Functional data analyses of lip motion
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The vocal tract’s motion during speech is a complex patterning of the movement of many different
articulators according to many different time functions. Understanding this myriad of gestures is
important to a number of different disciplines including automatic speech recognition, speech and
language pathologies, speech motor control, and experimental phonetics. Central issues are the
accurate description of the shape of the vocal tract and determining how each articulator contributes
to this shape. A problem facing all of these research areas is how to cope with the multivariate data
from speech production experiments. In this paper techniques are described that provide useful tools
for describing multivariate functional data such as the measurement of speech movements. The
choice of data analysis procedures has been motivated by the need to partition the articulator
movement in various ways: end effects separated from shape effects, partitioning of syllable effects,
and the splitting of variation within an articulator site from variation from between sites. The
techniques of functional data analysis seem admirably suited to the analyses of phenomena such as
these. Familiar multivariate procedures such as analysis of variance and principal components
analysis have their functional counterparts, and these reveal in a way more suited to the data the
important sources of variation in lip motion. Finally, it is found that the analyses of acceleration
were especially helpful in suggesting possible control mechanisms. The focus is on using these
speech production data to understand the basic principles of coordination. However, it is believed
that the tools will have a more general use. 1©®96 Acoustical Society of America.

PACS numbers: 43.70.Aj

INTRODUCTION standing the underlying process and, moreover, that the time-
) . varying detail of the movement trajectories is relativel
Two problems have complicated the study of the h'gh'uni?;pgrtant J y
dimensional dynamic process of speech articulation. First, An alternative approach, called functional data analysis

the movements of the vocal tract are spatially complex an FDA), has been developed by Ramsay and colleagues

there is significant motion in three dimensions, leaving the . g )
researcher with data that have many dimensions and therg_?amsay, 1982; Besse and Ramsay, 1986; Ramsay and Dal

zell, 1991 in which the traditional multivariate analyses

fore many degrees of freedom. While there have been SOM&ch as principal components analysis are expressed in func-
assessments of the dimensionality of static shapes of the i P P b Y P

(Linker, 1982 and tongudgHarshmaret al, 1977, there has tﬁ)onal analytic terms. Ramsay has demonstrated the utility of
been little work on the dimensionality of the motions of this approach b.y analyzing tongue movements in speech
these articulators except for Mae@e90. (Ramsay, 1982, Besse and Ramsay, 1988d three-

Second, there is the problem of studying the dynamic ofimensional limb movementsRamsay, 1989 FDA in-
functional character of the process. One of the most commo‘ﬁOIVeS the definition of useful statistical analyses such as
simplifying assumptions is to restrict the analyses to scalaP"incipal components analysis in functional analytic terms,
summaries of the movement trajectories, such as the avera d the variance components that are identified are functions.
duration, amplitude and peak velocity of markers attached td & modes of variation of trajectories are thus expressed in a
individual tissue points. These marker measures are thefem Similar to the trajectories themselves.
subjected to conventional univariate or multivariate statisti-  1hiS approach has clear advantagesit takes account
cal analyses. But using point summary measures of continif the underlying continuity of the physiological system gen-
ous functions presumes that these are sufficient for undegrating the behaviofji) it displays temporal dependencies in

the data owing to this continuityiii ) it provides methodolo-
dRequests for preprints should be directed to the first author at Departmer%IeS t.o deal_ quant|t_at|vely W.Ith the CompleXItleS. of multidi-
of Psychology, 1205 Dr. Penfield Ave., Monale Quésec H3A 1B1, ~Mensional time series data like those collected in speech ex-
Canada. Electronic mail: ramsay@psych.mcgill.ca periments; and(iv) functional data analysis offers the
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possibility of studying the variation among various orders ofthe lip data to a head coordinate syst@rorn, 1987. The
derivatives or linear combinations of derivatives. It may be,origin of the new head-coordinate system was the intersec-
for example, that the significant modes of covariation acrossion of the midsagittal plane, the occlusal plane and an or-
articulators may be at the level of acceleration, or, if thethogonal plane running throughout the maxillary incisor
system is primarily harmonic, at the level of a specified lin-cusp. The reference trials allowed us to define the origins of
ear combination of position and acceleration. Thus this apthe coordinate system and the relation of the ireds on the
proach can reveal temporal and spatial dependencies bkead jig to this system.
tween articulators that are due to their shared patterns of The lip data, with the head component removed, were
motion. examined using a waveform editor to determine the onset

