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SUMMARY 
The ability of the human thumb and forefinger to adapt the pinch force to the static and dynamic 
characteristics of the object being grasped is one of the marvels of human physiology. We analyse 
a sample of records of the force applied during a brief squeeze by functional data analysis tech- 
niques in which familiar statistical concepts are adapted to observations that are functional in 
character. Except for scale, a graph of these force impulses closely resembles a log-normal density 
function, and this has a plausible physiological rationale. Specially adapted smoothing spline 
approximations along with a functional version of principal components analysis reveal that the 
residual variation is essentially one dimensional in structure, and that the force functions can be 
described by a simple linear differential equation incorporating the effects of drag or viscosity in 
the joints and muscles involved. 

Keywords: Differential equation; Functional data analysis; Log-normal distribution; Motor 
control; Spline smoothing 

1. Introduction 
One of the most remarkable muscle groups in the human body controls the thumb 
and forefinger in the act of gripping an object. The force exerted must be adapted 
to the object's weight, acceleration, surface texture, contour and structure. More- 
over, the system is slow relative to the response speeds that are often required by 
the external world; a best response time of the order of 100 ms must cope with event 
sequences such as occur in typing or piano playing that often are of the order of 
10ms or less, implying that the brain must often anticipate the required force. 
Understanding this system better can yield insights into how the brain can control 
high performance motor systems such as the hand and the tongue in the context 
of rapidly changing task characteristics. This knowledge may also lead to better 
robot design. 

The data discussed in this paper were collected at the Medical Research Council 
Applied Psychology Unit, Cambridge, by the third author as a part of a sequence 
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of experiments and consist of records of the force exerted by pinching a force meter 
(width 6 cm) with the tips of the thumb and forefinger on opposite sides. The task 
required of the subject was 

(a) to maintain to within reasonable limits a constant force determined by the 
experimenter, 

(b) on a signal to give a brief force impulse which was targeted to reach a pre- 
determined maximum value and 

(c) to return the force to the constant background level. 
The constant background force, the targeted maximum force and the subjects were 
all varied in the results discussed here. Within a fixed set of conditions, as many 
as 100 replications were obtained. 

Fig. 1 shows 20 typical records in which the background force and the maximum 
force were 2 N and 10 N respectively. Although there is considerable variation from 
replication to replication in aspects of these functions, we naturally expect that 
certain characteristics of the shap v will remain quite stable; Fig. 1 indicates that 
records vary substantially in terms of time of the maximal force, the size of this 
force and its duration, but that each record closely maintains a common basic shape. 

These are an example of functional data, meaning that the basic or primitive 
observation is a function, here force as a function of time. In this paper we apply 
the techniques of functional data analysis as described by Ramsay and Dalzell (1991) 
to uncover the processes that determine the typical record as well as the variation 
between records. Our objective is the representation of this process by a simple dif- 
ferential equation which appears to be consistent with the known physiology of the 
system. 

In the following section we develop the model that will motivate and define 
the subsequent analyses. This model leads to the development and application of 
a spline smoothing process which is adapted to the characteristics of the model and 

0 
LL 

0.0 0.05 0.10 0.15 0.20 0.25 0.30 
Seconds 

Fig. 1. 20 recordings of the force exerted by the thumb and forefinger where a constant background 
force of 2 N was maintained before a brief impulse targeted to reach 10 N: the force was sampled 
2000 times per second 
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data. Section 4 shows that applying a functional version of principal components 
analysis reveals the variation between force records to be essentially unidimensional. 
The next section discusses these findings in terms of motor control physiology. 
Technical matters are relegated to Appendix A. 

2. Log-normal Model for Pinch Force 
If we subtract the background force, the shape of the records in Fig. 1 resembles 

that of various familiar probability density functions, except that the area under 
the curve is not normalized. The positive skewness in the records tends to be about 
what we find in the log-normal density, which is usually expressed as 

p (t) = (27r) -1/2t-1 exp f - (ln t - In y)2 

where IA and a are location and scale parameters respectively, For our purposes, the 
following less familiar but equivalent form is more useful because it eliminates the 
factor rl: 

= -1/2 ( 1 + 0r2' (IntI(ln ou2)}21 p(t) (2) exp 2 2(2 (1) 

Expressed in this way, it is more obvious that the maximum of this function, or 
the modal value, is t = In IA - a 2. This formulation suggests the model 

f(t) -fo = Cexp[- {ln(t - to) - ln(tM - to)}21 t > to, (2) f(t) fo = P[ ~~2ur2 t>0 2 

where f(t) is the force exerted at time t, fo is the targeted background force, C is 
the maximum force, to is the time of origin of the force impulse, tM is the time of 
the maximum force and a is a shape parameter. 

