this case, the number q is equal to the rank of the matrix Z, i.e., the
maximum number of linearly independent rows or columns of Z.

In the special case where Z is square and symmetric, the requirement
that the diagonal elements of D are necessarily positive is usually dropped,
but the matrices U and V are chosen to be identical. Furthermore we may
allow q ≥ rank Z. The di then include all the nonzero eigenvalues of Z,
together with some or all of the zero eigenvalues if there are any. We have

Z = UDU′ with U′U = I. (A.5)

If, in addition, Z is positive semi-definite, so that x′Zx ≥ 0 for all vectors
x, then

d1 ≥ d2 ≥ . . . ≥ dq ≥ 0. (A.6)

A.3.2 Generalized inverses
Given any m×n matrix Z, we can define a generalized inverse or g-inverse
of Z to be any n × m matrix Z− such that

ZZ−Z = Z. (A.7)

If m = n and Z is an invertible matrix, then it follows from (A.7) that
Z−1 is a g-inverse of Z. Furthermore, by pre and post multiplying (A.7) by
Z−1, we see that Z−1 is the unique g-inverse of Z in this case.

In the more general case, the matrix Z− is not generally unique, but a
particular g-inverse, called the Moore-Penrose g-inverse Z+ can always be
calculated using the singular value decomposition (A.3) of the matrix Z.
Set

Z+ = VD−1U′. (A.8)

It is easy to check that Z+ is a g-inverse of Z and also that

Z+ZZ+ = Z+ and ZZ+ = UU′. (A.9)

A.3.3 The QR decomposition
The QR decomposition of an m × n matrix Z is a different decomposition
that yields the expression

Z = QR,

where Q is an m × m orthogonal matrix (so that Q′Q = QQ′ = I) and R
is an m × n upper-triangular matrix (so that Rij = 0 if i > j).

If m > n then the last (m − n) rows of R will be zero, and each of the
last (m − n) columns x of Q will satisfy x′Z = 0. Dropping these rows and
columns will yield a restricted QR decomposition Z = Q1R1 where R1 is
an n×n upper-triangular matrix and Q is an m×n matrix of orthonormal
columns.
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A.4 Projections

In discussing the key concept of projection, we first consider projection
matrices in m-dimensional spaces, and then go on to consider more general
inner product spaces.

A.4.1 Projection matrices
Suppose that an m × m matrix P has the property that P2 = P. Define
P to be the subspace of Rm spanned by the columns of P. The matrix P
is then called a projection matrix onto the subspace P. The following two
properties, which are easily checked, give the reason for this definition:

1. Every m-vector z is mapped by P into the subspace P.

2. If z is already a linear combination of columns of P, so that z = Pu
for some vector u, then Pz = z.

If P is a symmetric matrix, then P is called an orthogonal projection
matrix, and will have several nice properties. For example, for any vector
z we have

(Pz)′{(I − P)z} = z′P′(I − P)z = z′(Pz − P2z) = 0.

This means that the projected vector Pz and the ‘residual vector’ z − Pz
are orthogonal to one another, in the usual Euclidean sense. Furthermore,
suppose v is any vector in P. Then, by a very similar argument,

v′(z − Pz) = (Pv)′(I − P)z = v′P(I − P)z = 0,

so that the residual vector is orthogonal to all vectors in P.
Suppose that w is any vector in P other than Pz. Then w − Pz is also

in P and therefore is orthogonal to z − Pz. Defining 〈x, y〉 = x′y and ‖x‖
to be the usual Euclidean inner product and norm, we then have

‖z − w‖2 = ‖z − Pz‖2 + ‖Pz − w‖2 + 2〈z − Pz,Pz − w〉
= ‖z − Pz‖2 + ‖Pz − w‖2 > ‖z − Pz|2. (A.10)

This means that Pz is the closest point to z in the subspace P. Thus
orthogonal projections onto a subspace have the property of mapping each
vector to the nearest point in the subspace.

More generally, if the inner product is 〈x,y〉 = x′Wy, and if P is a pro-
jection onto the space P such that WP is symmetric, then P is orthogonal
with respect to this inner product, meaning that 〈Pz, z − Pz〉 = 0 and
〈v, z − Pz〉 = 0 for all v in P.



A.4. Projections 395

A.4.2 Finding an appropriate projection matrix
Now suppose we are not given a projection matrix, but instead we are given
a subspace U of Rm, and we wish to find an orthogonal projection matrix
P that projects onto U .

Let Z be any matrix whose columns are m-vectors that span the subspace
U . There is no need for the columns to be linearly independent. Define P
by

P = ZZ−.