In this study the OPTOTRAK systefffior other uses of and end of the movements for the monosyllable. A crude
this technology see Bateson and Ostry, 1984s used to estimate of oral aperture was computed by subtracting the
measure lip motion. Three spatial coordinates of eight separertical movement component of the midsagittal ired on the
rate articular positions observed under four experimentalower lip from the vertical movement component of the mid-
conditions will be examined. The FDA techniques used insagittal ired on the upper lip. This signal was smoothed using
this paper deal with a partition or decomposition of data intoa software-implemented Butterworth filter with a 15 Hz cut-
fundamental components of variation. Principal componentsff frequency. The signal was then differentiated using a
analysis serves to assess the complexity and dimensionaligentral difference algorithm and the zero crossings at the
of across-replication variation in three-dimensional lip beginning and end of the syllables were identified.
movement, taken both within and across recording positions.  The observations for each syllable therefore consisted of
A functional version of analysis of varian€EANOVA) per- 24 movement stream@ ireds times 3 spatial dimensigns
mits the study of across-condition variation in articulation. for each of 20 trials. The movement streams varied in dura-

FDA also permits the statistical analysis of derivativestion from record to record with the number of sampled points
of functions as well as the observed functions themselves. Iper record ranging from the low 30’s to a high of &p-
this paper emphasis will also be placed on study of the seg@roximately 207 to 340 m)s To simplify data analysis, the
ond derivative of motion, since from physical principles onedata were interpolated so that each record had 51 equally
expects that the influence of forcéimternal and external spaced observations, and the time values 0,0.02,0.04,...,1
have their most direct impact on acceleration and providevere assigned, and all results in this paper are given with
insight into the motor control process. respect to this artificial time frame.

This paper is primarily methodological in that it aims to
show functional data analysis in action within a context ofll. STATISTICAL METHODS
high-dimensional dynamic data. Our aim is introduce these
new statistical tools rather than to claim novel substantive%ioni
results.

In this section three data decomposition or data parti-
ng methods are developed. The first, spline smoothing,
permits a separation of variation at the ends of the defined
interval from variation within the main part of interval. The
second procedure, a functional version of one-way analysis
A single subject, a male native speaker of Canadiamf variance, permits the study of differences between syl-
English with no reported speech or language disorders, spokables. The third, principal components analysis, analyzes
CVC nonsense syllables in the carrier phrase “Say CVGuwithin and across marker locations in terms of their domi-
again.” The C in the utterance was /b/ and the vowels werenant or principal features. The first two techniques are dis-
leel, il, lu/, and A/. The subject spoke 20 repetitions of eachcussed in more detail because accounts of them are not
syllable type, randomized across the four vowels. readily accessible in the applied statistical literature, but
The motion of the lips was monitored using functional principal components, described elsewhere
OPTOTRAK, an optoelectronic tracking system that can(Ramsay, 1982; Besse and Ramsay, 1986only summa-
transduce the 3-D position of markers. Eight infrared emit-rized.
ting diodes(ireds were attached to the vermilion border of Some of the analyses involve the use of estimated de-
the lips using double-sided tape. An additional six ireds wergivatives of the coordinate functions. The notatidmx indi-
positioned on a custom head-mounted jig in order to trackates the first derivative or velocity of coordinate function
the head during the experiment. This enabled us to corre@?x the second derivative or acceleration, and in general
for head movement and to transform lip motions to a coorD™x indicates the derivative or order. A specific value of,
dinate system centered about the occlusal and midsagittghy, acceleration at timeis indicated byD?x(t).
planes. Three reference trials were collected prior to the X3 gl hi dd L
periment during which the subject held a Plexiglas jig be-" ™ pline smoothing and decomposition
tween his teeth. Three ireds attached to the Plexiglas allowed Although the noise level is small in these data, some
us to define a plane along the maxillary bite surfemeclusal  degree of smoothing is essential to get good estimates of the
plane. first and second derivatives of the data. Smoothing serves
The data were sampled at 150 Hz, and an acoustic reanother purpose in this paper: to partition or decompose each
cording of the voice was simultaneously digitized to serve agurve into two components, one measuring behavior at the
a reference during segmentation of the movement signalgnd points or near the boundaries of the curves, and the other
The data were processed after the experiment to transforghescribing their behavior in the central regions. The spline

I. EXPERIMENTAL METHODS
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smoothing procedure was developed especially for this apions, D?x, and the fourth derivative measures the curvature
plication, and is therefore described at some length. in the acceleration function. By controlling the net amount of

The basic idea behind spline smoothifigubank, 1988; curvature in acceleration one can ensure that the estimated
Green and Silverman, 1994; Wahba, 19%) to define a acceleration is reasonably smooth.
functionx that fits the observed data for coordin&tsubject
to a penalty placed on the lack of smoothnessxofThe
penalty function keeps functiox from fitting the data pre- Although the criteriorQ, above implies that the limiting
cisely, but ensures thathas the appropriate amount of regu- fit for large A is a cubic polynomial, it does not explicitly
larity or smoothness. The spline smoothing criterion for asdefine what role this polynomial component would play for
sessing the fit of smoothing function for replicationi of the penalty parameters of moderate or small size. In fact, we
coordinateX used in this paper is can choose this role explicitly, a feature that Ramsay and

51 . Dalztlel(lj(199l) smljggested might contribute usefully to a func-
_ _ 2 4 2 tional data analysis.

