
Chapter 5
Smoothing: Computing Curves from Noisy Data

The previous two chapters have introduced the Matlab and R code needed to specify
basis function systems and then to define curves by combining these coefficient
arrays. For example, we saw how to construct a basis object such as heightbasis
to define growth curves and how to combine it with a matrix of coefficients such as
heightcoef so as to define growth functional data objects such as were plotted
in Figure 1.1.

We now turn to methods for computing these coefficients with more careful con-
sideration of measurement error. For example, how do we compute these coefficients
to obtain an optimal fit to data such as the height measurements for 54 girls in the
Berkeley growth study stored in the 31 by 54 matrix that we name heightmat? Or
how do we replace the rather noisy mean daily precipitation observations by smooth
curves?

Two strategies are discussed. The simplest revisits the use of regression analysis
that concluded Chapter 4, but now uses a special function for this purpose. The
second and more elaborate strategy aims to miss nothing of importance in the data
by using a powerful basis expansion, but avoids overfitting the data by imposing a
penalty on the “roughness” of the function, where the meaning of “rough” can be
adapted to special features of the application from which the data were obtained.

5.1 Regression Splines: Smoothing by Regression Analysis

We tend, perhaps rather too often, to default to defining data fitting as the minimiza-
tion of the sum of squared errors or residuals,

SSE(x) =
n

∑
j
[y j− x(t j)]2. (5.1)

When smoothing function x is defined as a basis function expansion (3.1), the least-
squares estimation problem becomes

J.O. Ramsay et al., Functional Data Analysis with R and MATLAB, Use R,

© Springer Science + Business Media, LLC 2009

59
DOI: 10.1007/978-0-387-98185-7_5,

60 5 Smoothing: Computing Curves from Noisy Data

SSE(c) =
n

∑
j
[y j−

K

∑
k

ckφk(t j)]2 =
n

∑
j
[y j−φ(t j)′c]2. (5.2)

The approach is motivated by the error model

y j = x(t j)+ ε j = c′φ(t)+ ε j = φ ′(t j)c+ ε j (5.3)

where the true errors or residuals ε j are statistically independent and have a normal
or Gaussian distribution with mean 0 and constant variance. Of course, if we look
closely, we often see that this error model is too simple. Nevertheless, the least-
squares estimation process can be defended on the grounds that it tends to give
nearly optimal answers relative to “best” estimation methods so long as the true
error distribution is fairly short-tailed and departures from the other assumptions
are reasonably mild.

Readers will no doubt recognize (5.3) as the standard regression analysis model,
along with its associated least-squares solution. Using matrix notation, let the n-
vector y contain the n values to be fit, vector ε contain the corresponding true resid-
ual values, and n by k matrix Φ contain the basis function values φk(t j). Then we
have

y = Φc+ ε

and the least-squares estimate of the coefficient vector c is

ĉ = (Φ ′Φ)−1Φ ′y. (5.4)

R and Matlab already have the capacity to smooth data through their functions
for regression analysis. Here is how we can combine these functions with the ba-
sis creation functions available in the fda package. Suppose that we want a basis
system for the growth data with K = 12 basis functions using equally spaced knots.
This can be accomplished in R with the following command:

heightbasis12 = create.bspline.basis(c(1,18), 12, 6)

If we evaluate the basis functions at the ages of measurement in vector object age
by the command basismat = eval.basis(age, heightbasis12) (in
R), then we have a 31 by 12 matrix of covariate or design values that we can use in
a least-squares regression analysis defined by commands such as

heightcoef = lsfit(basismat, heightmat,
intercept=FALSE)$coef

heightcoef = basismat\heightmat

in R and Matlab, respectively. Spline curves fit by regression analysis are often
referred to as regression splines in statistical literature.

However, the function smooth.basis (R) and smooth basis (Matlab) are
provided to produce the same results as well as much more without the need to
explicitly evaluate the basis functions, through the R command

heightList = smooth.basis(age, heightmat,

5.1 Regression Splines: Smoothing by Regression Analysis 61

heightbasis12)

and the Matlab version

[fdobj, df, gcv, coef, SSE, penmat, y2cMap] = ...
smooth_basis(age, heightmat, heightbasis12);

The R function smooth.basis returns an object heightlist of the list
class, and the Matlab function smooth basis returns all seven of its objects as
an explicit sequence of variable names surrounded by square brackets. However, if
we just wanted the first three returned objects as separate objects, in R we would
have to extract them individually:

heightfd = heightList$fd
height.df = heightList$df
height.gcv = heightList$gcv

In Matlab, we would just request only the first three objects:

[fdobj, df, gcv] = ...
smooth_basis(age, heightmat, heightbasis12);

In any case, the three most important returned objects are the following, where the
names in bold type are used in each language to retrieve the objects:

fd An object of class fd containing the curves that fit the data.
df The degrees of freedom used to define the fitted curves.
gcv The value of the generalized cross-validation criterion: a measure of lack

of fit discounted for degrees of freedom. If there are multiple curves, a vector
is returned containing gcv values for each curve. (See Ramsay and Silverman
(2005) for details.)

