
Functional data analyses of lip motion
J. O. Ramsaya)

McGill University, Montreal, Quebec H3A 1B1, Canada

K. G. Munhall
Queens University, Kingston, Ontario, Canada

V. L. Gracco
Haskins Laboratories, New Haven, Connecticut 06511

D. J. Ostry
McGill University, Montreal, Quebec H3A 1B1, Canada

~Received 18 December 1994; accepted for publication 1 February 1996!

The vocal tract’s motion during speech is a complex patterning of the movement of many different
articulators according to many different time functions. Understanding this myriad of gestures is
important to a number of different disciplines including automatic speech recognition, speech and
language pathologies, speech motor control, and experimental phonetics. Central issues are the
accurate description of the shape of the vocal tract and determining how each articulator contributes
to this shape. A problem facing all of these research areas is how to cope with the multivariate data
from speech production experiments. In this paper techniques are described that provide useful tools
for describing multivariate functional data such as the measurement of speech movements. The
choice of data analysis procedures has been motivated by the need to partition the articulator
movement in various ways: end effects separated from shape effects, partitioning of syllable effects,
and the splitting of variation within an articulator site from variation from between sites. The
techniques of functional data analysis seem admirably suited to the analyses of phenomena such as
these. Familiar multivariate procedures such as analysis of variance and principal components
analysis have their functional counterparts, and these reveal in a way more suited to the data the
important sources of variation in lip motion. Finally, it is found that the analyses of acceleration
were especially helpful in suggesting possible control mechanisms. The focus is on using these
speech production data to understand the basic principles of coordination. However, it is believed
that the tools will have a more general use. ©1996 Acoustical Society of America.

PACS numbers: 43.70.Aj

INTRODUCTION

Two problems have complicated the study of the high-
dimensional dynamic process of speech articulation. First,
the movements of the vocal tract are spatially complex and
there is significant motion in three dimensions, leaving the
researcher with data that have many dimensions and there-
fore many degrees of freedom. While there have been some
assessments of the dimensionality of static shapes of the lip
~Linker, 1982! and tongue~Harshmanet al., 1977!, there has
been little work on the dimensionality of the motions of
these articulators except for Maeda~1990!.

Second, there is the problem of studying the dynamic or
functional character of the process. One of the most common
simplifying assumptions is to restrict the analyses to scalar
summaries of the movement trajectories, such as the average
duration, amplitude and peak velocity of markers attached to
individual tissue points. These marker measures are then
subjected to conventional univariate or multivariate statisti-
cal analyses. But using point summary measures of continu-
ous functions presumes that these are sufficient for under-

standing the underlying process and, moreover, that the time-
varying detail of the movement trajectories is relatively
unimportant.

An alternative approach, called functional data analysis
~FDA!, has been developed by Ramsay and colleagues
~Ramsay, 1982; Besse and Ramsay, 1986; Ramsay and Dal-
zell, 1991! in which the traditional multivariate analyses
such as principal components analysis are expressed in func-
tional analytic terms. Ramsay has demonstrated the utility of
this approach by analyzing tongue movements in speech
~Ramsay, 1982; Besse and Ramsay, 1986! and three-
dimensional limb movements~Ramsay, 1989!. FDA in-
volves the definition of useful statistical analyses such as
principal components analysis in functional analytic terms,
and the variance components that are identified are functions.
The modes of variation of trajectories are thus expressed in a
form similar to the trajectories themselves.

This approach has clear advantages:~i! It takes account
of the underlying continuity of the physiological system gen-
erating the behavior;~ii ! it displays temporal dependencies in
the data owing to this continuity;~iii ! it provides methodolo-
gies to deal quantitatively with the complexities of multidi-
mensional time series data like those collected in speech ex-
periments; and~iv! functional data analysis offers the

a!Requests for preprints should be directed to the first author at Department
of Psychology, 1205 Dr. Penfield Ave., Montre´al, Québec H3A 1B1,
Canada. Electronic mail: ramsay@psych.mcgill.ca

3718 3718J. Acoust. Soc. Am. 99 (6), June 1996 0001-4966/96/99(6)/3718/10/$6.00 © 1996 Acoustical Society of America

Downloaded¬27¬Feb¬2011¬to¬142.104.145.4.¬Redistribution¬subject¬to¬ASA¬license¬or¬copyright;¬see¬http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



possibility of studying the variation among various orders of
derivatives or linear combinations of derivatives. It may be,
for example, that the significant modes of covariation across
articulators may be at the level of acceleration, or, if the
system is primarily harmonic, at the level of a specified lin-
ear combination of position and acceleration. Thus this ap-
proach can reveal temporal and spatial dependencies be-
tween articulators that are due to their shared patterns of
motion.