Q}\(X’X)_kzl X x(t] H\Jo (DXt @ For the segmented speech movement data the movement
variation between records for a particular ired tended to be of
QWO kinds:

B. End-point and shape variation

The first term measures the badness of the fit of functio
x evaluated at times, to the actual discrete da¥§, in least-
squares terms: the closer the estimated functiggasses to (1) end-point variation, or variation near the ends of curves,
the data valueX,, the better the fit. In fact, if only this term and
were in the criterion, it would always be possible to find a(2) shape variation, or variation in the central regions of the
function that fit the data exactly, and therefore reduced the curves.
criterion to zero. Such a function would be callediater-
polant of the data.

The second term measures the roughness, @nd its

End-point variation is due in some degree to the fact that the
utterance within which the syllable was embedded caused
the lips to be positioned differently both at the beginning and

contribution to the criterion is to forcg to sacrifice some . =
fitting power in order to remain acceptably smooth. In thiSendmg of the syllable from record to record. Shape variation,
) on the other hand, is due to differences in the way the lips

case roughness is measured in terms of the integrated or tmr%'oved durina the svllable. and is thus rather more important
squared fourth derivativ®*x. A function with limited varia- 9 y ' P

SR o . . in this study. While these two types of variation cannot be
tion in its fourth derivative will necessarily be smooth to ; . ; )
some degree. considered to be entirely independent of each other, it can be

The amount of smoothness imposed by the second terrlrjwserI to study them separately, in addition to studying the

: o total curve.
IS controlled by the_: penalty mUIt'p“ej\' Th2e Ia_rger)\, the The functionx resulting from smoothing the data for a
bigger the emphasis on the penaffyp “x(t)]- dt in the sec- g : . . ;
4 o .specific record, coordinate, ired and vowel is split up as fol-

ond term, and therefore the more fit that must be sacrificed 'F i

) S : . lows:
order to keep this term comparable in size to the first. It is
instructive to consider the two limiting cases. As»« the X(t)=u(t)+e(t), 2
size of the fourth derivative is ultimately forced to zero. This
implies that the fitted functior would become a cubic poly-
nomial, for whichD*x=0 exactly. At the other extreme, as
A—0, less and less penalty is placed on smoothness, un

where
(1) u is the unique cubic polynomial for which values
ﬁl,ﬂ(O)' u(1), Du(0), andDu(1) match those ok att=0 and
. . . . =1. This polynomial component captures end-point varia-
flnal!ly_/hthe fu?ctllonx IS atﬁl_e to fit the dfta eX?Ctly' q tion, but gives little information about changes within the
¢ actual smoothing ~parameter value ~USed Wag,o 5| hecause these four conditions use all of its degrees of

—106 .
A=10"" _and_ was chpsen by_a process calle(_j generall_zeﬂeedom_ Functioru can be called thend-pointcomponent
cross-validation. The idea behind this strategy is to conS|de(1;f X

what would happen if the fitted functionwere fit to all but (2) e is the function that has values and derivative values

the kth curve value, a_md then this actual curve \_/alue were qual to 0 at the end points, but indicates the departure of the
compared to the predicted value. Conceptually this approacgbserved functiorx from polynomialu in the middle since

cou_ld be applied 51 .times per curve by leaving each .Ob.serézx—u. Functione is therefore theshapecomponent for a
vation out in turn. Finally the squared errors of prediction -
i articular curve.

could be accumulated to provide a global measure of lack 0[?
fit. This technique is called cross validation. The smoothingC Functional analvsis of variance
parametei would then logically be chosen to so as to mini- Y
mize this cross-validated error sum of squares. However, in  We shall need to explore the systematic differences
practice, the cross-validation approach can be prohibitivel\among lip position functiong, as well as their acceleration
time-consuming, and the generalized cross-validatiortounterparts, across the four experimental syllables. Ramsay
method involves some short cuts to approximate the consend Dalzell (1991 discuss the functional linear model in
guences of a complete cross validation, while retaining thgeneral, and functional analysis of variance in particular, al-
speed of a single smoothing step. though in a context rather more general than needed here.