Notice that the coefficient estimate ĉ in (5.4) is obtained from the data in the
vector y by multiplying this vector by a matrix, to which we give the text name
y2cMap. We will use this matrix in many places in this book where we need to
estimate the variability in quantities determined by ĉ, so we here give it a name:

y2cMap= (Φ ′Φ)−1Φ ′ so that ĉ = y2cMap y. (5.5)

Here is the corresponding R code for computing this matrix for the growth data:

age = growth$age
heightbasismat = eval.basis(age, heightbasis12)
y2cMap = solve(crossprod(heightbasismat),

t(heightbasismat))

In Matlab this last command would be

y2cMap = (heightbasismat’*heightbasismat) \ ...
heightbasismat’;

62 5 Smoothing: Computing Curves from Noisy Data

This code for the mapping matrix y2cMap only applies to regression-based
smoothing. More general expressions for y2cMap include other term(s) that disap-
pear with zero smoothing. This is important because as we change the smoothing,
y2cMap changes, but ĉ is still the product of y2cMap, however changed, and the
data.

While we are at it, we also will need what is often called the “hat” matrix, denoted
by H. This maps the data vector into the vector of fitted values

H = Φ(Φ ′Φ)−1Φ ′ so that ŷ = Hy. (5.6)

The regression approach to smoothing data only works if the number K of ba-
sis functions is substantially smaller than the number n of sampling points. With
the growth data, it seems that roughly K = 12 spline basis functions are needed to
adequately smooth the growth data. Larger values of K will tend to undersmooth
or overfit the data. Interestingly, after over a century of development of parametric
growth curve models, the best of these also use about 12 parameters in this example.

Although regression splines are often adequate for simple jobs where only curve
values are to be used, the instability of regression spline derivative estimates at the
boundaries is especially acute. The next section describes a more sophisticated ap-
proach that can produce much better derivative results and also allows finer control
over the amount of smoothing.

5.2 Data Smoothing with Roughness Penalties

The roughness penalty approach uses a large number of basis functions, possibly
extending to one basis function per observation and even beyond, but at the same
time imposing smoothness by penalizing some measure of function complexity. For
example, we have already in the last chapter defined a basis system for the growth
data called heightbasis that has 35 basis functions, even though we have only
31 observations per child. Would using such a basis system result in overfitting the
data, as well as singularity problems on the computational side? That answer is,
“Not if a positive penalty is applied to the degree to which the fit is not smooth.”

5.2.1 Choosing a Roughness Penalty

We define a measure of the roughness of the fitted curve, and then minimize a fitting
criterion that trades off curve roughness against lack of data fit.

Here is a popular way to quantify the notion “roughness” of a function. The
square of the second derivative [D2x(t)]2 of a function x at argument value t is of-
ten called its curvature at t, since a straight line, which we all tend to agree has
no curvature, has second derivative zero. Consequently, a measure of a function’s

5.2 Data Smoothing with Roughness Penalties 63

roughness is the integrated squared second derivative or total curvature

PEN2(x) =
∫

[D2x(t)]2 dt . (5.7)

(Unless otherwise stated, all integrals in this book are definite integrals over the
range of t.)

Penalty terms such as PEN2(x) provide smoothing because wherever the function
is highly variable, the square of the second derivative [D2x(t)]2 is large. We can
apply this concept to derivative estimation as well. If we are interested in the second
derivative D2x of x, chances are that we want it to appear to be smooth. This suggests
that we ought to penalize the curvature of the second derivative, that is, use the
roughness measure

PEN4(x) =
∫

[D4x(t)]2 dt . (5.8)

But is “roughness” always related to the second derivative? Thinking a bit more
broadly, we can define roughness as the extent to which a function departs from
some baseline “smooth” behavior. For periodic functions of known period that can
vary in level, such as mean temperature curves, the baseline behavior can be con-
sidered to be shifted sinusoidal variation,

x(t) = c0 +a1 sinωt +b1 cosωt, (5.9)

that is, represented by the first three terms in the Fourier series for some known
ω = 2π/T. If we compute ω2Dx+D3x for such a simple function, we find that the
result is exactly 0. We refer to the differential operator L = ω2D + D3 in Ramsay
and Silverman (2005) as the harmonic acceleration operator. What happens when
we apply this harmonic acceleration operator to higher-order terms in a Fourier
series:

L[a j sin jωt +b j cos jωt] = ω2 j(1− j2)[a j cos jωt−b j sin jωt]. (5.10)

This expression is 0 for j = 1 and increases with the cube of j. This property suggests
that the integral of the square of this harmonic acceleration operator may be a
suitable measure of roughness for periodic data like the temperatures curves:

PENL(x) =
∫

[Lx(s)]2 ds . (5.11)

When used on a finite Fourier series, this expression is proportional to [j2(1− j2)2].
Thus, the term with j = 1 does not get penalized at all, and higher-order terms in
the Fourier approximation receive substantially higher penalties.

Whatever roughness penalty we use, we add some multiple of it to the error sum
of squares to define the compound fitting criterion. For example, using PEN2(x)
gives us the following:

64 5 Smoothing: Computing Curves from Noisy Data

F(c) = ∑
j
[y j− x(t j)]2 +λ

∫
[D2x(t)]2dt, (5.12)

where x(t) = c′φ(t). The smoothing parameter λ specifies the emphasis on the sec-
ond term penalizing curvature relative to goodness of fit quantified in the sum of
squared residuals in the first term. As λ moves from 0 upward, curvature becomes
increasingly penalized. With λ sufficiently large, D2x will be essentially 0. This in
turn implies that x will be essentially a straight line = polynomial of degree one,
order two, except possibly at a finite number of isolated points such as join points
or knots of a B-spline. At the other extreme, λ → 0 leaves the function x free to fit
the data as closely as possible with the selected basis set, sometimes at the expense
of some fairly wild variations in the approximating function.