To simplify the notation, we shall henceforward assume that force is measured 
relative to the targeted background force as origin, and thus that we are interested 
in the part of the force impulse that exceeds fo, i.e. we shall assume that fo = 0. 

This model has a motivation that is interesting both substantively and statis- 
tically. If we imagine that the response of a muscle system at time t is proportional 
to the rate of arrival of discrete events such as neural impulses arriving on many 
independent channels, such as separate nerve fibres, and if it is supposed that the 
disturbance processes which cause these events to have a random distribution are 
sequential and multiplicative in character, then the central limit theorem implies 
convergence to a response function of this nature. Plamondon (1992) proposed this 
process to explain the shape of velocity curves for very rapid hand movements 
during handwriting, where a closely similar pattern is observed. Alternative explana- 
tions are taken up in Section 5. 

Clearly the four parameters C, to, tM and a must be estimated separately for 
each curve. Expressing model (2) in the equivalent form 

Inf(t) = -bo - b, ln(t - to) - b2 {ln(t - to) }2, (3) 

we note that conditional on to the other parameters can be estimated by least 
squares. We used only force values that exceeded the background forcefo by 0.5 N 
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Fig. 2. Single log-force record for forces exceeding 2.5 N: -----, fit by least squares of model (3), 
which is quadratic in log-time 

and employed a simple grid search technique to identify the least squares estimate 
of to. Fig. 2 displays a typical single record for the logarithm of the amount that 
the pinch force exceeded the threshold, along with the fit by least squares. This 
simple model accounted for about 97% of the variation within each record. 

The quadratic approximation to log-suprathreshold force can also be used to 
define a common origin and scale. The linear transformation of time 

t - to (4) 
tM - to 

where tM is the time of maximum force, implies that log-suprathreshold force as 
a function of ln s is symmetric about s = 1, and hence that the model simplifies to 

lnf(s) = -bo - b2* (Ins)2 
and 

f(s) = exp{-bO* - b2*(Ins)2} = Cexp{-(lns)2/2o2}, (5) 

where C = exp(- bo*) and a 2= (2b'*) -1. 
The integral of the force curve 

E= (tM- to)l f(s)ds 

= (tM - to) V(27r)Ca exp(a2/2) (6) 

is a useful descriptor of the total response effort. The time to maximum force 
tM - to, maximal force C and the shape-dependent function a exp(o2/2) combine 
multiplicatively to define this measure, at least as far as model (2) is concerned. 

If the variation of spread parameter a2 over replications is a nuisance, we can 
further normalize the force function by working with 

f *(s) = C {f(s)/C}'Go (7) 



FUNCTIONAL DATA ANALYSIS 21 

which has the fixed spread parameter a2. 
Table 1 shows the characteristics of the main descriptors of the 20 curves in 

Fig. 1, time to maximum force tM - to, maximum force C, spread a and effort 
E. The coefficients of variation for both maximal force and effort E are especially 
small. Table 2 indicates the corresponding correlations between these descriptors. 
We see that there is a very strong negative correlation between time to maximum 
force and spread, so that their net contribution to effort tends to be fairly stable. 
Consequently, effort is primarily related to maximum force, suggesting perhaps that 
the system is designed to expend energy principally to reach a target force maximum, 
as opposed to controlling the shape of the force impulse. 

Model (5) can also be expressed as a differential equation: 

df 
2-f (s). (8) ds a s 

From this we can see that - 1/a2 is the slope in the linear relationship between f' 
and (f lns)/s, and therefore that a2 is the slope of the normal to this line. Fig. 3 
plots the relationship between the first difference of force and the right-hand side 
(f lns)/s for a typical force impulse. 