It is straightforward to show that P is a projection onto the subspace U as
required.

In order to get an orthogonal projection, define P using the Moore-
Penrose g-inverse Z+. Then, in terms of the SVD of Z, we have P = UU′,
so that P is a symmetric matrix and hence an orthogonal projection.

A.4.3 Projections in more general inner product spaces
We can extend these ideas to projections in more general inner product
spaces as discussed in Section A.2.1. As in that section, let u1, . . . , un be
any n elements of our space, and let u be the n-vector whose elements
are the u1, . . . , un. Let U be the subspace consisting of all possible linear
combinations c′u for real n-vectors c. Suppose that P is an orthogonal
projection onto U as specified in Section A.2.1. The proof that P maps
each element z to the nearest member Pz of U is identical to the argument
given in (A.10) because that depends only on the defining properties of an
inner product and associated norm.

How are we to find an orthogonal projection of this kind? Extend our
notation to define K = 〈u, u′〉 to be the symmetric n × n matrix with
elements 〈ui, uj〉. Given any real n-vector x, we have x′Kx = 〈x′u, u′x〉 =
‖x′u‖2 ≥ 0, so the matrix K is positive semi-definite.

Define the operator P by

Pz = u′K+〈u, z〉

for all z. By definition Pz is a linear combination of the elements of u and
hence is in P. We shall show that P is an orthogonal projection onto P.

If y is in P, then y = u′c for some real vector c, so that Py = u′K+Kc,
and y − Py = u′d where d = (I − K+K)c. Therefore, since KK+K = K,

‖y − Py‖2 = d′Kd = d′(K − KK+K)c = 0,

implying that ‖y − Py‖2 = 0 and Py = y.
Finally, given any v in P, and any z, use the property (A.9) to show that

〈Pz − v, Pz〉 = 〈P (z − v), Pz〉 = 〈z − v, u′〉K+KK+〈u, z〉
= 〈z − v, u′〉K+〈u, z〉 = 〈Pz − v, z〉
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and therefore that 〈Pz −v, z −Pz〉 = 0, completing the proof that P is the
required orthogonal projection onto P.

A.5 Constrained maximization of a
quadratic function

A.5.1 The finite-dimensional case
Suppose that A is a symmetric p× p matrix. An important result in linear
algebra concerns the constrained maximization problem

maxx′Ax for p-vectors x subject to x′x = 1. (A.11)

Let λ1 ≥ λ2 ≥ . . . ≥ λp be the eigenvalues of A, and let ui be the cor-
responding eigenvectors, each normalized to have ‖ui‖ = 1. Let U be the
matrix whose columns are the eigenvectors ui and D be the diagonal matrix
with diagonal elements λi. We then have A = UDU′, and UU′ = U′U = I.

Set y = U′x in (A.11), so that x = Uy. We have x′x = y′U′Uy = y′y,
so the constraint x′x = 1 is equivalent to y′y = 1. Therefore, in terms of
y, the maximization problem (A.11) can be rewritten as

maxy′Dy for p-vectors y subject to y′y = 1. (A.12)

This is clearly solved by setting y to be the vector (1, 0, . . . , 0)′, so that x
is the first column of U, in other words the leading normalized eigenvector
u1 of A.

By an extension of this argument, we can characterize all the eigenvectors
of A as solutions of successive optimization problems. The jth normal-
ized eigenvector uj solves the problem (A.11) subject to the additional
constraint of being orthogonal to all the solutions found so far:

maxx′Ax subject to x′x = 1 and x′u1 = x′u2 = . . . = x′uj−1 = 0.
(A.13)

Setting x = uj , we have x′Ax = λju′
juj = λj , the jth eigenvalue.

A.5.2 The problem in a more general space
Now suppose we are working within a more general inner product space.
The role of a symmetric matrix is now played by a self-adjoint linear
operator A, that is, one satisfying the condition

〈x, Ay〉 = 〈Ax, y〉 for all x and y.

We shall assume that A is a completely continuous (or compact) symmetric
transformation on a Hilbert space; there is no need at all for the reader
to understand what this means, but anyone interested is referred to Aubin
(2000) or any other standard text on functional analysis. The reader can
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always take it on trust that the assumptions are satisfied when we appeal
to the results of this section.