In this study the OPTOTRAK system~for other uses of
this technology see Bateson and Ostry, 1995! was used to
measure lip motion. Three spatial coordinates of eight sepa-
rate articular positions observed under four experimental
conditions will be examined. The FDA techniques used in
this paper deal with a partition or decomposition of data into
fundamental components of variation. Principal components
analysis serves to assess the complexity and dimensionality
of across-replication variation in three-dimensional lip
movement, taken both within and across recording positions.
A functional version of analysis of variance~FANOVA! per-
mits the study of across-condition variation in articulation.

FDA also permits the statistical analysis of derivatives
of functions as well as the observed functions themselves. In
this paper emphasis will also be placed on study of the sec-
ond derivative of motion, since from physical principles one
expects that the influence of forces~internal and external!
have their most direct impact on acceleration and provide
insight into the motor control process.

This paper is primarily methodological in that it aims to
show functional data analysis in action within a context of
high-dimensional dynamic data. Our aim is introduce these
new statistical tools rather than to claim novel substantive
results.

I. EXPERIMENTAL METHODS

A single subject, a male native speaker of Canadian
English with no reported speech or language disorders, spoke
CVC nonsense syllables in the carrier phrase ‘‘Say CVC
again.’’ The C in the utterance was /b/ and the vowels were
/æ/, /{/, /É/, and /~/. The subject spoke 20 repetitions of each
syllable type, randomized across the four vowels.

The motion of the lips was monitored using
OPTOTRAK, an optoelectronic tracking system that can
transduce the 3-D position of markers. Eight infrared emit-
ting diodes~ireds! were attached to the vermilion border of
the lips using double-sided tape. An additional six ireds were
positioned on a custom head-mounted jig in order to track
the head during the experiment. This enabled us to correct
for head movement and to transform lip motions to a coor-
dinate system centered about the occlusal and midsagittal
planes. Three reference trials were collected prior to the ex-
periment during which the subject held a Plexiglas jig be-
tween his teeth. Three ireds attached to the Plexiglas allowed
us to define a plane along the maxillary bite surface~occlusal
plane!.

The data were sampled at 150 Hz, and an acoustic re-
cording of the voice was simultaneously digitized to serve as
a reference during segmentation of the movement signals.
The data were processed after the experiment to transform

the lip data to a head coordinate system~Horn, 1987!. The
origin of the new head-coordinate system was the intersec-
tion of the midsagittal plane, the occlusal plane and an or-
thogonal plane running throughout the maxillary incisor
cusp. The reference trials allowed us to define the origins of
the coordinate system and the relation of the ireds on the
head jig to this system.

The lip data, with the head component removed, were
examined using a waveform editor to determine the onset
and end of the movements for the monosyllable. A crude
estimate of oral aperture was computed by subtracting the
vertical movement component of the midsagittal ired on the
lower lip from the vertical movement component of the mid-
sagittal ired on the upper lip. This signal was smoothed using
a software-implemented Butterworth filter with a 15 Hz cut-
off frequency. The signal was then differentiated using a
central difference algorithm and the zero crossings at the
beginning and end of the syllables were identified.

The observations for each syllable therefore consisted of
24 movement streams~8 ireds times 3 spatial dimensions!
for each of 20 trials. The movement streams varied in dura-
tion from record to record with the number of sampled points
per record ranging from the low 30’s to a high of 51~ap-
proximately 207 to 340 ms!. To simplify data analysis, the
data were interpolated so that each record had 51 equally
spaced observations, and the time values 0,0.02,0.04,...,1
were assigned, and all results in this paper are given with
respect to this artificial time frame.

II. STATISTICAL METHODS

In this section three data decomposition or data parti-
tioning methods are developed. The first, spline smoothing,
permits a separation of variation at the ends of the defined
interval from variation within the main part of interval. The
second procedure, a functional version of one-way analysis
of variance, permits the study of differences between syl-
lables. The third, principal components analysis, analyzes
within and across marker locations in terms of their domi-
nant or principal features. The first two techniques are dis-
cussed in more detail because accounts of them are not
readily accessible in the applied statistical literature, but
functional principal components, described elsewhere
~Ramsay, 1982; Besse and Ramsay, 1986! is only summa-
rized.

Some of the analyses involve the use of estimated de-
rivatives of the coordinate functions. The notationDx indi-
cates the first derivative or velocity of coordinate functionx.
D2x the second derivative or acceleration, and in general
Dmx indicates the derivative or orderm. A specific value of,
say, acceleration at timet is indicated byD2x(t).

A. Spline smoothing and decomposition

Although the noise level is small in these data, some
degree of smoothing is essential to get good estimates of the
first and second derivatives of the data. Smoothing serves
another purpose in this paper: to partition or decompose each
curve into two components, one measuring behavior at the
end points or near the boundaries of the curves, and the other
describing their behavior in the central regions. The spline
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smoothing procedure was developed especially for this ap-
plication, and is therefore described at some length.