It is usually convenient to plot and modify λ on a logarithmic scale. More gen-
erally, the use of a differential operator L to define roughness will result in λ → ∞
forcing the fit to approach more and more closely a solution to the differential equa-
tion Lx = 0. If L = Dm, this solution will be a polynomial of order m (i.e., degree
m− 1). For the harmonic acceleration operator, this solution will be of the form
(5.9). In this way, we can achieve an important new form of control over the smooth-
ing process, namely by having the capacity to define the concept “smooth” in a way
that is appropriate to the application.

5.2.2 The Roughness Penalty Matrix R

We can now provide an explicit form of the estimate of the coefficient vector ĉ for
roughness penalty smoothing that is the counterpart of (5.4) for regression smooth-
ing. The general version of the roughness penalized fitting criterion (5.12) is

F(c) = ∑
j
[y j− x(t j)]2 +λ

∫
[Lx(t)]2dt. (5.13)

If we substitute the basis expansion x(t) = c′φ(t) = φ ′(t)c into this equation, we get

F(c) = ∑
j
[y j−φ ′(t j)c]2 +λc′[

∫
Lφ(t)Lφ ′(t)dt]c. (5.14)

Now we define the order K symmetric roughness penalty matrix as

R =
∫

φ(t)φ ′(t)dt. (5.15)

With this defined, it is a relatively easy exercise in matrix algebra to work out that

ĉ = (Φ ′Φ +λR)−1Φ ′y. (5.16)

5.2 Data Smoothing with Roughness Penalties 65

From here we can define the matrix y2cMap that we will use in Chapter 6 for
computing confidence regions about estimated curves:

y2cMap= (Φ ′Φ +λR)−1Φ ′. (5.17)

The corresponding hat-matrix is now

H = Φ(Φ ′Φ +λR)−1Φ ′. (5.18)

But how is one to compute matrix R in either language? This is taken care of in
the function eval.penalty in R and eval penalty in Matlab. These func-
tions require two arguments:

basisobj A functional basis object of the basisfd class in R and basis
class in Matlab.

Lfdobj A linear differential operator object of the Lfd class.

In the case of the harmonic accelerator operator, we can calculate the roughness
penalty matrix Rmat in R by

Rmat = eval.penalty(tempbasis, harmaccelLfd)

We hasten to add that most routine functional data analyses will not actually
need to calculate roughness penalty matrices, since this happens inside functions
such as smooth.basis. Computing R can involve numerical approximations to
the integrals involved in (5.15). However, for a spline basis, if L is a power of D, then
the integrals are analytically available and evaluated to within machine precision.

5.2.3 The Smoothing or “Hat” Matrix and Degrees of Freedom

The values x(t j), j = 1, . . . ,n defined by minimizing criterion (5.14) are critical for
a detailed analysis of how well alternative choices λ work for fitting the data values
y j. Let us denote these by the vector x̂ and the corresponding data values by y. It
turns out (see Ramsay and Silverman (2005) for details) that x̂ has the following
linear relationship to y:

x̂ = H(λ)y. (5.19)

The smoothing matrix H(λ) is square, symmetric and of order n and, needless to say,
a function of λ . It has many uses, among which is that a measure of the effective
degrees of freedom of the fit defined by λ is defined by

df(λ) = trace[H(λ)], (5.20)

and the associated degrees of freedom for error is n−df(λ).
As λ → 0,df(λ)→ min(n,K), where n = the number of observations and K =

the number of basis functions. Similarly, as λ → ∞,df(λ) → m, where m is the
order of the highest derivative used to define the roughness penalty.

66 5 Smoothing: Computing Curves from Noisy Data

5.2.4 Defining Smoothing by Functional Parameter Objects

Going beyond the smoothing problem, we need the general capacity in functional
data analysis to impose smoothness on estimated functional parameters, of which
the smoothing curve is only one example. We now explain how this is made possible
in the two programming languages.

A roughness penalty is defined by constructing a functional parameter object
consisting of:

• a basis object,
• a derivative order m or a differential operator L to be penalized and
• a smoothing parameter λ .

We put these elements together by using the fdPar class in either language and the
function fdPar to construct an object of that class.

The following R commands do two things: First they set up an order six B-spline
basis for smoothing the growth data using a knot at each age. Then they define a
functional parameter object that penalizes the roughness of growth acceleration by
using the fourth derivative in the roughness penalty. The smoothing parameter value
that we have found works well here is λ = 0.01.

norder = 6
nbasis = length(age) + norder - 2
heightbasis = create.bspline.basis(c(1,18),

nbasis, norder, age)
heightfdPar = fdPar(heightbasis, 4, 0.01)

The data are in array heightmat. In Chapter 4, these data were passed to
smooth.basis with a basis object as the third argument. Here, we will use the
functional parameter object heightfdPar as the third argument:

heightfd = smooth.basis(age, heightmat,
heightfdPar)$fd

Notice that we set up a functional data object heightfd directly by using the
suffix $fd. In Matlab, we would use

heightfd = smooth_basis(age, heightmat, heightfdPar)

5.2.5 Choosing Smoothing Parameter λ

The generalized cross-validation measure GCV developed by Craven and Wahba
(1979) is designed to locate a best value for smoothing parameter λ . The criterion
is

GCV(λ) =
(n

n−d f (λ)
)(SSE

n−d f (λ)
)

. (5.21)

5.3 Case Study: The Log Precipitation Data 67

Notice that this is a twice-discounted mean square error measure. The right factor is
the unbiased estimate of error variance σ2 familiar in regression analysis, and thus
represents some discounting by subtracting d f (λ) from n. The left factor further
discounts this estimate by multiplying by n/(n−d f (λ)).