The problem

max〈x, Ax〉 subject to ‖x‖ = 1 (A.14)

corresponds to the maximization problem (A.11), and we can define a
sequence uj as the solutions to the succession of optimization problems

max〈x, Ax〉 subject to ‖x‖ = 1 and 〈x, ui〉 = 0 for i < j. (A.15)

Under the conditions referred to above, these optimization problems can
be solved by considering the eigenfunction problem

Au = λu

and normalizing the eigenfunctions u to satisfy ‖u‖ = 1. Suppose the
eigenvalues are λ1 ≥ λ2 ≥ . . . with eigenfunctions u1, u2, . . .. Then
the leading eigenfunction u1 solves the optimization problem (A.14) and
the value of the maximum is λ1. The successive eigenfunctions uj solve
the constrained problem (A.15), and the maximum at the jth stage is
〈uj , Auj〉 = λj‖uj‖2 = λj .

A.5.3 Generalized eigenproblems
We sometimes wish to modify the optimization problems we have consid-
ered by the introduction of a positive definite symmetric matrix B into
the constraints, replacing the constraint ‖x‖ = 1 by x′Bx = 1 or, more
generally, 〈x,Bx〉 = 1, and similarly defining orthogonality with respect to
the matrix B.

Consider the solutions of the generalized eigenproblem

Av = ρBv,

where v is either a function or a vector, and A and B are correspond-
ing linear operators acting on V . We normalize the solutions to satisfy
〈v, Bv〉 = 1. Suppose the solutions are v1, v2, . . . , with corresponding gen-
eralized eigenvalues ρ1 ≥ ρ2 ≥ . . .. Under suitable conditions, which are
always satisfied in the finite-dimensional case, and are analogous to those
noted above for more general spaces, the leading generalized eigenvector or
function v1 solves the problem

max〈v, Av〉 subject to 〈v, Bv〉 = 1, (A.16)

and the maximizing value is equal to ρ1. The jth generalized eigenvector
or function vj solves the problem

max〈v, Av〉 subject to 〈v, Bv〉 = 1 and 〈v, Bvi〉 = 0 for i < j

and the maximizing value is ρj .
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Finally, we note that the problem of maximizing the ratio

〈v, Av〉
〈v, Bv〉 (A.17)

for v � = 0 is equivalent to that of maximizing 〈v, Av〉 subject to the con-
straint 〈v, Bv〉 = 1. To see this, note that scaling any v to satisfy the
constraint does not affect the value of the ratio (A.17), and so the maxi-
mum of the ratio is unaffected by the imposition of the constraint. Once
the constraint is imposed, the denominator of (A.17) is equal to 1, and
so maximizing the ratio subject to 〈v, Bv〉 = 1 is exactly the same as the
original maximization problem (A.16).

A.6 Kronecker Products

Let A be an m by n matrix and let B be a p by q matrix. The Kronecker
product A⊗B is the super or composite matrix of order mp by nq consisting
of sub-matrices aijB. That is,

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
...

am1B am2B . . . amnB

⎤
⎥⎥⎥⎦ .

One of the most common applications of the Kronecker product is to
express a linear equation of the form

AXB′ = C,

which cannot be solved for X by conventional matrix algebra, in the form

(B ⊗ A)vec (X) = vec (C),

where vec (X) indicates the vector of length nq obtained by writing matrix
X as a vector column-wise, and, in the same way, vec (C) indicates the
vector of length mp obtained by writing matrix C as a vector column-wise.
Then we can express the solution directly as

vec (X) = (B ⊗ A)−1vec (C),

provided that, of course, matrix B ⊗ A is nonsingular.
The Kronecker product is bilinear in the sense that

vec (A1XB′
1 + A2XB′

2) = (B1 ⊗ A1 + B2 ⊗ A2)vec (X).

Other useful relations for simplifying expressions involving Kronecker
products are

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C
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(A ⊗ B)′ = A′ ⊗ B′

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)
A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C)
trace (A ⊗ B) = (traceA)(traceB),

Finally, if both A and B are nonsingular, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

A.7 The multivariate linear model

We now return to a more statistical topic. A review of the multivariate
linear model may be helpful, both to fix ideas and notation, and because
some of the essential concepts transfer without much more than a change of
notation to functional contexts. But a slight change of perspective is helpful
on what the design matrix means. Moreover, a notion that is used repeat-
edly for functional data is regularization, and we introduce regularization
in Section A.8 within the multivariate context.

A.7.1 Linear models from a transformation perspective
Let Y be a N × p matrix of dependent variable observations, Z be a N × q
matrix, and B be a q × p matrix. In classical terminology, Z is the design
matrix and B is a matrix of parameters.

The multivariate linear model is

Y = ZB + E. (A.18)

The rows of the disturbance or residual matrix E are often thought of, at
least at the population level, as independent samples from a common pop-
ulation of p-variate observations with mean 0 and finite covariance matrix
Σ.