The basic idea behind spline smoothing~Eubank, 1988;
Green and Silverman, 1994; Wahba, 1990! is to define a
functionx that fits the observed data for coordinateX subject
to a penalty placed on the lack of smoothness ofx. The
penalty function keeps functionx from fitting the data pre-
cisely, but ensures thatx has the appropriate amount of regu-
larity or smoothness. The spline smoothing criterion for as-
sessing the fit of smoothing functionxi for replication i of
coordinateX used in this paper is

Ql~X,x!5 (
k51

51

@Xk2x~ tk!#
21lE

0

1

@D4x~ t !#2dt. ~1!

The first term measures the badness of the fit of function
x evaluated at timestk to the actual discrete dataXk in least-
squares terms: the closer the estimated functionx passes to
the data valuesXk , the better the fit. In fact, if only this term
were in the criterion, it would always be possible to find a
function that fit the data exactly, and therefore reduced the
criterion to zero. Such a function would be called aninter-
polantof the data.

The second term measures the roughness ofx, and its
contribution to the criterion is to forcex to sacrifice some
fitting power in order to remain acceptably smooth. In this
case roughness is measured in terms of the integrated or total
squared fourth derivativeD4x. A function with limited varia-
tion in its fourth derivative will necessarily be smooth to
some degree.

The amount of smoothness imposed by the second term
is controlled by the penalty multiplier,l. The largerl, the
bigger the emphasis on the penalty*[D4x(t)] 2 dt in the sec-
ond term, and therefore the more fit that must be sacrificed in
order to keep this term comparable in size to the first. It is
instructive to consider the two limiting cases. Asl→` the
size of the fourth derivative is ultimately forced to zero. This
implies that the fitted functionx would become a cubic poly-
nomial, for whichD4x50 exactly. At the other extreme, as
l→0, less and less penalty is placed on smoothness, until
finally the functionx is able to fit the data exactly.

The actual smoothing parameter value used was
l51026, and was chosen by a process called generalized
cross-validation. The idea behind this strategy is to consider
what would happen if the fitted functionx were fit to all but
the kth curve value, and then this actual curve value were
compared to the predicted value. Conceptually this approach
could be applied 51 times per curve by leaving each obser-
vation out in turn. Finally the squared errors of prediction
could be accumulated to provide a global measure of lack of
fit. This technique is called cross validation. The smoothing
parameterl would then logically be chosen to so as to mini-
mize this cross-validated error sum of squares. However, in
practice, the cross-validation approach can be prohibitively
time-consuming, and the generalized cross-validation
method involves some short cuts to approximate the conse-
quences of a complete cross validation, while retaining the
speed of a single smoothing step.

Smoothness is assessed in terms of the fourth derivative
in ~1! because we shall want to analyze the acceleration func-

tions,D2x, and the fourth derivative measures the curvature
in the acceleration function. By controlling the net amount of
curvature in acceleration one can ensure that the estimated
acceleration is reasonably smooth.

B. End-point and shape variation

Although the criterionQl above implies that the limiting
fit for large l is a cubic polynomial, it does not explicitly
define what role this polynomial component would play for
the penalty parameters of moderate or small size. In fact, we
can choose this role explicitly, a feature that Ramsay and
Dalzell ~1991! suggested might contribute usefully to a func-
tional data analysis.

For the segmented speech movement data the movement
variation between records for a particular ired tended to be of
two kinds:

~1! end-point variation, or variation near the ends of curves,
and

~2! shape variation, or variation in the central regions of the
curves.

End-point variation is due in some degree to the fact that the
utterance within which the syllable was embedded caused
the lips to be positioned differently both at the beginning and
ending of the syllable from record to record. Shape variation,
on the other hand, is due to differences in the way the lips
moved during the syllable, and is thus rather more important
in this study. While these two types of variation cannot be
considered to be entirely independent of each other, it can be
useful to study them separately, in addition to studying the
total curve.

The functionx resulting from smoothing the data for a
specific record, coordinate, ired and vowel is split up as fol-
lows:

x~ t !5u~ t !1e~ t !, ~2!

where
~1! u is the unique cubic polynomial for which values

u~0!, u~1!, Du~0!, andDu~1! match those ofx at t50 and
t51. This polynomial component captures end-point varia-
tion, but gives little information about changes within the
interval because these four conditions use all of its degrees of
freedom. Functionu can be called theend-pointcomponent
of x.

~2! e is the function that has values and derivative values
equal to 0 at the end points, but indicates the departure of the
observed functionx from polynomialu in the middle since
e5x2u. Functione is therefore theshapecomponent for a
particular curve.