Associated with this differential equation is the linear differential operator 

(Lf )(s) = nf(s) + df (9) 
a2-s ds 

or 

L 12 Ins L=--~I +D. 
a2 s 

TABLE 1 
Summary statistics for 20 pinch force function descriptors (after 
subtracting the base-line force) 

Statistic tM-to C a E 

Mean 0.084 8.96 0.286 0.549 
Standard deviation 0.017 0.857 0.045 0.059 
Coefficient of variation 0.197 0.096 0.157 0.107 

TABLE 2 
Correlations between the pinch force function descriptors 

tM - to C a E 

tM - to 1.00 -0.31 -0.97 -0.24 
C -0.31 1.00 0.34 0.95 
or -0.97 0.34 1.00 0.32 
E -0.24 0.95 0.32 1.00 
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Fig. 3. Relationship between the right-hand side of equation (8) and the first difference of force for 
a typical single record: its strong linearity indicates that the differential equation (8) describes well 
this force impulse 

This operator satisfies the homogeneous equation Lf = 0 when f is a member of 
family (5). 

This differential equation formulation is critical to the functional data analyses 
to be developed and displayed here. The description of the model in terms of a 
differential equation can also be motivated by considering that a large proportion 
of the important functional relationships in the natural sciences are most meaning- 
fully expressed as simple differential equations, and we can therefore hope that these 
data may also display a simple structure when expressed in these terms. Moreover, 
in exploring departures from the basic log-normal model, it will turn out to be 
revealing to identify the non-homogeneous differential equation 

Lf = u. (10) 
Function u is often called the forcing function and tends in applications to describe 
the effects of external factors on the system. 

3. Smoothing Data to Identify Residual Variation 
It would be naive to suppose that the log-normal model (2) or (5) is completely 

adequate to describe force impulses. Our goal in this section is to fit nonpara- 
metrically a record (si, yi), i = 1, . . ., n, where yi is the observed force at sampling 
point i at transformed time si, by the more general smoothing function 

h(s) = f (s) + e(s). 

The first term f is the model component (5) and the second term e is the additional 
signal or residual function that is necessary to give an adequate account of the actual 
data. But we can identify term e uniquely only if it satisfies some suitable constraint 
that separates its contribution from that potentially provided by term f. There are 
many ways to do this, but a natural approach here would be to constrain the residual 
function e to contribute zero to the total effort E. Thus, we specify that 
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| e(s) ds = O. 

For technical reasons mentioned in Appendix A, this must be modified to 

e(s)d = . (11) 
so 

The limits of integration here must contain the observed values of the transformed 
times si and must also satisfy 0 < SO < S1 < oo. We can always choose these limits 
so that this is a reasonable approximation to the constraint, and therefore so that 
the residual function e(s) in effect contributes negligibly to the effort E. 

Individual records in Fig. 1 show clearly that there is some fairly small amount 
of noise or error variation in the observations that would not be reasonable to fit 
by h, possibly because of aspects of the recording process. This suggests the use 
of the smoothing spline criterion 

n 

Q = Z {yi - h(s,)}2 + A (Lh)2(s)ds. (12) 

The first term is a least squares error term, and the second term measures the 
departure from smoothness in terms of the size of the function Lh = L(f + e) = Le, 
where L is the differential operator (9). We can motivate the choice of the second 
term by asking that as much of the variation in the data as possible be accom- 
modated by the model term f since we are interested only in residual influences e 
that absolutely cannot be accounted for by the model. We penalize the size of Le 
because we shall be interested in the description of residual term e in terms of the 
differential equation Le = u, and it is reasonable from this perspective to ask that 
the forcing function u be small. 

The smoothing parameter A controls the penalty to be placed on IILh 12. A very 
large value implies that virtually all the fit is to be achieved by the model term f, 
and as A goes to 0 the observations will be interpolated rather than smoothed. 

Appendix A gives the technical details of the computation of the smoothing 
function hj for record j. We used the power transformation (7) to standardize the 
spread of the force impulses to the value a = 0.05. The limits of integration in 
equation (11) were 0.4 and 2.4, and these included all the observed values of si. As 
the number of sampling points varied from record to record, we used linear inter- 
polation to estimate suprathreshold force impulse values at the common set of 41 
sampling points from s = 0.4 to s = 2.4 in steps of 0.05. But where these common 
sampling points fell outside the range of observed sampling points for a particular 
record we used the values of the fitted model (5). We used the data-driven 
generalized cross-validation technique described by Wahba (1990) to choose an 
appropriate value for the smoothing parameter A, which turned out to be about 1. 
Rice and Silverman (1991) proposed an alternative technique for smoothing 
parameter identification, and still other methods are reviewed in Green and Silver- 
man (1994). 