Although in many contexts it is appropriate to think of the columns of Z
as corresponding to variables, it is better for our purposes to take the more
general view that Z represents a linear transformation that maps matrices
B into matrices with the dimensions of Y. This can be indicated by the
notation

Z : Rq×p → RN×p.

The space of all possible transformed values ZB then defines a subspace of
RN×p, denoted by R(Z), and is called the range space of Z.
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A.7.2 The least squares solution for B

When it is assumed that the rows of the disturbance matrix E are inde-
pendent, each with covariance matrix Σ, the natural inner product to use
in the observation space RN×p is

〈X,Y〉 = traceXΣ−1Y′ = traceY′XΣ−1 (A.19)

for X and Y in RN×p. We then measure the goodness of fit of any parameter
matrix B to the observed data Y making use of the corresponding norm

LMSSE(B) = ‖Y − ZB‖2 = trace (Y − ZB)′Σ−1(Y − ZB). (A.20)

Suppose, for the moment, that the matrix Z is of full column rank, or
that N ≥ q and the columns of Z are independent. A central result on the
multivariate linear model is that the matrix B̂ that minimizes LMSSE(B) is
given by

B̂ = (Z′Z)−1Z′Y. (A.21)

The corresponding predictor of Y is given by

Ŷ = ZB̂ = Z(Z′Z)−1Z′Y. (A.22)

The matrix Ŷ can be thought of as the matrix in the subspace R(Z) that
minimizes ‖Y − Ŷ‖2 over all possible approximations Ŷ = ZB falling in
R(Z).

Note that the least squares estimator B̂ and the best linear predictor Ŷ
do not depend on the variance matrix Σ, even though the fitting criterion
LMSSE(B) does. It turns out that when the details of the minimization of
LMSSE(B) are carried through, the variance matrix Σ cancels out. But if
there are covariances among errors or residuals across observations, con-
tained in a variance-covariance matrix Γ, say, then the inner product (A.19)
becomes

〈X,Y〉 = trace Y′Γ−1XΣ−1.

Using this inner product in the definition of goodness of fit, the estimator
of B and the best predictor of Y becomes

B̂ = (Z′Γ−1Z)−1Z′Γ−1Y

and

Ŷ = Z(Z′Γ−1Z)−1Z′Γ−1Y.

Thus, the optimal solution does depend on how one treats errors across
observations.
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A.8 Regularizing the multivariate linear model

One of the major themes of this book is regularization, and for readers
familiar with multivariate analysis, it may be helpful to introduce this idea
in the multivariate context first. Others, especially those who are familiar
with curve estimation already, may prefer to omit this section.

Suppose now that we are dealing with an under-determined problem,
where q > N and the matrix Z is of full row rank N . This means that the
range space R(Z) is the whole of RN×p.

A.8.1 Definition of regularization
Regularization involves attaching a penalty term to the basic squared error
fitting criterion:

LMSSEλ(B) = ‖Y − ZB‖2 + λ × PEN(B). (A.23)

The purpose of the penalty term PEN(B) is to require that the estimated
value of B not only yields a good fit in the sense of small ‖Y − ZB‖2,
but also that some aspect of B captured in the function PEN is kept under
control. The positive penalty parameter λ quantifies the relative importance
of these two aims. If λ is large, then we are particularly concerned with
keeping PEN(B) small, and getting a good fit to the data is only of secondary
importance; if λ is small, then we are not so concerned about the value of
PEN(B).

One example of this type of regularization is the ridge regression tech-
nique, often used to stabilize regression coefficient estimates in the presence
of highly collinear independent variables. In this case, what is penal-
ized is the size of the regression coefficients themselves, in the sense that
PEN(B) = trace(B′B), the sum of squares of the entries of B. The solution
to the minimization of LMSSEλ(B) is then

B = (Z′Z + λI)−1Z′Y.

As λ approaches zero, B approaches the least squares solution described in
Section A.7, but as λ grows, B approaches zero. Thus, ridge regression is
said to shrink the solution towards zero.

A.8.2 Hard-edged constraints
One way to obtain a well-determined problem is to place constraints on the
matrix B. For example, consider the model where it is assumed that the
coefficients in each column of B are a constant vector, so all we have to do
is to estimate a single number for each column. If we define the (q − 1) × q
matrix L to have Lii = 1 and Li,i+1 = −1 for each i, and all other entries



402 A.8. Regularizing the multivariate linear model

zero, then our assumption about B can be written as the constraint

LB = 0. (A.24)

In order for the elements of B to be identifiable on the basis of the observed
data, the design matrix Z has to satisfy the condition

Z1 � = 0, (A.25)

where 1 is a vector of q unities.
The transformation L reduces multiples of the vector 1 exactly to zero.

