
Chapter 6
Descriptions of Functional Data

This chapter and the next are the exploratory data analysis end of functional data
analysis. Here we recast the concepts of mean, standard deviation, covariance and
correlation into functional terms and provide R and Matlab functions for computing
and viewing them.

Exploratory tools are often the most fruitful when applied to residual variation
around some model, where we often see surprising effects once we have removed
relatively predictable structures from the data. Summary descriptions of residual
variation are also essential for estimating confidence regions.

Contrasts are often used in analysis of variance to explore prespecified patterns
of variation. We introduce the more general concept of a functional probe as a means
of looking for specific patterns or shapes of variation in functional data and of pro-
viding methods for estimating confidence limits for estimated probe values.

The phase-plane plot has turned out to be a powerful tool for exploring data
for harmonic variation, even in data on processes such as human growth where we
do not ordinarily think of cyclic variation as of much interest. It is essentially a
graphical analogue of a second order linear differential equation. In fact, the phase-
plane plot, developed in detail in this chapter, is a precursor to the dynamic equations
that we will explore in Chapter 11.

6.1 Some Functional Descriptive Statistics

Let xi, i = 1, . . . ,N, be a sample of curves or functions fit to data. The univariate
summaries, the sample mean and variance functions, are as follows:

x̄(t) = N−1 ∑
i

xi(t) and s(t) = (N−1)−1 ∑
i
[xi(t)− x̄(t)]2.

These are computed, for the log-precipitation data considered in Section 5.3, as
follows:
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84 6 Descriptions of Functional Data

meanlogprec = mean(logprec.fd)
stddevlogprec = std.fd(logprec.fd)

As always in statistics, choices of descriptive measures like the mean and variance
should never be automatic or uncritical. The distribution of precipitation is strongly
skewed, and by logging these data, we effectively work with the geometric mean of
precipitation as a more appropriate measure of location in the presence of substantial
skewness.

Beyond this specific application, the functional standard deviation focuses on
the intrinsic variability between observations, e.g., Canadian weather stations, after
removing variations that are believed to represent measurement and replication error
not attributable to the variability between observations. A proper interpretation of
the analyses of this section require an understanding of exactly what we mean by
std.fd and what is discarded in smoothing.

6.1.1 The Bivariate Covariance Function v(s, t)

As we indicated in Chapter 1, the correlation coefficient as a measure of association
between two functional observations xi(s) and xi(t) on the same quantity or metric
is often less useful than the simpler covariance coefficient, because they share the
same measurement scales. Where we want to quantify the association between two
functions x and y having different measurement scales, the correlation will still be
useful.

The bivariate covariance function σ(s, t) specifies the covariance between curve
values xi(s) and xi(t) at times s and t, respectively. It is estimated by

v(s, t) = (N−1)−1 ∑
i
[xi(s)− x̄(s)][xi(t)− x̄(t)]. (6.1)

For the log-precipitation data the R command is

logprecvar.bifd = var.fd(logprec.fd)

The result of this command is a bivariate functional data object having two argu-
ments. If we want to look at the variance-covariance surface, these commands in
Matlab will do the job:

logprecvar_bifd = var_fd(logprec_fd);
weektime = linspace(0,365,53);
logprecvar_mat = eval_bifd(weektime, weektime,

logprecvar_bifd);
surf(weektime, weektime, logprecvar_mat);
contour(weektime, weektime, logprecvar_mat);

The following will do essentially the same thing in R:

weektime = seq(0,365,length=53)
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logprecvar_mat = eval.bifd(weektime, weektime,
logprecvar.bifd)

persp(weektime, weektime, logprecvar_mat,
theta=-45, phi=25, r=3, expand = 0.5,
ticktype=’detailed’,
xlab="Day (July 1 to June 30)",
ylab="Day (July 1 to June 30)",
zlab="variance(log10 precip)")

contour(weektime, weektime, logprecvar_mat)

In our experience, contour and three-dimensional surface or perspective plots com-
plement each other in the information that they convey, and both are worth doing.
Surface plots draw our eye to global shape features, but we need contour plots to
locate these features on the argument plane.

Function var.fd may also be used to compute the cross-covariance be-
tween two sets of curves by being called with two arguments, such as in

tempprecbifd = var.fd(tempfd, logprec.fd)

If the cross-correlation surface is needed, however, we would use the function
cor.fd or its Matlab counterpart cor fd.