Smoothness is assessed in terms of the fourth derivative If the syllable comparison problem were the classic one
in (1) because we shall want to analyze the acceleration funmf studying the across-treatment variation of a simple one-
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dimensional variabley with the valuey;; for replicate i and theF-ratio function

within treatmentj, then the one-way analysis of variance B B

(ANOVA) model would be F(t)= [SSR(V—SSEY]/(I—1)
SSEt)/[[N(J-1)] '

=utaite;.
YimhTaTe) whereSSE, is the null hypothesis error sum of squares,

In this model parameter is the grand mean across treat-
ments,qj measures the unique contribution of_ treatmgnt SSE)UFZ 2 [xij(t)—,&(t)]z.
ande;; is a residual or error term. The constraint T

_ For a fixed value of,F(t) has, in this application, numerator
; a;=0 and denominator degrees of freedom 3 and 76, respectively.

is _usually im.posed to ensure that_ the treatment. effgcts arg, Principal components analyses
uniquely defined. If the observation were multivariate in
character, with valueg;, , with indicesi andj as above, but Principal components analysiBCA) is used to explore
with the added indexk indexing variables, the ANOVA the main modes of variation across records, and has many
model extends to multivariate or MANOVA model applications in this study. One of the most useful is to define
a local coordinate system, tipeincipal axissystem, that can
Yijie= st @jict Eijic.- effectively replace the three spatial coordinates by one.
Here, however, we are interested in across-syllable  Within a specific ired coordinate, one is interested in not
variation of the position functions with values(t), y;;(t), ~ only by how much the records vary, but also in the ways in
andz;(t) and their derivatives, subscripindexing syllable. ~ which they vary. A critical question concerns how many im-
This implies the counterpart functional ANOVA, or portant types or modes of variation the data display. This
FANOVA model tends to indicate the complexity of the processes driving the
_ system, such the neural processes controlling muscle re-
Xjj(=p(+ () +e;(1) © sponse and the internal biomechanical constraints on tissue
in which the continuous variablehas replaced the discrete movement.
indexk and the treatment subscriphas switched to syllable We can also use principal components analysis to ex-
superscripf. Functionu represents the grand mean positionplore variation across all three coordinates within a specific
for all records and treatments, and the functiensspecify ired, and even the total simultaneous variation among the 24
what is unique in position variation for specific syllables ired coordinates. Again, a functional version of principal

The corresponding identifiability constraint is components analysis can be defined by fairly simple modifi-
cations of the multivariate version. This technique has been
2 aj(t)=0 for all t. (4) in use for some time, and Rams#&y982 and Besse and

! Ramsay(1986 can be consulted for further technical details.
It turns out that most of the computational procedures
and goodness of fit summary statistics used in ANOVA canll. EXAMPLE ANALYSES
be transported with relatively obvious changes to accommo-
date this functional context. To estimate the across—syllabl«tnhe i
meanu and within-syllable effectsy; one proceeds as fol-
lows. Making use of the fact that the sample skte20 is
the same for each syllable, and indicating the number o
conditions byJ=4, the parameter estimates are

In this section we will summarize a series of analyses of
red motions. Our aim is to demonstrate that FDA allows
the researcher to explore questions about speech motor con-
}rol that are not easily accessible through more traditional
analyses of ired positions at selected points in time. Some
parts of an FDA approach coincide with the standard reper-
toire of speech analyses. We begin with some descriptive
analyses that will share many features with standard point
(55  analyses.

ﬁ(t):(JerEi 2 xij (1),

aj()=(N)"12 x;;(t)— au(b). A. Descriptive displays and analyses
I

Figure 1 shows the three coordinate functions for three
of the ireds positioned at the upper center, lower center and
& () =x;;(t) — m(t) — a;(1). extreme right, respectively. Thé direction is vertical posi-

From the residual functions one defines the error sum of®™ th?Y direction is Iatc_ar_al position, and thedirection is

: protrusion or fore/aft position. It is apparent from these plots
squares functions L .

that most of the movement is in the Z or sagittal plane for

the lower lip ireds. The lower central ired, for example, typi-
cally moves about 25 mm vertically, 4 mm fore and aft, and
only 1 mm laterally. It should be appreciated that a large part
4t this movement is contributed by jaw motion; our data did

Residual functions%ij are then estimated by

ss:E<t>=Ei 2 [&;(t)12

Two useful summary functions are the squared correlatio

function not permit a separation of relative lip position from jaw po-
R2(t)=[SSE(t)— SSEt)]/SSK(t) sition.
3721 J. Acoust. Soc. Am., Vol. 99, No. 6, June 1996 Ramsay et al.: Functional data analyses of lip motion 3721
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FIG. 1. Twenty records foK, Y, andZ coordinates for infrared emitting diode positions at the upper-center, extreme left and lower-center, respectively,
during the utterance of the syllable /bab/. TXalirection is vertical position, th¥ direction is lateral position, and th& direction is protrusion or fore/aft
position, all in millimeters. Note that the scale of the ordinate is different for each panel.