Figure 5.1 shows how the generalized cross-validation (GCV) criterion varies as
a function of log10(λ) for the entire female Berkeley growth data. Matlab code for
generating the plotted values is

loglam = -6:0.25:0;
gcvsave = zeros(length(loglam),1);
dfsave = gcvsave;
for i=1:length(loglam)
lambdai = 10ˆloglam(i);
hgtfdPari = fdPar(heightbasis, 4, lambdai);
[hgtfdi, dfi, gcvi] =

smooth_basis(age, hgtfmat, hgtfdPari);
gcvsave(i) = sum(gcvi);
dfsave(i) = dfi;

end

The minimizing value of λ is about 10−4, and at that value df(λ) = 20.2. In fact, the
value λ = 10−4 is rather smaller than the value of 10−2 that we chose to work with
in our definition of the fdPar object in Section 5.2.4, for which df(λ) = 12.7. We
explain our decision in Section 5.3, and recommend a cautious and considered ap-
proach to choosing the smoothing parameter rather than relying solely on automatic
methods such as GCV minimization.

GCV values often change slowly with log10 λ near the minimizing value, so that
a fairly wide range of λ values may give roughly the same GCV value. This is a sign
that the data are not especially informative about the “true” value of λ . If so, it is not
worth investing a great deal of effort in precisely locating the minimizing value, and
simply plotting GCV over a mesh of log10 λ might be sufficient. Plotting the func-
tion GCV(λ) in any case will inform us about the curvature of near its minimum. If
the data are not telling us all that much about λ , then it is surely reasonable to use
your judgment in working with values which seem to provide more useful results
than the minimizing value does. Indeed, Chaudhuri and Marron (1999) argue per-
suasively for inspecting data smooths over a range of λ values in order to see what
is revealed at each level of smoothing. However, if a more precise value seems im-
portant, the function lambda2gcv can be used as an argument in an optimization
function that will return the minimizing value.

5.3 Case Study: The Log Precipitation Data

The fda package for R includes CanadianWeather data, which includes the
base 10 logarithms of the average annual precipitation in millimeters (after replacing

68 5 Smoothing: Computing Curves from Noisy Data

−6 −5 −4 −3 −2 −1 0
5

10

15

20

25

30

35

 log10(λ)

 G
C

V(
λ)

Fig. 5.1 The values of the generalized cross-validation or GCV criterion for choosing the smooth-
ing parameter λ for fitting the female growth curves.

zeros with 0.05) for each day of the year at 35 different weather stations. We put
these data in logprecav, shifted to put winter in the middle, so the year begins
with July 1 and ends with June 30:

logprecav = CanadianWeather$dailyAv[
dayOfYearShifted, , ’log10precip’]

Next we set up a saturated Fourier basis for the data:

dayrange = c(0,365)
daybasis = create.fourier.basis(dayrange, 365)

We will smooth the data using a harmonic acceleration roughness penalty that penal-
izes departures from a shifted sine, x(t) = c1 + c2 sin(2πt/365)+ c3 cos(2πt/365).
Here we define this penalty. The first command sets up a vector containing the
three coefficients required for the linear differential operator, and the second uses
function vec2Lfd to convert this vector to the linear differential operator object
harmaccelLfd.

Lcoef = c(0,(2*pi/diff(dayrange))ˆ2,0)
harmaccelLfd = vec2Lfd(Lcoef, dayrange)

Now that we are set up to do some smoothing, we will want to try a range of
smoothing parameter λ values and examine the degrees of freedom and values of
the generalized cross–validation coefficient GCV associated with each value of λ .
First we set up a range of values (identified, of course, by some preliminary trial-

5.3 Case Study: The Log Precipitation Data 69

and-error experiments). We also set up two vectors to contain the degrees of freedom
and GCV values.

loglam = seq(4,9,0.25)
nlam = length(loglam)
dfsave = rep(NA,nlam)
gcvsave = rep(NA,nlam)

Here are commands that loop through the smoothing values, storing degrees of free-
dom and GCV along the way:

for (ilam in 1:nlam) {
cat(paste(’log10 lambda =’,loglam[ilam],’\n’))
lambda = 10ˆloglam[ilam]
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
smoothlist = smooth.basis(day.5, logprecav,

fdParobj)
dfsave[ilam] = smoothlist$df
gcvsave[ilam] = sum(smoothlist$gcv)

}

The GCV values have to be summed, since function smooth.basis returns a
vector of GCV values, one for each replicate.

Figure 5.2 plots the GCV values. This shows a minimum at log10(λ) = 6. Next we
smooth at this level and add labels to the resulting functional data object. Then we
plot all the log precipitation curves in a single plot, followed by a curve–by–curve
plot of the raw data and the fitted curve.

lambda = 1e6
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logprec.fit = smooth.basis(day.5,logprecav,fdParobj)
logprec.fd = logprec.fit$fd
fdnames = list("Day (July 1 to June 30)",

"Weather Station" = CanadianWeather$place,
"Log 10 Precipitation (mm)")

logprec.fd$fdnames = fdnames
plot(logprec.fd)
plotfit.fd(logprecav, day.5, logprec.fd)

This example will be revisited in Chapter 7. There, we will see that the λ =
1e6 leaves some interesting structure in the residuals for a few weather stations.
Moreover, the curvature in the GCV function is rather weak, suggesting we will not
lose much by using other values of λ in the range of 1e5 to 1e8. Our advice at the
end of Section 5.2.5 seems appropriate here, and perhaps we should have worked
with a lower value of λ .