The variance of the log precipitation functions is seen in Figure 6.1 as the height
of the diagonal running from (0,0) to (365,365). There is much more variation in
precipitation in the winter months, positioned in this plot in the middle of the sur-
face, because the frigid atmosphere near polar stations like Resolute has almost no
capacity to carry moisture, while marine stations like Prince Rupert are good for a
soaking all year round. One is struck by the topographical simplicity of this partic-
ular surface, and we will understand this better in the next section.

The R commands

day5time = seq(0,365,5)
logprec.varmat = eval.bifd(day5time, day5time,

logprecvar.bifd)
contour(day5time, day5time, logprec.varmat,

xlab="Day (July 1 to June 30)",
ylab="Day (July 1 to June 30)", lwd=2,
labcex=1)

return the contour plot of the variance surface shown in Figure 6.2. We see that
variance across weather stations is about five times as large in the winter than it is
in the summer. The action is in winter in Canada!

The documentation for the surf and contour functions in Matlab describe
enhancements over the images visible in Figures 6.1 and 6.2. With R, other perspec-
tive and contour functions are available in the lattice (Sarkar, 2008) and rgl
(Adler and Murcoch, 2009) packages. In particular, the lattice package is use-
ful for high-dimensional graphics, showing, e.g., how the relationships displayed
in Figures 6.1 and 6.2 vary with region of the country. The rgl package provides
interactive control over perspective plots.
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Fig. 6.1 The estimated variance-covariance surface v(s, t) for the log precipitation data.
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Fig. 6.2 A contour plot of the bivariate variance-covariance surface for the log precipitation data.
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6.2 The Residual Variance-Covariance Matrix Σe

We considered the question of how the residuals ri j = yi j− xi(t j) behave in Section
5.5, and we will return to this question in Chapters 7 and 8. But in the meantime we
will need the conditional covariance matrix or residual covariance matrix describ-
ing the covariance of the residuals ri j at argvals t j, j = 1, ...,n. This is an order n
symmetric matrix Σe. Here the term conditional means the variation in the yi j’s left
unexplained by a smooth curve or by the use of some other model for the data. We
will use this matrix for computing confidence limits for curves and other values.

Unless a large number of replications of curves are available, as is the case for
the growth data, we have to restrict our aims to estimating fairly gross structure
in the residuals. In particular, it is often assumed that neighboring residuals are
uncorrelated, and one only attempts to estimate the standard deviation or variance
of the residuals across curves. Figure 5.8 offers a picture of this variation for the log
precipitation data. Under this assumption, the order n symmetric matrix Σe will be
diagonal and will contain values in the vector logprecvar1 computed in Section
5.5.

We will consider ways of extracting more information Σe in Chapter 7.

6.3 Functional Probes ρξ

Purely descriptive methods such as displaying mean and variance functions allow
us to survey functional variation without having to bring any preconceptions about
exactly what kind of variation might be important. This is fine as far as it goes, but
functions and their derivatives are potentially complex structures with a huge scope
for surprises, and we may need to “zoom in” on certain curve features.

Moreover, our experience suggests that a researcher seldom approaches func-
tional data without some fairly developed sense of what will be seen. We would be
surprised if we did not see the pubertal growth spurt in growth curves or sinusoidal
variation in temperature profiles. When we have such a structure in mind, we typi-
cally need to do two things: check the data to be sure that what we expect is really
there, and then do something clever to look around and beyond what we expect in
order to view the unexpected. Chapter 7 is mainly about looking for the dominant
modes of variation and covariation, but the tools that we develop there can also be
used to highlight interesting but more subtle features.

A probe ρξ is a tool for highlighting specific variation. Probes are variably
weighted linear combinations of function values. Let ξ be a weight function that
we apply to a function x as follows:

ρξ (x) =
∫

ξ (t)x(t)dt. (6.2)
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If ξ has been structured so as to be a template for a specific feature or pattern of
variation in x, then the resulting probe value ρξ (x) will be substantially far from
zero. The term contrast in experimental design or linear models has much the same
meaning as probe, but there is no particular need for probe functions to integrate to
zero.

The value of a probe function is computing using the inprod function. Sup-
pose xifd and xfd are two functional data objects for the weight function ξ and
observed curve x, respectively. The probe value probeval is computed by the
command

probeval = inprod(xifd, xfd)

The integration in this calculation can be done to within machine precision in many
cases, or otherwise is computed by a numerical approximation method.