C. Functional analysis of variance

We shall need to explore the systematic differences
among lip position functionsx, as well as their acceleration
counterparts, across the four experimental syllables. Ramsay
and Dalzell ~1991! discuss the functional linear model in
general, and functional analysis of variance in particular, al-
though in a context rather more general than needed here.

If the syllable comparison problem were the classic one
of studying the across-treatment variation of a simple one-
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dimensional variabley with the valueyi j for replicate i
within treatment j , then the one-way analysis of variance
~ANOVA ! model would be

yi j5m1a j1ei j .

In this model parameterm is the grand mean across treat-
ments,aj measures the unique contribution of treatmentj ,
andei j is a residual or error term. The constraint

(
j

a j50

is usually imposed to ensure that the treatment effects are
uniquely defined. If the observation were multivariate in
character, with valuesyi jk , with indicesi and j as above, but
with the added indexk indexing variables, the ANOVA
model extends to multivariate or MANOVA model

yi jk5mk1a jk1ei jk .

Here, however, we are interested in across-syllable
variation of the position functions with valuesxi j (t), yi j (t),
andzi j (t) and their derivatives, subscriptj indexing syllable.
This implies the counterpart functional ANOVA, or
FANOVA model

xi j ~ t !5m~ t !1a j~ t !1ei j ~ t ! ~3!

in which the continuous variablet has replaced the discrete
indexk and the treatment subscriptj has switched to syllable
superscriptj . Functionm represents the grand mean position
for all records and treatments, and the functionsaj specify
what is unique in position variation for specific syllablesj .
The corresponding identifiability constraint is

(
j

a j~ t !50 for all t. ~4!

It turns out that most of the computational procedures
and goodness of fit summary statistics used in ANOVA can
be transported with relatively obvious changes to accommo-
date this functional context. To estimate the across-syllable
meanm and within-syllable effectsaj one proceeds as fol-
lows. Making use of the fact that the sample sizeN520 is
the same for each syllable, and indicating the number of
conditions byJ54, the parameter estimates are

m̂~ t !5~JN!21(
i

(
j
xi j ~ t !,

~5!

â j~ t !5~N!21(
i
xi j ~ t !2m̂~ t !.

Residual functionsê i j are then estimated by

êi j ~ t !5xi j ~ t !2m̂~ t !2â j~ t !.

From the residual functions one defines the error sum of
squares functions

SSE~ t !5(
i

(
j

@ êi j ~ t !#
2.

Two useful summary functions are the squared correlation
function

R2~ t !5@SSE0~ t !2SSE~ t !#/SSE0~ t !

and theF-ratio function

F~ t !5
@SSE0~ t !2SSE~ t !#/~J21!

SSE~ t !/@N~J21!#
,

whereSSE0 is the null hypothesis error sum of squares,

SSE0~ t !5(
i

(
j

@xi j ~ t !2m̂~ t !#2.

For a fixed value oft,F(t) has, in this application, numerator
and denominator degrees of freedom 3 and 76, respectively.

D. Principal components analyses

Principal components analysis~PCA! is used to explore
the main modes of variation across records, and has many
applications in this study. One of the most useful is to define
a local coordinate system, theprincipal axissystem, that can
effectively replace the three spatial coordinates by one.

Within a specific ired coordinate, one is interested in not
only by how much the records vary, but also in the ways in
which they vary. A critical question concerns how many im-
portant types or modes of variation the data display. This
tends to indicate the complexity of the processes driving the
system, such the neural processes controlling muscle re-
sponse and the internal biomechanical constraints on tissue
movement.

We can also use principal components analysis to ex-
plore variation across all three coordinates within a specific
ired, and even the total simultaneous variation among the 24
ired coordinates. Again, a functional version of principal
components analysis can be defined by fairly simple modifi-
cations of the multivariate version. This technique has been
in use for some time, and Ramsay~1982! and Besse and
Ramsay~1986! can be consulted for further technical details.

III. EXAMPLE ANALYSES

In this section we will summarize a series of analyses of
the ired motions. Our aim is to demonstrate that FDA allows
the researcher to explore questions about speech motor con-
trol that are not easily accessible through more traditional
analyses of ired positions at selected points in time. Some
parts of an FDA approach coincide with the standard reper-
toire of speech analyses. We begin with some descriptive
analyses that will share many features with standard point
analyses.