Figure 2 displays the mean movement of all eight iredsesented in the line or plane defined by the first one or two
for each syllable in the sagittal plane. The syllables /baebprincipal components of variation, respectively. This varia-
and /bab/ involve greater movement of the lower lip thantion is taken with respect to the mean coordinates defined by
/bib/ and /bub/, and /bub/ involves more forward or protrud-averaging within an ired across time. These principal com-
ing lower lip movement than the others. A number of obserponents define a best local coordinate system for displaying
vations could be made from these average trajectories. Firghat ired’s effects, and will be called isincipal axes These
the vowels differ in the magnitude of the movements in-yrincipal axes are obtained for a specific ired by computing
volved in their production. The vowels in /baeb/ and /bablihe eigenvectors of the order three variance-covariance ma-
have larger movements than /bib/ and /bub/. Second thg;y o ired coordinates, and transforming the 51 times three

/bub/ trajectories differ from the other three vowels becaus?‘natrix of centered ired coordinates by the matrix formed by
of the rounding for that vowel. Finally the motions are quite using the first one or two eigenvectors

simple and are generally linear. For example, the eigenvalues of the variance-covariance
matrix for the mean lower-central ired are 44.25, 0.08, and
0.02 implying that motion in the first principal component
The fact that within-ired motion is nearly linear suggestsdirection accounts for 99.78% of the variation, and that the
that the 3-D motion of single-ired features can be well repHeast important direction accounts for only 0.05% of the mo-

B. Principal axis transformation
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/baeb/ /bib/

< |
/bab/ /bub/ ° L 4 :
0.0 0.2 0.4 0.6 0.8 1.0
/ Time
UR 'ZJC 7 7

oL FIG. 4. Standard deviation of lip positions for all eight ireds during /bab/
- along each ired’s first and dominant principal axis. Curves for the lower
/// LR >~ right, central and left ireds are solid lines, for the upper right, central and left

R / \\K J are dashed, and for the extreme left and right are dotted.

passes through essentially three phases: A first phase lasting

until t=0.3 in which the lip drops rapidly, as second phase

FIG. 2. Sagittal plane mean motion for each syllable and all for ireds. TheumII aboutt=0.7 in which the |Ip IS closmg S|OW|y and

ireds are identified in the plot for /babl, and this plot also indicates the two@ther linearly, and a third concluding phase of more rapid
principal axes of variation for the lower lip ired by dashed line segments.closure.

The axis scales for all plots are the same, and omitted for clarity. Thus PCA of the lower-central trajectories confirms that
variation in individual curves corresponds to what is evident

tion, and thus can be ignored for plotting purposes. A displayy inspection in the mean trajectories in Fig. 2, namely that

of the three coordinate&(t),y(t),z(t)) with respect to the lower-central lip motion is primarily one dimensional in

first two axes of this local coordinate system for this ired ischaracter.

achieved by first subtracting the ired centroid vector

(—12.47,0.71,15.5%4 from these functions, and then multi-

plying by the partial rotation matrix C. Correlation analyses
0.97 -0.12 Trajectories can reveal a great deal about the underlying
~0.06 —0.95| control mechanismAtkeson and Hollerbach, 19860ne

way to examine the different influences on articulator motion
0.22 0.28 is to evaluate, in a functional sense, the standard deviations
The axes of this local coordinate system are displayed for thend the correlations within and among the ireds. The stan-
lower-central ired in Fig. 2. The motion of this ired along the dard deviation curves in Fig. 4 plot the standard deviation of
first principal axis is displayed in Fig. 3. One notes thatthe position of each ired as a function of time along its two
motion of the lower central ired along the first principal axis principal axes of motion. They indicate that the ired coordi-
nates with the largest motion also have the largest standard
deviation across records, and that the standard deviation is

= also greatest along the first principal axis or direction of mo-
o tion. There is a background or baseline standard deviation of
- around 0.5 mm in all records.
= The correlations among ired positions for different val-
E® ues of time define a set of bivariate functions of time. Let
é 5 r(tkl,tkz) denote the correlation between ired positions at
E timestk1 andtk2 for a specific position function. The result-
0 | ing matrix of correlations is of order 51 for these data, and
therefore impractical to display. But since the correlation
,C.’I will vary smoothly as a function of the two time values,

these correlation values can be displayed as a surface over
the time by time plane.
Figure 5 shows the correlation surfaces for movement