Probe weight functions ξ may also be estimated from the data rather than cho-
sen a priori. Two methods discussed in Chapter 7, principal components analysis
and canonical correlation analysis, are designed to estimate probes empirically that
highlight large sources of variation or covariation.

6.4 Phase-Plane Plots of Periodic Effects

The two concepts of energy and of functional data having variation on more than one
timescale lead to the graphical technique of plotting one derivative against another,
something that we will call phase-plane plotting. We saw an example in Figure 1.15
for displaying the dynamics in human growth.

We now return to the US nondurable goods manufacturing index, plotted in Fig-
ures 1.3 and 1.4, to illustrate these ideas. A closer look at a comparatively stable
period, 1964 to 1967 shown in Figure 6.3, suggests that the index varies fairly
smoothly and regularly within each year. The solid line is a smooth of these data
using the roughness penalty method described in Chapter 5. We now see that the
variation within this year is more complex than Figure 1.4 can possibly reveal. This
curve oscillates three times during the year, with the size of the oscillation being
smallest in spring, larger in the summer, and largest in the autumn. In fact, each
year shows smooth variation with a similar amount of detail, and we now consider
how we can explore these within-year patterns.

6.4.1 Phase-Plane Plots Show Energy Transfer

Now that we have derivatives at our disposal, we can learn new things by studying
how derivatives relate to each other. Our tool is the plot of acceleration against ve-
locity. To see how this might be useful, consider the phase-plane plot of the function
sin(2πt), shown in Figure 6.4. This simple function describes a basic harmonic pro-



6.4 Phase-Plane Plots of Periodic Effects 89

1964 1965 1966 1967

1.62

1.64

1.66

1.68

1.7

1.72

Year

Lo
g 10

 N
on

du
ra

bl
e 

G
oo

ds
 In

de
x

1964 1965 1966 1967

1.62

1.64

1.66

1.68

1.7

1.72

Year

Lo
g 10

 N
on

du
ra

bl
e 

G
oo

ds
 In

de
x

Fig. 6.3 The log nondurable goods index for 1964 to 1967, a period of comparative stability. The
solid line is a fit to the data using a polynomial smoothing spline. The circles indicate the value of
the log index at the first of the month.

cess, such as the vertical position of the end of a suspended spring bouncing with a
period of one time unit.

Springs and pendulums oscillate because energy is exchanged between two
states: potential and kinetic. At times π,3π, . . . the spring is at one or the other
end of its trajectory, and the restorative force due to its stretching has brought it
to a standstill. At that point, its potential energy is maximized, and so is the force,
which is acting either upward (positively) or downward. Since force is proportional
to acceleration, the second derivative of the spring position,−(2π)2 sin(2πt), is also
at its highest absolute value, in this case about ±40. On the other hand, when the
spring is passing through the position 0, its velocity, 2π cos(2πt), is at its greatest,
about ±8, but its acceleration is zero. Since kinetic energy is proportional to the
square of velocity, this is the point of highest kinetic energy. The phase-plane plot
shows this energy exchange nicely, with potential energy being maximized at the
extremes of Y and kinetic energy at the extremes of X .

The amount of energy in the system is related to the width and height of the
ellipse in Figure 6.4; the larger it is, the more energy the system exhibits, whether
in potential or kinetic form.
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Fig. 6.4 A phase-plane plot of the simple harmonic function sin(2πt). Kinetic energy is maximized
when acceleration is 0, and potential energy is maximized when velocity is 0.

6.4.2 The Nondurable Goods Cycles

Harmonic processes and energy exchange are found in many situations besides me-
chanics. In economics, potential energy corresponds to resources including capital,
human resources, and raw material that are available to bring about some economic
activity. This energy exchange can be evaluated for nondurable goods manufactur-
ing as displayed in Figure 6.3. Kinetic energy corresponds to the manufacturing
process in full swing, when these resources are moving along the assembly line and
the goods are being shipped out the factory door.

We use the phase-plane plot, therefore, to study the energy transfer within the
economic system. We can examine the cycle within individual years, and also see
more clearly how the structure of the transfer has changed throughout the 20th cen-
tury. Figure 6.5 presents a phase-plane plot for 1964, a year in a relatively stable
period for the index. To read the plot, find “jan” in the middle right of the plot and
move around the diagram clockwise, noting the letters indicating the months as you
go. You will see that there are two large cycles surrounding zero, plus some small
cycles that are much closer to the origin.