Fig. 4 shows the fitted function h for a typical record as a full curve, along with 
the model component f as a broken curve. We see here, as in Fig. 2, that the actual 
force impulse is a little flatter at its maximum than model (5) allows for, and that 
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Fig. 4. Smoothing spline fit h (- ) to a typical record: *, observed suprathreshold forces; 
-----, log-normal model component f 

it falls off a trifle more slowly after the maximum. The largest discrepancy between 
h and f is only about 2% of the peak force, however. 

The average residual function e for a set of 20 force impulses where the target 
was 1ON and the base-line force was 2 N is shown in Fig. 5. The function has an 
integral which is near 0, and the negative lobe at s = 1 accommodates the fact that 
h is flatter at the point of maximal force than model f. The largest modulus of the 
mean e is only about 307 of the target force. 

4. Principal Components of Variation in Force Impulses 

The force impulses can potentially vary from record to record in a great variety 

0 

0,-S 

LL6 

0.5 1.0 1.5 2.0 
Adjusted Time s 

Fig. 5. Average residual function e for a set of 20 force impulses where the target force was 10 N 
and the base-line force was 2 N 
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of ways. By the transformation to time measure s we have eliminated a variation 
in origin and timing of the maximum, and by standardizing the spread parameter 
a to 0.05 we have effectively constrained the area under the curves to be propor- 
tional to the maximum force C. But a large range of potential variation remains. 

Variation from record to record in the model component f is essentially one 
dimensional, and one approach to studying this variation would be simply to display 
the variability in the coefficient C in model (2). 

Exploring the variation in the residual functions e is both more interesting and 
more challenging, however, since these can potentially vary in shape in complex 
ways. Ramsay (1982), Besse and Ramsay (1986) and Ramsay and Dalzell (1991) 
developed a version of principal components analysis for functional data which was 
designed to ascertain how many modalities of variation are to be found among a 
set of replicated functions. In one version of their approach, only variation in the 
residual function e is taken into account. This involves the spectral analysis of the 
bivariate variance-covariance function 

N 
v(s, t) = N- 1 ej(s) ej(t). (13) 

The motivation for the choice of fitting criterion (12) was that the transformed 
functions Le might be of interest, and that their variation in size should be con- 
trolled in fitting the data. Following this approach, it would seem that it is the vari- 
ability in Le that should be explored, and that the functional principal components 
analysis should be applied at this level rather than to e and v directly. Consequently, 
it is the eigenequation 

Si 
{L v(s, )}(w)(L0)(w) dw = pt 4(s) (14) 

so 

that is solved for eigenvalue Z and eigenfunction t in this version of functional 
principal components analysis. Any two eigenfunctions are required to satisfy the 
orthonormality constraint 

| (L J) (S) (k)(S)dS = Sjk, (15) 
So 

where jk = 1 if j = k and jk = 0 otherwise. The size of an eigenvalue it indicates 
the contribution of the associated eigenfunction to the variation between the resi- 
dual functions ej. In effect, then, equation (14) describes the principal components 
analysis of the forcing functions. Further technical details concerning this analysis 
are provided in Appendix A. 

For the data that yielded Fig. 5, there was only one substantial eigenvalue, and 
this accounted for 760o of the variation. In the principal components analysis of 
non-centred data where there is only one strong component of variation, this will 
closely resemble the mean function. Consequently, the first eigenfunction for these 
data looks very much like the mean function e displayed in Fig. 5. 

Because the orthogonality constraints on the eigenfunctions are defined in terms 
of Lt, it is more natural to examine the result of applying differential operator L 
to an eigenfunction than it is to view the eigenfunction directly. Fig. 6 shows the 
first function Lt. In the neighbourhood of s = 1, Lt has the shape of a step 
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Fig. 6. Result of applying differential operator L to the first eigenfunction of the variance-covariance 
function for the force impulse data 

function, with a negative phase swinging abruptly to a positive phase at around time 
s = 1.2. Its behaviour for more extreme values of s is less interesting because it is 
a consequence of the spline smoothing process that this function must be 0 at the 
extremes. 