70 5 Smoothing: Computing Curves from Noisy Data

4 5 6 7 8 9

1.4
2

1.4
3

1.4
4

1.4
5

1.4
6

log10(λ)

GC
V

Cr
ite

rio
n

Fig. 5.2 The values of the generalized cross-validation or GCV criterion for the log precipitation
data. The roughness penalty was defined by harmonic acceleration.

5.4 Positive, Monotone, Density and Other Constrained
Functions

Often estimated curves must satisfy one or more side constraints. If the data are
counts or other values that cannot be negative, then we do not want negative curve
values, even over regions where values are at or close to zero. If we are estimating
growth curves, it is probably the case that negative slopes are implausible, even if
the noisy measurements do go down here and there. If the data are proportions, it
would not make sense to have curve values outside the interval [0,1].

Unfortunately, linear combinations of basis functions such as those we have been
using up to this point are difficult to constrain in these ways. The solution to the
problem is simple: We transform the problem to one where the curve being esti-
mated is unconstrained. We lose simple closed form expressions for the smoothing
curve and therefore must resort to iterative methods for calculating the transformed
curve, but the price is well worth paying.

5.4.1 Positive Smoothing

This transformation strategy is easiest to see in the case of positive (or negative)
curves. We express the smoothing problem (5.3) as the transformed problem

5.4 Positive, Monotone, Density and Other Constrained Functions 71

y j = exp[w(t j)]+ ε j = exp[φ(t j)′c]+ ε. (5.22)

That is, function w(t) is now the logarithm of the data-fitting function x(t) =
exp[w(t)], and consequently is unconstrained as to its sign, while at the same time
the fitting function is guaranteed to be positive. It can go as close to zero as we like
by permitting the values of w(t) to be arbitrarily large negative numbers.

For example, we can smooth Vancouver’s mean daily precipitation data, which
can have zero but not negative values, using these commands using the function
smooth.pos in R or smooth pos in Matlab:

lambda = 1e3
WfdParobj = fdPar(daybasis, harmaccelLfd, lambda)
VanPrec = CanadianWeather$dailyAv[
dayOfYearShifted, ’Vancouver’, ’Precipitation.mm’]

VanPrecPos = smooth.pos(day.5, VanPrec, WfdParobj)
Wfd = VanPrecPos$Wfdobj

These commands plot Wfd, the estimated log precipitation.

Wfd$fdnames = list("Day (July 1 to June 30)",
"Weather Station" = CanadianWeather$place,

"Log 10 Precipitation (mm)")
plot(Wfd)

The fit to the data, shown in Figure 5.3, is displayed by

precfit = exp(eval.fd(day.5, Wfd))
plot(day.5, VanPrec, type="p", cex=1.2,

xlab="Day (July 1 to June 30)",
ylab="Millimeters",
main="Vancouver’s Precipitation")

lines(day.5, precfit,lwd=2)

5.4.2 Monotone Smoothing

Some applications require a fitting function x(t) that is either monotonically increas-
ing or decreasing, even though the observations may not exhibit perfect monotonic-
ity:

y j = β0 +β1x(t j)+ ε j (5.23)

We can get this easily by letting

x(t) =
∫ t

t0
exp[w(u)]du. (5.24)

Here t0 is the fixed origin for the range of t-values for which the data are being
fit. The intercept term β0 in (5.23) is the value of the approximating function at t0.

72 5 Smoothing: Computing Curves from Noisy Data

0 100 200 300

0
2

4
6

8

Vancouver’s Precipitation

Day (July 1 to June 30)

Mi
llim

ete
rs

Fig. 5.3 Vancouver’s precipitation data, along with a fit estimated by positive smoothing.

For monotonically increasing functions, β1 could be absorbed into w(u). However,
to allow for monotonically decreasing functions, we keep β1 separate and select
normalize w(u) for numerical stability.

Substituting (5.24) into (5.23) produces the following:

y j = β0 +β1

∫ t j

t0
exp[w(u)]du+ ε j = β0 +β1

∫ t j

t0
exp[φ(u)′c]du+ ε j. (5.25)

The function smooth.monotone estimates β0, β1, and w(u).

5.4.2.1 Smoothing the Length of a Newborn Baby’s Tibia

Figure 5.4 shows the length of the tibia of a newborn infant, measured by Dr.
Michael Hermanussen with an error of the order of 0.1 millimeters, over its first
40 days. The staircase nature of growth in this early period and need to estimate
the velocity of change in bone length, also shown in the figure, makes monotone
smoothing essential. It seems astonishing that this small bone in the baby’s lower
leg has the capacity to grow as much as two millimeters in a single day.

Variables day and tib in the following code contain the numbers of the days
and the measurements, respectively. A basis for function w and a smoothing profile
are set up, the data are smoothed, the values of the functional data object for w
and the coefficients β0 and β1 are returned. Then the values of the smoothing and
velocity curves are computed.

5.4 Positive, Monotone, Density and Other Constrained Functions 73

0 10 20 30 40
110

115

120

125

130

135
 Tibia length (mm)

0 10 20 30 40
0

0.5

1

1.5

2

2.5
 Tibia velocity (mm/day)

Fig. 5.4 The left panel shows measurements of the length of the tibia of a newborn infant over its
first 40 days, along with a monotone smooth of these day. The right panel shows the velocity or
first derivative of the smoothing function.