FIG. 3. The motion of the lower central ired along the principal and domi-&long the firs.t principal compor_1ent of movement for the
nant axis of motion for /babl/ relative to the mean position. lower-central ired as a perspective plot of the surface. The
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FIG. 6. The average position of the lower central ired along the principal
o axis of motion is plotted for each syllable in the left display. In the right
00 ’ display only the shape component is plotted.
FIG. 5. The correlations among lip positions along the dominant principal In order to confirm that the differences such as those

component of movement for the lower center ired are displayed as a penoted in Fig. 6 are substantial in a statistical sense, functional
spective surface plot. The diagonal ridge running from front to back Con'analysis of variance of the motion of each ired a|0ng that
tains the unit or near unit correlations for pairs of very similar time values.. o incinal . ; . b ied f h
Note the flat region just after the middle of the interval. ired's prl_nC|pa axis of motion can be carried out, for the
total motion and for the shape component. The strength of
diagonal ridge running from foreground to background con-tEe mtersyl:jable Vell”a_‘t'o? IS sumn;anzgd n f'g' 7 'f” termshof
tains the unit correlations for equal time values. t edsqt;1are| ﬁczrre lat'ORh(t) asha u?fcuonfo t|me| or eac
Of particular interest is the manner in which correlations'ri_l' The 'eh (;sp ?y shows the effects for tr?ta hvarlatlon,
fall off on either side of the diagonal ridge as one movegVhile the ”E t 'ISp aé’ﬂi owsdtde € eckt].s or t.e Sf ape com-
from the beginning to the end of the time interval. In nota-PON€Nts. The value dR" needed to achieve significance at

tional terms, this means looking at the correlatiofis+ 5, the 5% level is 0.10, and is indicated in the figure. We can
t—5): the value oft gives the position along the diagonal see that the amount of intersyllable variation in total motion
ridge, and the value of displacemestgives the distance is large at the ends and in the middle of the interval, but falls
from the top of the ridge along a line perpendicular to it. close to insignificance at the two points of sharp accelera-

Near the ends of the interval the correlations fall towardtion’ t=0.3 andt=0.8. The lower central ired stands out as

zero rather rapidly, but there is a flat spot at about the twopaving limited intersyllable variation in the center of the in-
thirds point (t=0.6) where correlations stay high for fairly terval as well. The shape components, however, have sub-

widely separated values. To understand this effect, it is neCs_,tanUaI v?nat[on over the rest of the interval, including at the
essary to take into account both the standard deviatiop WO acceleration episodes.
and covariancer(s,t) since

r(s,t)=o(s,t)/[a(s)a(t)].
A comparison of Fig. 5 with Fig. 4 indicates that covariance

in this region is elevated relative to the standard deviation,,.p, involving three coordinates. There would be in prin-

These flat regions in the correlation surface, then, could inE:ipIe the potential for complex and high-dimensional varia-
dicate that the system is under external or exogenous contrgjy, i individual trajectories, both within an ired for its three
Similar effects were noted in Rams&i982.

E. Principal components analyses

A central question in this analysis concerns the dimen-
sionality exhibited by the motion of the eight lip positions,

D. Functional analysis of variance

Total Motion Shape Component
It is clear from the sagittal plane plot in Fig. 2 there are o o
important differences in the average motion of the ireds -
across syllables in terms of the principal axes of motion. This - © - S
plot does not permit us to see, however, that motion along §§ g2
these axes tends to differ systematically from syllable to syl- 33 ; c% 3
lable. The left part of Fig. 6 displays the mean trajectories for = T o ur! " M
the four syllables along the principal axis of motion specific g 4 z "
to each syllable for the lower central ired. There would ap- < - - =
pear to be important differences, so that, for example, the 0.0 02 °‘T4im°e'6 0.8 1.0 0.0 02 O%m‘ie 0.8 1.0

amount of motion is rather larger for /baeb/ than for /bub/ for
this ired. One notes two nodes where all four trajectories;g 7. The left display of shows the squared multiple correlaB8ras a
tend to coincide. The right part of Fig. 6 displays only the function of time for the analysis of between-syllable variance for all ireds
shape effect, and gives a better idea of how the trajectoriegnd for total motion. The right display is for shape component only. Curves
differ once end position differences are removed SyIIabIeéor the lower right, central and left ireds are solid lines, for the upper right,