A. Descriptive displays and analyses

Figure 1 shows the three coordinate functions for three
of the ireds positioned at the upper center, lower center and
extreme right, respectively. TheX direction is vertical posi-
tion, theY direction is lateral position, and theZ direction is
protrusion or fore/aft position. It is apparent from these plots
that most of the movement is in theX-Z or sagittal plane for
the lower lip ireds. The lower central ired, for example, typi-
cally moves about 25 mm vertically, 4 mm fore and aft, and
only 1 mm laterally. It should be appreciated that a large part
of this movement is contributed by jaw motion; our data did
not permit a separation of relative lip position from jaw po-
sition.
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Figure 2 displays the mean movement of all eight ireds
for each syllable in the sagittal plane. The syllables /bæb/
and /bab/ involve greater movement of the lower lip than
/bib/ and /bub/, and /bub/ involves more forward or protrud-
ing lower lip movement than the others. A number of obser-
vations could be made from these average trajectories. First
the vowels differ in the magnitude of the movements in-
volved in their production. The vowels in /bæb/ and /bab/
have larger movements than /bib/ and /bub/. Second the
/bub/ trajectories differ from the other three vowels because
of the rounding for that vowel. Finally the motions are quite
simple and are generally linear.

B. Principal axis transformation

The fact that within-ired motion is nearly linear suggests
that the 3-D motion of single-ired features can be well rep-

resented in the line or plane defined by the first one or two
principal components of variation, respectively. This varia-
tion is taken with respect to the mean coordinates defined by
averaging within an ired across time. These principal com-
ponents define a best local coordinate system for displaying
that ired’s effects, and will be called itsprincipal axes. These
principal axes are obtained for a specific ired by computing
the eigenvectors of the order three variance-covariance ma-
trix for ired coordinates, and transforming the 51 times three
matrix of centered ired coordinates by the matrix formed by
using the first one or two eigenvectors.

For example, the eigenvalues of the variance-covariance
matrix for the mean lower-central ired are 44.25, 0.08, and
0.02 implying that motion in the first principal component
direction accounts for 99.78% of the variation, and that the
least important direction accounts for only 0.05% of the mo-

FIG. 1. Twenty records forX, Y, andZ coordinates for infrared emitting diode positions at the upper-center, extreme left and lower-center, respectively,
during the utterance of the syllable /bab/. TheX direction is vertical position, theY direction is lateral position, and theZ direction is protrusion or fore/aft
position, all in millimeters. Note that the scale of the ordinate is different for each panel.
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tion, and thus can be ignored for plotting purposes. A display
of the three coordinates„x(t),y(t),z(t)… with respect to the
first two axes of this local coordinate system for this ired is
achieved by first subtracting the ired centroid vector
~212.47,0.71,15.54!t from these functions, and then multi-
plying by the partial rotation matrix

F 0.97 20.12

20.06 20.95

0.22 0.28
G .

The axes of this local coordinate system are displayed for the
lower-central ired in Fig. 2. The motion of this ired along the
first principal axis is displayed in Fig. 3. One notes that
motion of the lower central ired along the first principal axis

passes through essentially three phases: A first phase lasting
until t50.3 in which the lip drops rapidly, as second phase
until about t50.7 in which the lip is closing slowly and
rather linearly, and a third concluding phase of more rapid
closure.

Thus PCA of the lower-central trajectories confirms that
variation in individual curves corresponds to what is evident
by inspection in the mean trajectories in Fig. 2, namely that
lower-central lip motion is primarily one dimensional in
character.

C. Correlation analyses

Trajectories can reveal a great deal about the underlying
control mechanism~Atkeson and Hollerbach, 1986!. One
way to examine the different influences on articulator motion
is to evaluate, in a functional sense, the standard deviations
and the correlations within and among the ireds. The stan-
dard deviation curves in Fig. 4 plot the standard deviation of
the position of each ired as a function of time along its two
principal axes of motion. They indicate that the ired coordi-
nates with the largest motion also have the largest standard
deviation across records, and that the standard deviation is
also greatest along the first principal axis or direction of mo-
tion. There is a background or baseline standard deviation of
around 0.5 mm in all records.

The correlations among ired positions for different val-
ues of time define a set of bivariate functions of time. Let
r (tk1,tk2) denote the correlation between ired positions at
times tk1 and tk2 for a specific position function. The result-
ing matrix of correlations is of order 51 for these data, and
therefore impractical to display. But since the correlation
will vary smoothly as a function of the two time values,
these correlation values can be displayed as a surface over
the time by time plane.

Figure 5 shows the correlation surfaces for movement
along the first principal component of movement for the
lower-central ired as a perspective plot of the surface. The

FIG. 2. Sagittal plane mean motion for each syllable and all for ireds. The
ireds are identified in the plot for /bab/, and this plot also indicates the two
principal axes of variation for the lower lip ired by dashed line segments.
The axis scales for all plots are the same, and omitted for clarity.

FIG. 3. The motion of the lower central ired along the principal and domi-
nant axis of motion for /bab/ relative to the mean position.