Wbasis = create.bspline.basis(c(1,n), nbasis)
Wfd0 = fd(matrix(0,nbasis,1), Wbasis)
WfdPar = fdPar(Wfd0, 2, 1e-4)
result = smooth.monotone(day, tib, WfdPar)
Wfd = result$Wfd
beta = result$beta
dayfine = seq(1,n,len=151)
tibhat = beta[1] + beta[2]*eval.monfd(dayfine ,Wfd)
Dtibhat = beta[2]*eval.monfd(dayfine, Wfd, 1)
D2tibhat = beta[2]*eval.monfd(dayfine, Wfd, 2)

5.4.2.2 Smoothing the Berkeley Female Growth Data

In Chapter 8 we will need our best estimates of the growth acceleration functions for
the Berkeley girls, and smoothing their data monotonically substantially improves
these estimates over direct smoothing, and especially in the neighborhood of the
pubertal growth spurts.

74 5 Smoothing: Computing Curves from Noisy Data

We set up an order 6 spline basis with knots at ages of observations for their func-
tions w, along with a roughness penalty on their third derivatives and a smoothing
parameter of 1/

√
10, in these commands:

wbasis = create.bspline.basis(c(1,18), 35, 6, age)
growfdPar = fdPar(wbasis, 3, 10ˆ(-0.5))

The monotone smoothing of the data in the 31 by 54 matrix hgtf, and the extraction
of the the functional data object Wfd for the wi functions, the coefficients β0i,β1i
and the functional data object hgtfhatfd for the functions fitting the data are
achieved by

growthMon = smooth.monotone(age, hgtf, growfdPar)
Wfd = growthMon$Wfd
betaf = growthMon$beta
hgtfhatfd = growthMon$yhatfd

5.4.3 Probability Density Functions

A probability density function p(z) is used to indicate the probability of observing a
scalar observation at or near a value z, and is one of the core functions in statistics.
From our perspective, p is a special case of a positive function in the sense of having
a unit integral over the range of z. That is, we can express p as

p(z) = C exp[w(z)], (5.26)

where the positive normalizing constant C satisfies the constraint
∫

p(z)dz = 1. Es-
timating a free-form nonparametric version of p is not a smoothing problem as we
have so far defined it, since we would not use an error sum of squares measure of
lack of fit. Rather, the usual practice would be to minimize a penalized negative log
likelihood,

− lnL(c) =−
N

∑
i

ln p(zi)+λ
∫

[Lw(z)]2dz =−
N

∑
i

w(zi)−N lnC +λ
∫

[Lw(z)]2dz,

(5.27)
where w(z) = c′φ(z). Notice that the first two terms replace the error sum of squares
in (5.13).

The linear differential operator L can be chosen so as to force p to approach
specific parametric density functions as λ → ∞. For example, L = D3 will do this
for the Gaussian density (Silverman, 1986).

Function density.fd is used to estimate a nonparametric probability density
function from a sample of data. We will illustrate its use for a rather challenging
problem: describing the variation in daily precipitation for the Canadian prairie city
of Regina over the month of June and over the 34 years from 1960 through 1993.
June is the critical month for wheat growers because the crop enters its most rapid

5.4 Positive, Monotone, Density and Other Constrained Functions 75

growing phase, and an adequate supply of moisture in the soil is essential for a good
crop.

Precipitation is a difficult quantity to model for several reasons. First of all, on
about 65% of the days in this region, no rain is even possible, so that zero really
means a “nonprecipitation day” rather than “no rain.” Since there can be a small
amount of precipitation from dew, we used only days when the measured precip-
itation exceeded two millimetres. Also, precipitation can come down in two main
ways: as a gentle drizzle and, more often, as a sudden and sometimes violent thun-
derstorm. Consequently, the distribution of precipitation is extremely skewed, and
Regina experienced three days in this period with more than 40 mm of rain. We
deleted these days, too, in order to improve the graphical displays, leaving N = 212
rainfall values.

Figure 5.5 plots the ordered rainfalls for the 1,006 days when precipitation was
recorded against their rank orders, a version of a quantile plot. We can see just how
extreme precipitation can be; the highest rainfall of 132.6 mm on June 25, 1975, is
said to have flooded 20,000 basements.

0 200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Rank of rainfall

O
rd

er
ed

 d
ai

ly
 r

ai
nf

al
l (

m
m

)

Fig. 5.5 The empirical quantile function for daily rainfall at Regina in the month of June over 34
years.

We set up the break points for a cubic B-spline basis to be the rainfalls at 11
equally spaced ranks, beginning at the first and ending at N. In this code variable
RegPrec contains the 212 sorted rainfall amounts between 2 and 45 mm.

Wknots = RegPrec[round(N*seq(1/N,1,len=11),0)]
Wnbasis = length(Wknots) + 2
Wbasis = create.bspline.basis(range(RegPrec),13,4,

76 5 Smoothing: Computing Curves from Noisy Data

Wknots)

Now we estimate the density, applying a light amount of smoothing, and extract
the functional data object Wfd and the normalizing constant C from the list that
density.fd returns.

Wlambda = 1e-1
WfdPar = fdPar(Wbasis, 2, Wlambda)
densityList = density.fd(RegPrec, WfdPar)
Wfd = densityList$Wfdobj
C = densityList$C

These commands set up the density function values over a fine mesh of values.