The largest cycle begins in mid-May (M), with positive velocity and near zero
acceleration. Production is increasing linearly or steadily at this point. The cycle
moves clockwise through June (“Jun”) and passes the horizontal zero acceleration
line at the end of the month, when production is now decreasing linearly. By mid-
July (“Jly”) kinetic energy or velocity is near zero because vacation season is in full
swing. But potential energy or acceleration is high, and production returns to the
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Fig. 6.5 A phase-plane plot of the first derivative or velocity and the second derivative or acceler-
ation of the smoothed log nondurable goods index for 1964. Midmonths are indicated by the first
letters or short abbreviations.

positive kinetic/zero potential phase in early August (“Aug”), and finally concludes
with a cusp at summer’s end (S). At this point the process looks like it has run out
of both potential and kinetic energy.

The cusp, near where both derivatives are zero, corresponds to the start of school
in September and the beginning of the next big production cycle passing through
the autumn months of October through November. Again this large cycle terminates
in a small cycle with little potential and kinetic energy. This takes up the months of
February and March (F and mar). The tiny subcycle during April and May seems
to be due to the spring holidays, since the summer and fall cycles, as well as the
cusp, do not change much over the next two years, but the spring cycle cusp moves
around, reflecting the variability in the timings of Easter and Passover.

To summarize, the production year in the 1960s has two large cycles swinging
widely around zero, each terminating in a small cusplike cycle. This suggests that
each large cycle is like a balloon that runs out of air, the first at the beginning of
school and the second at the end of winter. At the end of each cycle, it may be that
new resources must be marshaled before the next production cycle can begin.

6.4.3 Phase-Plane Plotting the Growth of Girls

Here are the commands in Matlab used to produce Figure 1.15. They use a func-
tional data object hgtfmonfd that contains the 54 curves for the Berkeley girls
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estimated by monotone smoothing. Velocities and accelerations are first evaluated
over a fine mesh of ages for the first ten girls using the eval fd function. Then all
10 phase-plane plots are produced, followed by plots of the sixth girl’s curve as a
heavy dashed line, and of circles positioned at the age 11.7 for each girl. Labels and
axis limits are added at the end.

agefine = linspace(1,18,101);
velffine = eval_fd(agefine, hgtfmonfd(1:10), 1);
accffine = eval_fd(agefine, hgtfmonfd(1:10), 2);
phdl = plot(velffine, accffine, ’k-’, ...

[1,18], [0,0], ’k:’);
set(phdl, ’LineWidth’, 1)
hold on
phdl = plot(velffine(:,6), accffine(:,6), ...

’k--’, [0,12], [0,0], ’k:’);
set(phdl, ’LineWidth’, 2)
phdl=plot(velffine(64,index), accffine(64,index), ...

’ko’);
set(phdl, ’LineWidth’, 2)
hold off
xlabel(’\fontsize{13} Velocity (cm/yr)’)
ylabel(’\fontsize{13} Acceleration (cm/yrˆ2)’)
axis([0,12,-5,2])

What we see is that girls with early pubertal growth spurts, having marker circles
near the end of their trajectories, have intense spurts, indicated by the size of their
loops. Late-spurt girls have tiny loops. The net effect is that the adult height of girls
is not much affected by the timing of the growth spurt, since girls with late spurts
have the advantage of a couple of extra years of growth, but the disadvantage of a
weak spurt. A hint of the complexity of growth dynamics in infancy is given by the
two girls whose curves come from the right rather than from the bottom of the plot.

6.5 Confidence Intervals for Curves and Their Derivatives

indexderivatives!confidence intervals We now want to see how to compute confi-
dence limits on some useful quantities that depend on an estimated function x that
has, in turn, been computed by smoothing with a roughness penalty a data vector y.
For example, how precisely is the function value at t, x(t), determined by our sam-
ple of data y? Or, what sampling standard deviation can we expect if we re-sample
the data over and over again, estimating x(t) anew with each sample? Can we con-
struct a pair of confidence limits such that the probability that the true value of x(t)
lies within these limits is a specified value, such as 0.95? Displaying functions or
their derivatives with pointwise confidence limits is a useful way of conveying how
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much information there is in the data used to estimate these functions. See Figure
6.6 below for an example.

More generally, confidence regions are often required for the values of linear
probes ρξ defined in (6.2), of which x(t) and Dmx(t) are specific examples.