A second and less important eigenfunction appears for some experiments. For 
the data analysed in this paper, this eigenfunction contributes only to one curve, 
and it primarily captures a slight misalignment between the model component and 
the observed force impulse, and is due to the failure of the preliminary quadratic 
fitting process to locate properly the time to peak force. That is, errors in the estima- 
tion of to and tM result in values of transformed time s which are slightly off. 

The stability of these findings across various values of the base-line and targeted 
forces, and across subjects, was remarkable. The general features observed in 
Figs 5 and 6 remain essentially unchanged except for variation in amplitude. 

5. Discussion and Conclusion 
It seems that the pinch force system can be described to an impressive level of 

accuracy by the differential equation 
df lIn s df+ 12 f(s) = U(s), 
ds af s 

where 

u(s)- <? s 1.2, (16) 
LU2 >O s >1.2 

and s = (t - to)/(tM - to). 
We hypothesize that the forcing function u is due primarily to drag or viscosity 
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in the motor system. This would explain why the peak of the force impulse does 
not rise as high as the model would predict, since drag would retard the build-up 
of force. As the muscles relax following maximum force, we would expect that drag 
would exert the opposite effect, retarding the decline in force and the slight physical 
movement in the thumb and forefinger. 

Just why the log-normal function defined by Lf = 0 should provide such an excel- 
lent first approximation to the data is a fascinating question. Crow and Shimizu 
(1988) reviewed the many applications of the log-normal distribution in applied 
statistics. Ulrich and Miller (1993) considered specific mathematical models that 
might generate log-normal reaction times. 

The supposition that the logarithm of the process is a result of independent 
or nearly independent increments tends to motivate many of these discussions. 
Plamondon (1991, 1992) argued along these lines for velocity functions during rapid 
hand movements such as we might encounter, for example, in handwriting. 

However, the log-normal function could arise from something nearly like an 
exponential transformation superimposed on a normally distributed process, with 
the latter possibly due to central limit effects. Feldman (1986) suggested that force 
depends exponentially on muscle activation. 

Although this paper is aimed primarily at statisticians who are interested in 
applying functional data analysis to these and other problems, we offer some 
remarks about motor physiology, of which there is a recent review by Rothwell 
(1987). The pinch response is the result of the activity of very many motor units 
(MUs), each consisting of a motoneurone axon, terminal branches and the muscle 
fibres that it innervates. There are about 100 fibres per MU in hand muscles, and 
each fibre is activated by only a single parent motoneurone. When an MU is 
activated, waves of depolarization called action potentials travel down the moto- 
neurone branches and activate all the associated fibres in synchrony. Thus the MU 
represents the smallest number of fibres that can be activated by the central nervous 
system. 

Ultimately, because many different hand muscles will contribute to the generation 
of brief force pulses, hundreds if not thousands of MUs may be activated, each 
of which is associated with of the order of 100 individual muscle fibres. In these 
circumstances, it seems reasonable to propose that the total force exerted is the 
result of the rate of arrival of relatively independent events, these being the action 
potentials activating individual fibres. If we accept this, then the data indicate that 
the stochastic nature of the arrival times closely resembles that of the log-normal 
distribution. 

However, this simple explanation ignores many complexities at the level of 
individual MUs, and there are many references on the individual behaviour of MUs. 
Ulrich and Wing (1991) developed a recruitment model at this level based on the 
Erlangian or gamma distribution. Moreover, the build-up of force also depends on 
the length of time that an individual muscle fibre takes to develop maximum force 
once stimulated, as well as on the variability in stimulation times. 

At best we can say that the measured pinch force is the result of a cascade of 
complex processes, the end result of which is something remarkably like a log- 
normal response function, modulated only slightly by what appears to be drag or 
viscosity. We wonder, along with Plamondon (1991, 1992), just how many short- 
lived motor events display this effect. 
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The analyses reported in this paper are not the only ones possible which are likely 
to reach the same conclusions. Ansley et al. (1993) have also developed an approach 
to nonparametric regression incorporating prior information through the use of 
linear differential operators. The first author of the present paper has developed 
a discretized approach using divided differences instead of derivatives that comes 
very close to reproducing these results, but which is substantially simpler to 
implement. The principal components analysis results can also be achieved in other 
ways, and the method of Rice and Silverman (1991) that penalizes the roughness 
of eigenfunctions is an effective alternative approach. 