. . ’ central and left are dashed, and for the extreme left and right are dotted. The
/bib/ and /bub/ not only show less motion than the other twogg, significance level foR? for 3 and 76 degrees of freedom is shown as a

but also exhibit less asymmetry in their trajectories. dotted horizontal line.
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TABLE |. The proportions of variance accounted for by the first three

components of variation of within-in ired position along the first principal vc—> 1
axis of motion for /bab/.
Q 1
Total Shape § Sl
« \
Ired | 1] Il | 1 1] & |
s g .“, — Total
LR 716 13.5 9.4 88.5 7.5 2.9 B | ---- Shapg
LC 65.2 16.5 10.2 86.8 8.4 3.6 S« | \
LL 67.4 16.1 9.5 86.4 8.6 3.8 'g o \
a
L 85.0 6.5 59 776 154 4.2 ol N
= \
UL 86.3 9.1 2.2 79.6 12.9 4.6 L\.
ucC 87.1 8.4 1.9 70.5 12.3 11.3 o \\“\\:--4.T4_ﬁ..._. —
UR 79.6 11.9 52 76.3 9.6 8.6 ol ‘ -
2 4 6 8 10
R 84.6 8.0 5.6 90.2 6.2 2.3

Eigenvalue No.

. . . FIG. 8. The proportions of variance accounted for by the first ten principal
coordinate functions, and also between ireds among the 2émponents of simultaneous or joint ired variation along each ireds first

coordinates as a syllable was articulated. As a first step, prirprincipal axis for /bab/.

cipal components analysis was undertaken to reveal the com-

plexity of variation for each ired independently along its most of the variation in lip motion across ireds was con-
principal axis of variation and about the mean curve. A PCAtained within a single dominant dimension of variation. This
was carried out separately for the total variation and for thes perhaps not too surprising, given that most of the motion is

shape variation. Table | gives the proportions of variancesn the three lower lip ireds, and it was already observed that

accounted for by the first three principal components foreach of them moved in an essentially one-dimensional tra-
/bab/. The results of the analysis for each ired separatelpgctory.

indicated that the variation around the mean trajectory over  Principal components results for the other syllables ana-
replications was strongly one-dimensional for this syllablelyzed separately were essentially the same in terms of the
especially for the shape component for the lower lip ireds, aseatures found for /bab/.

seen in Table I, where motion along the single dominant

trajectory accounted for about 87% of the variance. The pri-F Disp| q | £ lerati

mary type of variation was simply how wide the lips were " - Isplays and analyses ot lip acceleration

opened, with the shape of the trajectory remaining relatively It would seem also profitable to look closely at the ac-
unchanged. celeration of the system since forces resulting from muscle
The first principal component strongly dominates all contraction and inertial loads applied to the lip tissue will, by
others for both total curve variation and shape variation. ThéNewton’s third law, generate immediate changes in accelera-
dominance of the first component is stronger for shape variaion, while the same forces will affect position, being two
tion than total curve variation for the lower lip ireds, sug- integrals removed from acceleration, only gradually. For
gesting that some of the lower lip variation is due to varia-these and other reasons, it seems plausible that the various
tion at the ends of the intervals. For the upper and left lipcontrolling processes determining lip motion will have their
ireds, however, there is a tendency to see more than onmaost visible impact on acceleration. The spline smoothing
dimension of shape variation. Nevertheless, the first principalechnique adopted in Set B was chosen in order to give
component is strongly dominant for all ireds. smooth and accurate estimates of acceleration, although the
The principal components analysis of combined variatechnique does not separate shape from end-effect variation
tion of the ireds along their respective first principal axes ofin acceleration, as it does for position.
motion reveals the complexity of simultaneous variation. It is Figure 9 shows the average acceleration functions for
entirely possible for two or more ireds to separately haveeach of the ireds along their respective principal axes of
only one component of variation, but for the simultaneousvariation for /bab/. The lower coordinatésolid lineg are
variation to be more complex, just as a single variable byfirst accelerated negatively or downwaitd<0.2), and then
definition has only one component of variation, but a collec-pass through a positive acceleration phése0.3 during
tion of variables can exhibit quite complicated and high-which the descent of the lower lip is stopped. This lip open-
dimensional patterns of combined variation. ing phase is followed by a short period of near zero accel-
The proportions of variance accounted for by the acrosseration(t=0.5) corresponding the period of slow and linear
ired principal components are displayed in Fig. 8 for bothchange in Fig. 3, followed by another strong acceleration
total curve variation and for shape variation alone. Note thatipward initiating lip closurgt=0.8), and then finally com-
although there are in principal as many as 24 substantiglleted by a negative acceleration episode as the lip returns to
principal components possible, the sample size of 20 imthe closed position. The other ireds show less acceleration
poses the actual limit of 19. However, the principal compo-and more complex patterns.
nents analysis of simultaneous ired motion, especially when  Figure 10 indicates the variation in the lower central ired
only shape components were used, suggested strongly thatceleration across syllables in their respective first principal
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FIG. 9. The mean accelerations of lip ireds along their respective principaFIG. 11. The squared correlation functidR¥t) for the functional analysis
axes of motion for /bab/. The solid lines are for the lower-left, lower-central, of variance of the lower lip ired acceleration variability across syllables.
and lower-right ireds, the dashed lines are for the upper lip ireds, and the

dotted lines are for the right and left ireds. . )
dominant components. The first four components for the