The identifiability condition (A.25) can be replaced by the condition that
the zero vector is the only q-vector b such that both Lb and Zb are zero.
Equivalently, the matrix [Z′ L′] is nonsingular.

A.8.3 Soft-edged constraints
Instead of enforcing the hard-edged constraint LB = 0, we may wish to let
the coefficients in any column of B vary, but not more than really neces-
sary, by exploring compromises between the rank-one extreme implied by
(A.24) and a completely unconstrained underdetermined fit. We might con-
sider this a soft-edged constraint, and it can be implemented by a suitable
regularization procedure. If we define

PEN(B) = ‖LB‖2 = trace(B′L′LB) (A.26)

then the penalty PEN(B) quantifies how far the matrix B is from satisfying
the constraint LB = 0.

The regularized estimate of B, obtained by minimizing the criterion
(A.23), now satisfies

(Z′Z + λL′L)B = Z′Y. (A.27)

For any λ > 0, a unique solution for B requires the nonsingularity of the
matrix [Z′ L′], precisely the condition for identifiability of the model subject
to the constraint (A.24).

In the limit as the parameter λ → ∞, the penalized fitting criterion
(A.23) automatically enforces on B the one-dimensional structure LB = 0.
On the other hand, in the limit λ → 0, no penalty at all is applied, and
B takes on whatever value results in minimizing the error sum of squares
to zero, due to the underdetermined character of the problem. Thus, from
the regularization perspective, the constrained estimation problem LB = 0
that arises frequently in linear modelling designs is simply an extreme case
of the regularization process where λ → ∞ .

We have concentrated on a one-dimensional constrained model, corre-
sponding to a (q−1)×q matrix L, but of course the ideas can be immediately
extended to nonsingular s × q constraint matrices L that map a q-vector
into a space of vectors of dimension s ≤ q. In this case, the constrained
model is of dimension q−s. Note also that the specification of the matrix L
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corresponding to any particular constrained model is not unique, and that
if L is specified differently the regularized estimates are in general different.

Finally, we note in passing that Bayesian approaches to regression, in
which a multivariate normal prior distribution is proposed for B, can also
be expressed in terms of a penalized least squares problem of the form
(A.23). For further details see, for example, Kimeldorf and Wahba (1970),
Wahba (1978) or Silverman (1985).
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Aubin, J-P. (2000) Applied Functional Analysis, Second Edition. New York:
Wiley-Interscience.

Basilevsky, A. (1994) Statistical Factor Analysis and Related Methods. New
York: Wiley.



406 References

Besse, P. (1979) Etude descriptive des processus: Approximation et
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〈·, ·〉, 21, 167, 385–392
for hybrid data, 190

◦, 21
‖ · ‖, 21, 167, 387

alignment, see registration
amplitude modulated sinusoidal

signal, 320
amplitude variability, 127
analysis of covariance, see functional

analysis of covariance
analysis of variance, 223, 380
ANOVA, 223, 380
ARIMA models, 222
asymptotic results, 383
autoregressive forecasting models, 295

B-splines, 38, 49–53, 68, 86, 182, 236,
275, 363

band matrix, 275
basis expansions

for computing functional PCA, 161
basis functions

choice of number, 67–69
complementary, 105
definition and introduction, 43

Bayesian approaches, 296

relation with penalized least
squares, 403

Berkeley Growth Study, 1
between-class variance, 214
bias-variance tradeoff, 67
bilinearity

property of inner product, 386
biomechanics, 330
biresolution analysis, 104
bivariate functional PCA, 166–170
blacksmiths, 229
boundary conditions

periodic, 39
boundary constraint operator, 360
breakpoint

definition, 48

Canadian weather data, 5, 11, 14, 17,
60, 71, 130, 150, 154, 156, 157,
187, 198, 217, 223, 241, 248,
261, 361

ccorsq, definition, 204
ccorsqλ, definition, 206
canonical correlation analysis, 16,

201–215
algorithmic considerations, 210–213
basic problem, 201–203
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choice of smoothing parameter, 206
classic multivariate, 204
functional definition and notation,

204
need for smoothing in functional

case, 205, 209–210
regularized formulation, 205

canonical variate weight vectors
definition, 204
subsidiary, 204

canonical variates
definition, 201
quantification of roughness, 211

Cauchy-Schwarz inequality, 387
CCA, see canonical correlation

analysis
central difference, 42
chemometrics, 296
cluster analysis, 172
compact transformation in Hilbert

space, 396
complementary bases, 105
complementary projection operator,

318
completeness, 354
composition of functions, 21
concurrent functional linear model,