FIG. 4. Standard deviation of lip positions for all eight ireds during /bab/
along each ired’s first and dominant principal axis. Curves for the lower
right, central and left ireds are solid lines, for the upper right, central and left
are dashed, and for the extreme left and right are dotted.
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diagonal ridge running from foreground to background con-
tains the unit correlations for equal time values.

Of particular interest is the manner in which correlations
fall off on either side of the diagonal ridge as one moves
from the beginning to the end of the time interval. In nota-
tional terms, this means looking at the correlationsr (t1d,
t2d): the value oft gives the position along the diagonal
ridge, and the value of displacementd gives the distance
from the top of the ridge along a line perpendicular to it.

Near the ends of the interval the correlations fall toward
zero rather rapidly, but there is a flat spot at about the two/
thirds point ~t50.6! where correlations stay high for fairly
widely separated values. To understand this effect, it is nec-
essary to take into account both the standard deviations(t)
and covariances(s,t) since

r ~s,t !5s~s,t !/@s~s!s~ t !#.

A comparison of Fig. 5 with Fig. 4 indicates that covariance
in this region is elevated relative to the standard deviation.
These flat regions in the correlation surface, then, could in-
dicate that the system is under external or exogenous control.
Similar effects were noted in Ramsay~1982!.

D. Functional analysis of variance

It is clear from the sagittal plane plot in Fig. 2 there are
important differences in the average motion of the ireds
across syllables in terms of the principal axes of motion. This
plot does not permit us to see, however, that motion along
these axes tends to differ systematically from syllable to syl-
lable. The left part of Fig. 6 displays the mean trajectories for
the four syllables along the principal axis of motion specific
to each syllable for the lower central ired. There would ap-
pear to be important differences, so that, for example, the
amount of motion is rather larger for /bæb/ than for /bub/ for
this ired. One notes two nodes where all four trajectories
tend to coincide. The right part of Fig. 6 displays only the
shape effect, and gives a better idea of how the trajectories
differ once end position differences are removed. Syllables
/bib/ and /bub/ not only show less motion than the other two,
but also exhibit less asymmetry in their trajectories.

In order to confirm that the differences such as those
noted in Fig. 6 are substantial in a statistical sense, functional
analysis of variance of the motion of each ired along that
ired’s principal axis of motion can be carried out, for the
total motion and for the shape component. The strength of
the intersyllable variation is summarized in Fig. 7 in terms of
the squared correlationR2(t) as a function of time for each
ired. The left display shows the effects for total variation,
while the right display shows the effects for the shape com-
ponents. The value ofR2 needed to achieve significance at
the 5% level is 0.10, and is indicated in the figure. We can
see that the amount of intersyllable variation in total motion
is large at the ends and in the middle of the interval, but falls
close to insignificance at the two points of sharp accelera-
tion, t50.3 andt50.8. The lower central ired stands out as
having limited intersyllable variation in the center of the in-
terval as well. The shape components, however, have sub-
stantial variation over the rest of the interval, including at the
two acceleration episodes.

E. Principal components analyses

A central question in this analysis concerns the dimen-
sionality exhibited by the motion of the eight lip positions,
each involving three coordinates. There would be in prin-
ciple the potential for complex and high-dimensional varia-
tion in individual trajectories, both within an ired for its three

FIG. 5. The correlations among lip positions along the dominant principal
component of movement for the lower center ired are displayed as a per-
spective surface plot. The diagonal ridge running from front to back con-
tains the unit or near unit correlations for pairs of very similar time values.
Note the flat region just after the middle of the interval.

FIG. 6. The average position of the lower central ired along the principal
axis of motion is plotted for each syllable in the left display. In the right
display only the shape component is plotted.

FIG. 7. The left display of shows the squared multiple correlationR2 as a
function of time for the analysis of between-syllable variance for all ireds
and for total motion. The right display is for shape component only. Curves
for the lower right, central and left ireds are solid lines, for the upper right,
central and left are dashed, and for the extreme left and right are dotted. The
5% significance level forR2 for 3 and 76 degrees of freedom is shown as a
dotted horizontal line.
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coordinate functions, and also between ireds among the 24
coordinates as a syllable was articulated. As a first step, prin-
cipal components analysis was undertaken to reveal the com-
plexity of variation for each ired independently along its
principal axis of variation and about the mean curve. A PCA
was carried out separately for the total variation and for the
shape variation. Table I gives the proportions of variances
accounted for by the first three principal components for
/bab/. The results of the analysis for each ired separately
indicated that the variation around the mean trajectory over
replications was strongly one-dimensional for this syllable,
especially for the shape component for the lower lip ireds, as
seen in Table I, where motion along the single dominant
trajectory accounted for about 87% of the variance. The pri-
mary type of variation was simply how wide the lips were
opened, with the shape of the trajectory remaining relatively
unchanged.