It strikes us as exciting that the techniques of functional data analysis have 
revealed this simple two-dimensional structure in these data, and that this struc- 
ture can be so neatly captured by the simple differential equation Lf = u. An 
essential step in the functional data analysis carried out here was to tailor the 
smoothing process to the known structure of the data. This is done by first identify- 
ing a model or simple function which accounts for a large portion of the variation 
in the observations, and which has some substantive significance. By designing the 
spline smoother around this model, we can study the behaviour of the remaining 
variation via principal components analysis and thus identify the additional influ- 
ences or forcing functions which also play a significant role. We believe that func- 
tional data analysis carried out along these lines has an exciting future. 
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Appendix A 
It is a standard result in the theory of spline functions (Wahba, 1990) that the solution 

h to the spline smoothing problem (12) can be expressed in the form 
m n 

h (s)= di f,(s) + E cj k(sj .s) 
i=1 j=1 

where the functions fi span the space of functions satisfying Lf = 0, and where the 
bivariate function k is the reproducing kernel for the Hilbert space of functions e satisfying 
le= 0 and with the inner product 

(ej, ek) = (Lej) (s) (Lek) (s) ds. 

In this application there is only a single function f associated with the kernel of the 
operator L, and the main technical issue is the computation of k. The reproducing kernel 
has a simple relationship to the Green function g(s; w) satisfying the equation 

S1 
e(s) = g(s; w) (Le) (w) dw, (17) 
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namely 

k(s, t) = | g(s; w) g(t; w) dw. 

The Green function in effect defines an integral transform which is the inverse of the 
differential operator L, and g(s; w) plays a key role in all aspects of the theory of functions 
associated with this situation. Therefore the most basic problem is to specify this Green 
function. 

Dalzell and Ramsay (1993) developed a method for computing the Green function 
associated with constraint (11) and differential operator L. The Green function for this 
problem is 

g(s; w) = F(w) exp{(ln w) - (lns)2 SO }< w < s, 

(In W)2 _ (In S)2 (18) 
g(s; w) = {F(w) - 1 }exp 2o-2 SI w s, 

where 

| exp{(ln u)2/2a2} du 
F(w) so 

Si 
exp{(ln u)2/2a2} du 

It turns out that we can express F(w) as 

F ((r-l ln w - a) - ((r-l ln SO - a) 

4(a- 1 ln S1 - a) - 4(a- 1ln S0 - a) 

where 4f is the standard normal distribution function, for which approximations are well 
known. It is apparent that for practical computation we must have S0 > 0 and S1 < 00. The 
integration required to compute values of the reproducing kernel k from the Green function 
must be performed numerically, but g(s; w) is a smooth function of w on either side of s, 
and we found that quadrature using Romberg extrapolation (Stoer and Bulirsch, 1980) was 
quite satisfactory. 

Let vector f contain the values f(sj), y contain yj and matrix K contain the values 
k(si, sj), i, j = 1,. . ., n. Then the coefficient d and coefficient vector c defining the smooth- 
ing spline h satisfy the linear equations 

Mc + fd= y, 

f'c =0 
from which we have 

d = f'M-1y/frM-f 

and 
c = M l(y - fd) 

where M = K + nAI. For large n and/or closely spaced values of si, the matrix M can be 
very ill conditioned, and Wahba (1990) should be consulted for further computational 
details. 
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Besse and Ramsay (1986) and Ramsay and Dalzell (1991) showed that the principal 
components analysis implied by eigenequation (14) can be expressed in matrix terms as 
follows. Let E be the 20 x 41 matrix of values of e.(t,), where j indexes records. The 
corresponding variance-covariance matrix is V = N- E'E, where N = 20 is the number 
of functions. Let the order 41 positive semidefinite matrix N be defined as 

N = {f(f'f)-1f' + K}1-K{f(f'f)-1f' + K}-1. (19) 
Then a matrix eigenequation that is equivalent to equation (14) is 