220, 281
application to oil refinery data, 299
application to weather data, 248
computational issues, 255
fitting model and assessing fit, 250
for fitting seasonal trends, 251
introduction, 247
link with PDA, 339

confidence intervals
for climate zone effects, 241
for concurrent functional linear

model, 257
for estimated curves, 72
for function estimates, 104
for function values, 100
for functional contrasts, 240
for functional linear models

limitations, 243
in functional linear models, 239

constant basis, 55
contrasts, 233–234, 251
correlation function, 22

correlation inequality, 389
cosine inequality, 387
covariance function, 22
critically damped system, 330
cross-correlation, 24
cross-covariance, 24
cross-validation, 96, 368

for canonical correlation analysis,
206

for smoothed PCA, 178
in functional linear models, 266,

270
curvature

of a function, 41
CV, see cross-validation

D notation, 20
D−1 as notation for integration, 319
damped harmonic motion, 322
damping coefficient, 303
data representation, 11
degrees of freedom

for spline smooth, 88
of a linear smooth, 66
of smoothing operation, 368

density estimation, 5
maximum likelihood approach, 119
of residuals to a linear model, 123

derivative notation, 20–21
derivatives

estimation of, 42, 45, 63, 75, 133
by spline smoothing, 90

use in FDA, 13, 17
descriptive statistics, 15
designer basis, 56
differential equations, 7, 307–326

higher order, 311
homogeneous, 308
introduction to use in FDA, 297
linear, 308
nonconstant coefficients, 310
nonhomogeneous, 308
nonlinear, 313
systems of equations, 312
to estimate positive functions, 114

differential operators
linear, 309
use to produce new functional

observations, 313
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use to regularize or smooth models,
316

differentiation
as a roughening operation, 319

discriminant
of a differential operator, 330

discriminant analysis, penalized, see
penalized discriminant analysis

dynamic generalized linear model,
258

dynamic models, 297

economic data, see nondurable goods
index

eigenproblem
generalized, 397

electricity consumption data, 275
empirical basis, 56
empirical Bayes, 381
equine gait data, 229–234
error

models for, 40–41
Euclidean inner product, 386
evaluation mapping, 354
exponential basis, 54

F ratio
for prediction of a function from a

function, 288
in functional analysis of variance,

227
FANOVA, see functional analysis of

variance
farriers, 229
feature alignment, 131
feedback loop, 312
financial mathematics, 382
finite element methods, 295
forcing function, 222, 308, 328, 334,

348
fourier series, 38, 45–46, 105, 179,

236, 248, 264
free-knot splines, 79
function estimation

constrained, 111–126
functional analysis, 381
functional analysis of covariance

fitting model and assessing fit, 250
specification, 248

functional analysis of variance
assessing fit, 225
computational issues, 235–241

pointwise minimization, 236
regularized basis expansion, 236

contrasts, 233–234
definition, 223
fitting, 225

functional canonical correlation
analysis, see canonical
correlation analysis

functional CCA, see canonical
correlation analysis

functional cluster analysis, 172
functional covariates

concurrent influence, see concurrent
functional linear model

functional data analysis
goals of, 9

functional features, see landmarks
functional interpolant, definition, 272
functional interpolation, 272–273
functional linear model, see also

functional analysis of variance
dependence in

concurrent, 220, 299
local, 221
short-term feed-forward, 220
total, 220

functional response and categorical
independent variable, 218

functional response and functional
independent variable, 220,
279–296

assessing fit, 285
computational considerations,

290
general dependence, 293
necessity of regularization, 280
regularization by restricting

basis, 282
functional response and scalar

independent variable, 223–245
overview, 222
predicting derivatives, 221
scalar response from functional

predictor, 219, 261–277
computational issues, 268
confidence limits, 270
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viewed as multiple regression
problem, 262

scalar response from functional
predictor

necessity of regularization, 262
testing hypotheses, 218
types of model, 217

functional linear models, 16
functional means, 22
functional multivariate data, 16
functional part

of hybrid data principal component,
190

functional PCA, see principal
components analysis

functional principal components
analysis, see principal
components analysis

functions of functions, see
composition of functions

g-inverse, see generalized inverse
gait data, 8, 11, 13, 16, 41, 155, 166,

168, 201, 204, 207
Gaussian quadrature, 165
GCV, 97, 248, 303, 341, 368, 371, 373
GDP data, 314, 370, 373
generalized additive model, 259
generalized cross-validation, see GCV
generalized eigenproblem, 397
generalized inverse, 393
Green’s function, 311, 349–357

construction for specified linear
differential operator, 352

definition, 351
for solution of linear differential

equation, 350
links with reproducing kernels, 353

Green’s functions, 376
grip force data, see pinch force data
gross domestic product data, 314,