The first principal component strongly dominates all
others for both total curve variation and shape variation. The
dominance of the first component is stronger for shape varia-
tion than total curve variation for the lower lip ireds, sug-
gesting that some of the lower lip variation is due to varia-
tion at the ends of the intervals. For the upper and left lip
ireds, however, there is a tendency to see more than one
dimension of shape variation. Nevertheless, the first principal
component is strongly dominant for all ireds.

The principal components analysis of combined varia-
tion of the ireds along their respective first principal axes of
motion reveals the complexity of simultaneous variation. It is
entirely possible for two or more ireds to separately have
only one component of variation, but for the simultaneous
variation to be more complex, just as a single variable by
definition has only one component of variation, but a collec-
tion of variables can exhibit quite complicated and high-
dimensional patterns of combined variation.

The proportions of variance accounted for by the across-
ired principal components are displayed in Fig. 8 for both
total curve variation and for shape variation alone. Note that
although there are in principal as many as 24 substantial
principal components possible, the sample size of 20 im-
poses the actual limit of 19. However, the principal compo-
nents analysis of simultaneous ired motion, especially when
only shape components were used, suggested strongly that

most of the variation in lip motion across ireds was con-
tained within a single dominant dimension of variation. This
is perhaps not too surprising, given that most of the motion is
in the three lower lip ireds, and it was already observed that
each of them moved in an essentially one-dimensional tra-
jectory.

Principal components results for the other syllables ana-
lyzed separately were essentially the same in terms of the
features found for /bab/.

F. Displays and analyses of lip acceleration

It would seem also profitable to look closely at the ac-
celeration of the system since forces resulting from muscle
contraction and inertial loads applied to the lip tissue will, by
Newton’s third law, generate immediate changes in accelera-
tion, while the same forces will affect position, being two
integrals removed from acceleration, only gradually. For
these and other reasons, it seems plausible that the various
controlling processes determining lip motion will have their
most visible impact on acceleration. The spline smoothing
technique adopted in Sec. I B was chosen in order to give
smooth and accurate estimates of acceleration, although the
technique does not separate shape from end-effect variation
in acceleration, as it does for position.

Figure 9 shows the average acceleration functions for
each of the ireds along their respective principal axes of
variation for /bab/. The lower coordinates~solid lines! are
first accelerated negatively or downward~t<0.2!, and then
pass through a positive acceleration phase~t50.3! during
which the descent of the lower lip is stopped. This lip open-
ing phase is followed by a short period of near zero accel-
eration~t50.5! corresponding the period of slow and linear
change in Fig. 3, followed by another strong acceleration
upward initiating lip closure~t50.8!, and then finally com-
pleted by a negative acceleration episode as the lip returns to
the closed position. The other ireds show less acceleration
and more complex patterns.

Figure 10 indicates the variation in the lower central ired
acceleration across syllables in their respective first principal

TABLE I. The proportions of variance accounted for by the first three
components of variation of within-in ired position along the first principal
axis of motion for /bab/.

Ired

Total Shape

I II III I II III

LR 71.6 13.5 9.4 88.5 7.5 2.9
LC 65.2 16.5 10.2 86.8 8.4 3.6
LL 67.4 16.1 9.5 86.4 8.6 3.8

L 85.0 6.5 5.9 77.6 15.4 4.2

UL 86.3 9.1 2.2 79.6 12.9 4.6
UC 87.1 8.4 1.9 70.5 12.3 11.3
UR 79.6 11.9 5.2 76.3 9.6 8.6

R 84.6 8.0 5.6 90.2 6.2 2.3

FIG. 8. The proportions of variance accounted for by the first ten principal
components of simultaneous or joint ired variation along each ired’s first
principal axis for /bab/.
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axes of motion. The longer syllables, /bib/ and /bub/, fail to
exhibit the momentary period of zero acceleration of the
shorter syllables, and exhibit less acceleration or smoother
motion throughout their trajectories. This corresponds to the
more rounded contours of their position functions in Fig. 6.

A functional analysis of variance of the across-syllable
acceleration variation was carried out for each ired, in the
same manner as was done for position. The squared correla-
tion functions for the lower lip ireds are displayed in Fig. 11.
The amount of intersyllable variation for the lower-central
ired falls close to zero at the three pointst50.2, t50.5, and
t50.7. These times precede the two points of strong accel-
eration and the stabilized point att50.6. It would appear
from this result that all four syllables may share a common
timing process and a common strength of control.

Within-ired principal components analyses of accelera-
tions revealed that variation in acceleration is rather more
complex than that for position since there were no clearly

dominant components. The first four components for the
lower-central ired, for example, accounted for 36.0, 25.2,
18.3, and 6.8 percent of the variation, respectively.