Zfine = seq(RegPrec[1],RegPrec[N],len=201)
Wfine = eval.fd(Zfine, Wfd)
Pfine = exp(Wfine)/C

The estimated density is shown in Figure 5.6. The multiphase nature of precip-
itation is clear here. The first phase is due to heavy dew or a few drops of rain,
followed by a peak related to light rain from low-pressure ridges that arrive in this
area from time to time, and then thunderstorm rain that can vary from about 7 mm
to catastrophic levels.

0 10 20 30 40

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

Precipitation (mm)

Pr
ob

ab
ilit

y d
en

sit
y

Fig. 5.6 The solid line indicates the probability density function p(z) for rainfall in Regina of 2
mm or greater, but stopping at about 45 mm. The vertical dashed lines indicate the knot values
used to define the cubic B-spline expansion for w = ln p.

5.5 Assessing the Fit to the Data 77

5.5 Assessing the Fit to the Data

Having smoothed the data, there are many questions to ask, and these direct us to
do some further analyses of the residuals, ri j = yi j − xi(t j). These analyses can be
functional since there is some reason to suppose that at least part of the variation in
these residuals across t is smooth.

Did we miss some important features in the data by oversmoothing? Perhaps,
for example, there may have been something unusual in one or two curves that we
missed because the GCV criterion selected a level of smoothing that worked best
for all samples simultaneously. Put another way, could there be an indication that
we might have done better to smooth each weather station’s log precipitation data
separately? We will defer looking at this question until the end of the next chapter,
since principal components analysis can be helpful here.

A closely related question concerns whether the variation in the residuals con-
forms to the assumptions implicit in the type of smoothing that we performed. The
use of the unweighted least-squares criterion is only optimal if the residuals for all
time points are normally distributed and if the variance of these residuals is constant
across both years and weather stations (curves).

We now return to the log precipitation data considered in Section 5.3 and create a
365 by 35 matrix of residuals from the fit discussed there. We then use this to create
variance vectors across

• stations, of length 365, dividing by 35 since the residuals need not sum to zero
on any day,

• time, of length 35, dividing by 365-12; the number “12” here is essentially the
equivalent degrees of freedom in the fit (logprec.fit$df).

logprecmat = eval.fd(day.5, logprec.fd)
logprecres = logprecav - logprecmat
across stations
logprecvar1 = apply(logprecresˆ2, 1, sum)/35
across time
logprecvar2 = apply(logprecresˆ2, 2, sum)/(365-12)

Let us look at how residual variation changes over stations; Figure 5.7 displays
their standard deviations. With labels on a few well-known stations and recalling
that we number the stations from east to west to north, we see that there tends to be
more variation for prairie and northerly stations in the center of the country, and less
for marine stations. This is interesting but perhaps not dramatic enough to make us
want to pursue the matter further.

Figure 5.8 shows how standard deviations taken over stations and within days
vary. The smooth line in the plot was computed by smoothing the log of the standard
deviations and exponentiating the result by these two commands:

logstddev.fd = smooth.basis(day.5,
log(logprecvar1)/2, fdParobj)$fd

logprecvar1fit = exp(eval.fd(day.5, logstddev.fd))

78 5 Smoothing: Computing Curves from Noisy Data

0 5 10 15 20 25 30 35

0.1
0

0.1
5

0.2
0

0.2
5

Station Number

St
an

da
rd

de
via

tio
n a

cro
ss

 da
y

St. Johns

Halifax

Montreal

Winnipeg

Churchill

Regina

Edmonton

Vancouver

Pr. George

Pr. Rupert

Yellowknife

Iqaluit

Resolute

Fig. 5.7 Standard deviations of the residuals from the smooth of the log precipitation taken across
days and within stations.

We could also have used smooth.pos to do the job. We see now that there is a
seasonal variation in the size of the residuals, with more variation in summer months
than in winter. Nevertheless, this form of variation is not strong enough to justify
returning to do a weighted least-squares analysis using smooth.basis; we would
need much larger variations in the variability for it to create a substantive difference
between weighted and unweighted solutions.

Also implicit in our smoothing technology is the assumption that residuals are
uncorrelated. This is a rather unlikely situation; departures from smooth variation
tend also to be smooth, implying a strong positive autocorrelation between neigh-
boring residuals. If observation times are equally spaced, we can use standard time
series techniques to explore this autocorrelation structure.

5.6 Details for the fdPar Class and smooth.basis Function

5.6.1 The fdPar class

We give here the arguments of the constructor function fdPar that constructs an
object of the functional parameter fdPar class. The complete calling sequence is

fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0,
estimate=TRUE, penmat=NULL)

5.6 Details for the fdPar Class and smooth.basis Function 79

0 100 200 300

0.1
5

0.2
0

0.2
5

0.3
0

Day

St
an

da
rd

de
via

tio
n a

cro
ss

 st
ati

on
s

Fig. 5.8 Standard deviations of the residuals from the smooth of the log precipitation taken across
stations and within days. The solid line is an exponentiated smooth of the log of the variances.

The arguments are as follows:

fdobj A functional data object, functional basis object, a functional parameter
object or a matrix. If it a matrix, it is replaced by fd(fdobj). If
class(fdobj) == ’basisfd’, it is converted to an object of class fd
with a coefficient matrix consisting of a single column of zeros.