370, 373
growth data, 1, 41, 62, 88, 112, 140,

165
simulated, 374

handwriting data, 41, 76, 95, 132
handwriting, automatic recognition,

215

harmonic acceleration, 266, 361
harmonics, 151
hat matrix, 270
hierarchical linear models, 381
Hilbert space, 349, 354, 396
homogeneous differential equations,

308
horses, 229–234
http://www.functionaldata.org,

see www.functionaldata.org
hybrid data

balance between functional and
vector variation, 192

definition of, 189
effects beyond phase shift, 195–198
principal components analysis,

190–193
algorithm, 191
incorporating smoothing, 192

impulse function, 348
inner product

for hybrid data, 190
of bivariate functions, 167

inner product notation, 21
as unifying notational principle,

170
inner product space, 388
inner products, 354, 385–392

Euclidean, 386
in specification of descriptive

statistics, 389
notation extended to linear

operations, 390
integral equations, 275
intercept function, 280
interpolation, see functional

interpolation

Kalman filter, 369
Karhunen-Loève decomposition, 381
kernel smoothing, 74
knot

definition, 48
knots

placement, 85
Kronecker product, 238, 398
Kronecker product notation, 292
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L-spline smoothing
algorithm, 364

L-splines
compact support basis, 369

land use data, 276
landmarks, 26, 131
Laplacian, 215
least squares

augmented, 89
estimation of basis coefficients, 59
for shift alignment, 131
local, 73
performance, 62
solution in multivariate linear

modelling, 400
weighted, 61

leverage values, 270
linear differential equation

homogeneous, 222
nonhomogeneous, 222

linear differential operators, 309
to partition variation, 317
use in PDA, 328

linear functional probes, 101
lip movement data, 329–332, 360
local linear fitting, 73
local polynomial smoothing, 77, 133
localized basis function estimators, 76
longitudinal data analysis, 380
lupus data, 123
lupus nephritis, 208–209

Maclaurin expansions, 58
MANOVA, 223
Maple, 321
Mathematica, 321
matrix algebra, 19
mean

functional, 22
mechanical systems, 330
melanoma data, 301–306, 371–373
MINEIG, definition, 140
mixed data

general approaches, 189
monomial basis, 54
monotone function

estimation, 115–117
explicit expression, 115

expression via differential equation,
116

Moore-Penrose inverse, 274
multidimensional arguments

in functional data, 383
multilevel linear models, 381
multiple comparisons, 218
multiresolution analysis, 29, 104
multivariate analysis of variance, 223
multivariate functional data, 8
multivariate linear model, 399–403

Nadaraya-Watson estimate, 75, 77
Newton’s third law, 314
Nobel laureates, 275
nondurable goods index, 3, 14, 29–34

functional linear model for finding
seasonal trends, 251

nonhomogeneous differential
equations, 308

nonlinear differential equations, 313
norm, 387

definition, 21
notation

conventions, 20–22
null space

of a linear differential operator, 317
numerical quadrature

in calculation of functional PCA,
164

oil refinery data, 3, 51, 82, 298–301
comparison with melanoma data,

305
optimal basis theorem, 363
Optotrak, 42
orthogonal projection, 391
orthogonality

penalized, 178
property of inner product, 388

OSERR, definition, 213

partitioning principle, 359
PCA, see principal components

analysis
PCAPSV, definition, 177
PDA

applied to lip movement data,
329–332
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applied to pinch force data,
334–338

assessing fit, 343
by pointwise minimization, 338
comparison with PCA, 332,

343–348
computational techniques, 338–343
definition, 327
using concurrent functional linear

model, 339–343
visualizing results, 332

PEN2, definition, 84
PENm, definition, 84
penalized discriminant analysis

applications, 215
definition, 214
relationship with CCA, 214

penalized optimal scoring, 213–214
penalized sample variance

definition, 177
PENSSE, definition, 85
PENSSEλ

definition for prediction of scalar
from function, 269

definition using general differential
operator, 316

periodic boundary conditions, 39
phase variability, 127
phase-plane plots, 13–14, 29–34, 305
pinch force data, 12, 22, 173, 179,