A cross-ired principal components analysis indicated
that there were three clearly dominant principal components,
with the first four percents of variance accounted for being
28.8, 18.9, 14.0, and 8.4 for a total of 70.1%. In general, we
found that the variation of the acceleration patterns was more
complex than the trajectories of lip positions, perhaps partly
as a consequence of the lower statistical stability of the esti-
mates of these curves.

IV. DISCUSSION

The study of speech articulation has been hindered by
the sheer volume and complex time-varying character of
data. The first task of the functional data analytic tools ap-
plied in this paper was to reveal the simplicity underlying the
potentially complex motions of eight lip positions in 3-D
space. Principal components analysis of within-ired motions
displayed the essentially straight-line trajectories of all ireds
~Fig. 2!, permitting us to replace the threeX, Y, andZ coor-
dinates by a single coordinate indicating position along these
trajectories. While it was convenient that the trajectories
turned out to be linear, single coordinates for curvilinear tra-
jectories identified in this way can also be constructed with
some additional effort.

Much recent work~e.g., Gracco, 1994; Munhallet al.,
1994! has suggested that groups of articulators in speech act
as coordinative structures with less degrees of freedom than
the group could potentially show independently. An across-
ired principal components analysis provided further confir-
mation by showing that ireds operate in concert to a rather
impressive degree, so that their covariation can be well-
summarized by the same number of principal components as
required to summarize the variation of any single ired~Fig.
8!. In this way the multiple potential dimensions of variation
were reduced to the few important dimensions of variation of
the lower-central ired along its principal component trajec-
tory.

FIG. 9. The mean accelerations of lip ireds along their respective principal
axes of motion for /bab/. The solid lines are for the lower-left, lower-central,
and lower-right ireds, the dashed lines are for the upper lip ireds, and the
dotted lines are for the right and left ireds.

FIG. 10. The mean accelerations of lip motion for all four syllables along
their principal axes of motion for the lower-central ired. The solid lines are
for the shorter syllables /bæb/, and /bab/, and the dashed lines are for the
longer syllables /bib/ and /bub/.

FIG. 11. The squared correlation functionsR2(t) for the functional analysis
of variance of the lower lip ired acceleration variability across syllables.
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The theme of data reduction was also worked out in the
context of single curves. The spline approximation technique
was customized for this application to separate end-effect
variation from interior or shape variation, and this also re-
duced the complexity of variation across time by showing
that there was one less principal component for shape than
for the total curves~Table I!.

We were also interested in syllable effects, so that after
these preliminary data-reduction analyses it was possible to
show via functional analysis of variance that there are im-
portant sources of intersyllable variation, as evidenced in
Figs. 7 and 11. Moreover, the functional nature of the result-
ing R2(t) effect sizes highlighted the fact that intersyllabic
effects are strongly time variant, being nearly negligible at
the two episodes of strong positive acceleration and large
between.

Finally, although these data can offer only a few hints
about the underlying control mechanisms generating these
effects, we found that the correlation surface plot Fig. 5 was
suggestive of a triphasic process, with the nature of the con-
trol being markedly different in the central third of the pro-
cess than near the ends. This was also clear in the various
analyses of acceleration, and we conjecture that future inves-
tigations will find much of interest in an exploration of sec-
ond derivative information. Getting a good estimate of a sec-
ond derivative in the presence of even a small amount of
noise is a statistically challenging task, and the spline
smoothing procedure described here is especially appropriate
in that it yields a smooth acceleration function.

The main goal of this paper has been to showcase the
power of functional data analytic techniques, and to describe
in some detail how to use them. It is acknowledged, on the
other hand, that some of the results obtained here could have
been obtained by applying more conventional analysis. This
is certainly true of the principal components analyses, and
the novelty of the functional ANOVA results lies primarily
in the graphical displays that result. On the other hand, the
spline smoothing and decomposition process has no counter-
part in more standard statistical analyses, and played a cen-
tral role. In particular, the possibility of analyzing accelera-
tion and other types of derivative information is, in our view,
the most promising aspect of the functional approach.

From a substantive point of view, it would be clearly
desirable to be able to remove jaw motion and its effects
from lip motion, and our current investigations are doing
this. If we are to learn more about control processes and their
relation to lip position, velocity and acceleration, muscle ac-

tivity measures such as EMG records are essential. And, of
course, more than 20 replications would imply more stable
estimates of effects as well as the possibility of identifying
other more subtle aspects of variation.

We have learned from these analyses, in addition, that
future experiments can be simplified in important ways.
Eight lip positions can probably be reduced to two or three at
most, and motion in the sagittal plane, at least for central
articular positions, is sufficient for most purposes. Very high
sampling rates are not required for reasonably accurate esti-
mates of first and second derivatives when the noise level is
of the order of that in OPTOTRAK measures.
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