) ) . lower-central ired, for example, accounted for 36.0, 25.2,
axes of motion. The longer syllables, /bib/ and /bubl/, fail to1g 3 4nd 6.8 percent of the variation, respectively.

exhibit the momentary pe_ri(_)d of zero acce_leration of the A cross-ired principal components analysis  indicated
shorter syllables, and exhibit less acceleration or Smoothf4¢ there were three clearly dominant principal components,
motion throughout their trajectories. This corresponds to theith the first four percents of variance accounted for being
more rounded contours of their position functions in Fig. 6.5g g 18.9 14.0 and 8.4 for a total of 70.1%. In general, we

A functional analysis of variance of the across-syllablesq, g that the variation of the acceleration patterns was more
acceleration variation was carried out for each ired, in thecomplex than the trajectories of lip positions, perhaps partly

same manner as was done for position. The squared correlgs 5 consequence of the lower statistical stability of the esti-
tion functions for the lower lip ireds are displayed in Fig. 11. jates of these curves.

The amount of intersyllable variation for the lower-central

ired falls close to zero at the three points0.2,t=0.5, and

t=0.7. These times precede the two points of strong acceky. pISCUSSION

eration and the stabilized point &=0.6. It would appear

from this result that all four syllables may share a common  The study of speech articulation has been hindered by

timing process and a common strength of control. the sheer volume and complex time-varying character of
Within-ired principa| Components ana|yses of acce|era_data. The first task of the functional data analytiC tools ap-

tions revealed that variation in acceleration is rather morélied in this paper was to reveal the simplicity underlying the

complex than that for position since there were no clearlyPotentially complex motions of eight lip positions in 3-D
space. Principal components analysis of within-ired motions

displayed the essentially straight-line trajectories of all ireds
(Fig. 2), permitting us to replace the threg Y, andZ coor-
dinates by a single coordinate indicating position along these
trajectories. While it was convenient that the trajectories
turned out to be linear, single coordinates for curvilinear tra-
jectories identified in this way can also be constructed with
some additional effort.

Much recent work(e.g., Gracco, 1994; Munhadt al,,
1994 has suggested that groups of articulators in speech act
as coordinative structures with less degrees of freedom than
the group could potentially show independently. An across-
ired principal components analysis provided further confir-
mation by showing that ireds operate in concert to a rather
. impressive degree, so that their covariation can be well-
00 02 04 06 08 summarized by the same number of principal components as

Time required to summarize the variation of any single itea.
8). In this way the multiple potential dimensions of variation
FIG. 10. The mean accelerations of lip motion for all four syllables along,yqre requced to the few important dimensions of variation of
their principal axes of motion for the lower-central ired. The solid lines are

for the shorter syllables /baeb/, and /bab/, and the dashed lines are for i€ lower-central ired along its principal component trajec-
longer syllables /bib/ and /bub/. tory.
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The theme of data reduction was also worked out in thdivity measures such as EMG records are essential. And, of
context of single curves. The spline approximation techniqueourse, more than 20 replications would imply more stable
was customized for this application to separate end-effeatstimates of effects as well as the possibility of identifying
variation from interior or shape variation, and this also re-other more subtle aspects of variation.
duced the complexity of variation across time by showing  We have learned from these analyses, in addition, that
that there was one less principal component for shape thature experiments can be simplified in important ways.
for the total curvegTable ). Eight lip positions can probably be reduced to two or three at

We were also interested in syllable effects, so that aftemost, and motion in the sagittal plane, at least for central
these preliminary data-reduction analyses it was possible tarticular positions, is sufficient for most purposes. Very high
show via functional analysis of variance that there are im-sampling rates are not required for reasonably accurate esti-
portant sources of intersyllable variation, as evidenced immates of first and second derivatives when the noise level is
Figs. 7 and 11. Moreover, the functional nature of the resultof the order of that in OPTOTRAK measures.
ing R?(t) effect sizes highlighted the fact that intersyllabic
effects are strongly time variant, being nearly negligible atACKNOWLEDGMENT
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