Lfdobj Either a nonnegative integer or a linear differential operator object. If
NULL, Lfdobj depends on fdobj[[’basis’]][[’type’]]:

bspline Lfdobj = int2Lfd(max(0, norder-2)), where
norder = norder(fdobj).

fourier Lfdobj is a harmonic acceleration operator set up for the period
used to define the basis.

anything else Lfdobj <- int2Lfd(0)

lambda A nonnegative real number specifying the amount of smoothing to be
applied to the estimated functional parameter.

estimate Not currently used.
penmat A roughness penalty matrix. Including this can eliminate the need to

compute this matrix over and over again in some types of calculations.

80 5 Smoothing: Computing Curves from Noisy Data

5.6.2 The smooth.basis Function

The calling sequence for smooth.basis is

smooth.basis(argvals, y, fdParobj,
wtvec=rep(1, length(argvals)),
fdnames=NULL)

The arguments are as follows:

argvals A vector of argument values correspond to the observations in array y.
y An array containing values of curves at a finite number of sampling points or

argument values. If the array is a matrix, the rows must correspond to argument
values and columns to replications, and it will be assumed that there is only one
variable per observation. If y is a three-dimensional array, the first dimension cor-
responds to argument values, the second to replications, and the third to variables
within replications. If y is a vector, only one replicate and variable are assumed.

fdParobj A functional parameter object, a functional data object or a func-
tional basis object. If the object is a functional parameter object, then the linear
differential operator object and the smoothing parameter in this object define the
roughness penalty. If the object is a functional data object, the basis within this
object is used without a roughness penalty, and this is also the case if the object
is a functional basis object.

wtvec A vector of the same length as argvals containing weights for the val-
ues to be smoothed.

fdnames A list of length three containing character vectors of names for the
following:

args Names for each observation or point in time at which data are collected.
reps Names for each rep, unit or subject.
fun Names for each function or (response) variable measured repeatedly (per
args) for each rep.

Function smooth.basis returns an argument of the fdSmooth class, which
is a named list of length eight with the following components:

fd A functional data object containing a smooth of the data.
df A degrees of freedom measure of the smooth.
gcv The value of the generalized cross-validation or GCV criterion. If there are

multiple curves, this is a vector of values, one per curve. If the smooth is mul-
tivariate, the result is a matrix of GCV values, with columns corresponding to
variables.

SSE The error sums of squares; SSE is a vector or a matrix of the same size as
gcv.

penmat The penalty matrix.
y2cMap The matrix mapping the data to the coefficients.
argvals, y Input arguments

5.7 Some Things to Try 81

5.7 Some Things to Try

1. In order to understand the implications of choice of smoothing parameter λ , it is
best to work with simulated data.

a. Choose a function with some interesting variation, such as
• sin(4πt) over [0,1]
• exp(−t2/2) over [-5,5]

b. Specifying some sampling points t j, j = 1, . . . ,n, evaluate your function at
these points, and add some mean 0 normal random error to these values, where
you specify the standard deviation.

c. Specify a basis system, an order of derivative to penalize, and a value smooth-
ing parameter λ , and bundle these together in an fdPar object.

d. Smooth the points using function smooth.basis (R) or smooth basis
(Matlab).

e. Compute the square root of the mean square error, and compare this to the
standard deviation that you used to generate the error. You might want to
subtract the equivalent degrees of freedom associated with the λ value that
you used from n before dividing the sum of squared errors.

f. Experiment with different values of λ , and find one that gives nearly the right
value for root mean square error.

g. Experiment with different values of λ , and save the GCV values for each.
Plot these GCV values against log10(λ), and estimate by eye the value of λ
minimizing GCV.

2. Now try your hand at smoothing some real data, such as what you used in the
exercises in Chapter 1.

3. Calculate the derivative of the function you used to generate the data in 1a. How
does the derivative of your smooth compare with this? Does some value for λ
other than that given by GCV improve the agreement between estimated and true
derivatives?

4. Melanoma Data The melanoma data set in the fda package for R contains
age-adjusted incidences of melanoma from the Connecticut Tumor Registry for
the years 1935 to 1972.

a. Fit these data with a Fourier basis, choosing the number of basis functions by
minimizing the gcv value returned by smooth.basis.

b. Try removing a linear trend for these data first, either directly or by looking
at the residuals after a call to lm. Repeat the steps above; does the optimal
number of basis functions change?

c. Refit the data using a B-spline basis and a harmonic acceleration penalty. Try
some values of λ to optimize gcv. You will need to guess at the period to use;
how does doubling and halving the period change the degrees of freedom at
the optimal value of λ?

d. Set up the linear differential operator ω2D2 +D4, which annihilates sinusoidal
combined with linear trend. Smooth the melanoma data using this operator.

82 5 Smoothing: Computing Curves from Noisy Data

e. Plot the velocity versus acceleration curves for the fit using a Fourier basis
and using the B-spline basis with a harmonic acceleration penalty. Are they
substantially different? Do they provide evidence of subcycles?

5.8 More to Read

There is a large literature on smoothing methods, and Ramsay and Silverman (2005)
devote a number of chapters to the problem. Recent book-length references are Eu-
bank (1999), Rupert et al. (2003), and Simonoff (1996). Moreover, there are smooth-
ing methods that do not define x explicitly in terms of basis functions that may serve
as well, such as local polynomial smoothing. However, the well-known method
of kernel smoothing, made all too available in software packages, should now be
viewed as obsolete because its poor performance near the end points of the interval
(Fan and Gijbels, 1996).