183, 334
point processes, 121
pointwise functional linear model, 220
Poisson process, 121
polygonal basis, 55
polynomial basis, 54, 58
positive functions

estimation by differential equation,
114

positive functions, estimation of, 111
positivity

property of inner product, 386
postal addresses, automatic

recognition, 215
power basis, 58
principal component scores

definition, 149
plotting, 156

principal components analysis

as eigenanalysis, 152
comparison with PDA, 343–348
computational methods, 160–165
definition for functional data, 149
for multivariate data, 148
hybrid data

algorithm, 191
incorporating smoothing, 192

introductory remarks, 15
of bivariate functions, 166
of mixed data, 187–199
of registered data

linked to registration parameters,
198

regularized, 173–185
algorithms, 179–182
by direct smoothing of data, 182
choosing the smoothing

parameter, 178
stepwise, 184

rotation, 156
smoothed, see regularized
visualization, 154–160

principal differential analysis, 319, see
PDA

probability functions, estimation, 118
probes, linear functional, 101
Procrustes fitting, 194
progesterone data, 244
projection

in general inner product space, 395
in inner product spaces, 391

projection matrix, 65, 394–395
projection operators, 318
psychometrics, 5

QR decomposition, 393
quadratic function

constrained optimization
finite-dimensional case, 396
in general inner product space,

396
quadratic optimization, 392
quantile regression, 79

R2 measure
for estimation of a function by a

function, 285
radial basis functions, 295
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rainfall data
Churchill and Vancouver, 125
Prince Rupert, 120

rate of change, 297
registered curves

principal components analysis of,
187

registration, 12, 127–145
by feature alignment, 132
fixed effects model, 130
global criterion, 131
minimum eigenvalue criterion, 140
mixed data arising from, 194
random effects model, 130
shift, 129
use of landmarks, 132

regression diagnostics, 268
for functional linear models, 270

regression spline, 298
REGSSE, definition, 131
regularity

as general aspect of FDA, 379
regularization, 81–109

by placing hard-edged constraints,
401

multivariate linear model, 401
necessity when predicting a

function from a function, 281
necessity when predicting a scalar

from a function, 263
repeated measures, 380
replication

as general aspect of FDA, 379
reproducing kernel, 354, 372, 376, 381

matrix analogue, 356
relationship with Green’s function,

355
to find optimal basis for spline

smoothing, 363
reproducing kernel Hilbert space,

349–357
resolution of data, 27, 41–42
ridge regression, 206, 401
Riesz representation theorem, 354
RKHS, see reproducing kernel Hilbert

space
roughness

of a response vector, 272
roughness of a function

quantifying, 84
roughness penalties, 81–109

based on general linear differential
operator, 359

higher order, 84
nonstandard, 92

roughness penalty
in estimation of a scalar from a

function, 266
in smoothed PCA, 177

roughness penalty matrix
computation, 88, 93
definition, 87

Runge-Kutta methods, 322

sampling functional data, 39
sampling variance, 70

estimation of, 71
satellite imagery, 276
seasonal variation, 30
second order differential equations,

311
self-adjoint operator, 392
self-modelling nonlinear regression,

143
semi-inner product, 388
seminorm, 388
singular value decomposition, 381,

392
smoothed canonical correlation

analysis, definition, 206
spatial data analysis, 383
spatial dependence

of functions, 383
speech recognition, 215
spline functions, 47–53
spline smoothing, see also roughness

penalties
algorithm, 86
as a linear operation, 87
as augmented least squares, 89
bibliographic references, 57
choice of smoothing parameter,

94–98
constrained, 113
motivation, 82
of oil refinery data, 298
optimal basis, 363
thin plate, 295
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using fourth derivative penalty, 303
using general linear differential

operator, 364
using third derivative penalty, 334

STAPH group, 276, 296
state-space models, 222
step-function basis, 55
stepwise variable selection, 69
stochastic differential equations, 369,

382
sunspots, 301
SVD, see singular value

decomposition
symbolic computation, 321
symmetry

property of inner product, 386

Taylor expansions, 58
tensor product, 294
test data, 5
thin plate splines, 295
tibia growth data, 115
tilted sinusoid model, 340
timescale

choice of, 56
trapezoidal rule, 376

ultrasmooth functions, 108

variable pruning, 69
variance

functional, 22
partitioning, 306

varimax rotation, 156
varying coefficient model, 220, 258
vector notation, 20
vector part

of hybrid data principal component,
190

visualization
of PCA, 154–160

warping, see registration
warping function

definition, 134
general, 137
use to estimate registered function,

137
wavelets, 53–54

bibilographic references, 57
web site, 18
within-class variance, 214
Wronskian, 321
www.functionaldata.org, 18

zip codes, automatic recognition, 215
Zurich growth study, 166