VNu=,uu (20) 

where the eigenvector u is subject to the normalization u'Nu = 1. In effect, matrix N defines 
the metric for the matrix principal components analysis which renders it equivalent to the 
functional principal components analysis defined by equation (14). An alternative expression 
for equation (20) is 

N1/2VN1/2v = -V (21) 

where v'v = 1 and u = N -l/2v, inverses being taken in the Moore-Penrose sense if N 
is singular. The vector x of values of the harmonic t are then recovered by 

x = K{f(f'f)-1f' + K}"-u. (22) 

References 

Ansley, C. F., Kohn, R. and Wong, C.-M. (1993) Nonparametric spline regression with prior informa- 
tion. Biometrika, 80, 75-88. 

Besse, P. and Ramsay, J. 0. (1986) Principal components analysis of sampled functions. 
Psychometrika, 51, 285-311. 

Crow, E. L. and Shimizu, K. (1988) Lognormal Distributions: Theory and Applications. New York: 
Dekker. 

Dalzell, C. and Ramsay, J. 0. (1993) Computing reproducing kernels with arbitrary boundary con- 
straints. SIAM J. Sci. Comput., 14, 511-518. 

Feldman, A. G. (1986) Once more on the equilibrium point hypotheses (L model) of motor control. 
J. Motor Behav., 18, 17-54. 

Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: 
a Roughness Penalty Approach. London: Chapman and Hall. 

Plamondon, R. (1991) On the origin of asymmetric bell-shaped velocity profiles. In Tutorials in Motor 
Neuroscience (eds J. Requin and G. E. Stelmach). Dordrecht: Kluwer. 

(1992) A theory of rapid movements. In Tutorials in Motor Behavior II (eds G. E. Stelmach 
and J. Requin), pp. 55-69. New York: Elsevier. 

Ramsay, J. 0. (1982) When the data are functions. Psychometrika, 47, 379-396. 
Ramsay, J. 0. and Dalzell, C. J. (1991) Some tools for functional data analysis (with discussion). 

J. R. Statist. Soc. B, 53, 539-572. 
Rice, J. A. and Silverman, B. W. (1991) Estimating the mean and covariance structure non- 

parametrically when the data are curves. J. R. Statist. Soc. B, 53, 233-243. 
Rothwell, J. C. (1987) Control of Human Voluntary Movement. London: Croom Helm. 
Stoer, J. and Bulirsch, R. (1980) Introduction to Numerical Analysis. New York: Springer. 
Ulrich, R. and Miller, J. (1993) Information processing models generating lognormally distributed 

reaction times. J. Math. Psychol., 37, 513-525. 
Ulrich, R. and Wing, A. W. (1991) A recruitment theory of force-time relations in the production 

of brief force pulses: the parallel force unit model. Psychol. Rev., 98, 268-294. 
Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and 

Applied Mathematics. 


	Article Contents
	p. [17]
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22
	p. 23
	p. 24
	p. 25
	p. 26
	p. 27
	p. 28
	p. 29
	p. 30

	Issue Table of Contents
	Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 44, No. 1 (1995), pp. 1-141
	Front Matter [pp. ]
	Report of the Joint Editors [pp. 1]
	Nonparametric Estimation of Survival Distributions with Censored Initiating Time, and Censored and Truncated Terminating Time: Application to Transfusion Data for Acquired Immune Deficiency Syndrome [pp. 3-16]
	A Functional Data Analysis of the Pinch Force of Human Fingers [pp. 17-30]
	Application of the Parametric Bootstrap to Models that Incorporate a Singular Value Decomposition [pp. 31-49]
	A Model for Binary Time Series Data with Serial Odds Ratio Patterns [pp. 51-61]
	Marginal Modelling of Categorical Data from Crossover Experiments [pp. 63-77]
	Bayesian Inference for Masked System Lifetime Data [pp. 79-90]
	Sampling Distributions of Relative Poverty Statistics [pp. 91-99]
	General Interest Section
	Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data [pp. 101-115]
	Non-uniqueness and Inversions in Cluster Analysis [pp. 117-134]

	Letter to the Editors [pp. 135-137]
	Statistical Software Reviews
	Review: untitled [pp. 139-141]

	Back Matter [pp. ]