6.5.1 Two Linear Mappings Defining a Probe Value

In order to study the sampling behavior of ρξ , we need to compute two linear map-
pings plus their composite. They are given names and described as follows:

1. Mapping y2cMap, which converts the raw data vector y to the coefficient vector
c of the basis function expansion of x. If y and c have lengths n and K, respec-
tively, this mapping is a K by n matrix y2cMap such that

c = y2cMap y

where the K by n matrix y2cMap was defined in Chapter 5 by either (5.5) or
(5.17).

2. Mapping c2rMap, which converts the coefficient vector c to the scalar quantity
ρξ (x). This mapping is a 1 by K row vector L such that

ρξ (x) = Lc = c2rMap c.

3. The composite mapping called y2rMap defined by

y2rMap= ρξ (x) = c2rMap y2cMap,

which converts a data vector y directly into the probe value; this is a 1 by n row
vector.

How is L = c2rMap actually calculated? In general, the computation includes
the use of the all-important inner product function inprod to compute the integral
(6.2). This function is working away behind the scenes in almost every functional
data analysis. It evaluates the integral of the product of two functions (or the matrices
defined by products of sets of functions), such as that defining the roughness penalty
matrix R =

∫
LφLφ ′ defined in Subsection 5.2.2. Where possible, this function uses

an analytic expression for these integral values. However, more often than not, this
computation requires numerical approximation.

The four important arguments to function inprod are as follows:

fdobj1 Either a functional data object or a functional basis object.
fdobj2 Also either a functional data object or a functional basis object. It is the

integral of the products of these two objects that is computed. If either of these
first two arguments are a basis object, it is converted to a functional data object
with an identity matrix as its coefficient matrix.
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Lfdobj1 A linear differential operator object of class Lfd to be applied to
fdobj1. If missing, the result of applying it is taken to be the function itself,
that is, it is the identity operator.

Lfdobj2 Also a linear differential operator object of class Lfd to be applied to
fdobj2.

For the problem of computing c2rMap, one of the first two arguments would
be a functional data object for the weight function ξ ; the other would be the func-
tional basis object used in the expansion of function x. As an illustration, consider a
conventional linear regression model with design matrix Z

y = Zc+ e,

where the regression coefficient vector c is estimated by ordinary least squares.
Then, since c =(Z′Z)−1Z′y, the matrix corresponding to y2cMap is S =(Z′Z)−1Z′.
Now suppose that for some reason we want to estimate the difference between the
first and second regression coefficients, possibly because we conjecture that they
may be equal in the population. Then the probe function ξ is equivalent to the
probe vector L = (1,−1,0, . . .), and this is the row vector corresponding to map-
ping c2rMap. Finally, the composite mapping y2rMap taking y directly into the
value of this difference is simply the row vector L(Z′Z)−1Z′.

For a more complicated example, suppose that we want to compare winter tem-
peratures and precipitations for the 35 Canadian weather stations, and we have al-
ready defined basis objects tempbasis and precbasis, respectively. Suppose,
too, that we have run the year from July 1 to June 30, so that winter is in the middle
of the year. We can use as a probe function

ξ (t) = exp{20cos[2∗π(t−197)/365]},

which is proportional to the density for the von Mises distribution of data on a
circle; the concentration parameter value 20 weights substantially about two months,
and the location value 197 centers the weighting on approximately January 15 (see
(Fisher et al., 1987) for more details.) The following code sets up the functional
data object for ξ and then carries out the two integrations required for the two sets
of 35 probe values produced by integrating the product of ξ with each of the basis
functions in each of the two systems.

dayvec = seq(0,365,len=101)
xivec = exp(20*cos(2*pi*(dayvec-197)/365))
xibasis = create.bspline.basis(c(0,365),13)
xifd = smooth.basis(dayvec, xivec, xibasis)$fd
tempLmat = inprod(tempbasis, xifd)
precLmat = inprod(precbasis, xifd)

The random behavior of the estimator of whatever we choose to estimate is ul-
timately tied to the random behavior of the data vector y. Let us indicate the order
n variance-covariance matrix of y as Var(y) = Σ e. Recall that we are operating in
this chapter with the model
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y = x(t)+ ε ,

where x(t) here means the n-vector of values of x at the n argument values t j. In this
model x(t) is regarded as fixed, and as a consequence Σ e = Var(ε).

6.5.2 Computing Confidence Limits for Probe Values

We compute confidence limits in this book by a rather classic method: The covari-
ance matrix Σξ of ξ = Ay is

Σξ = AΣyA′. (6.3)

If the residuals from a smooth of the data have a variance-covariance matrix Σe,
then we see from ĉ =y2cMap y that the coefficients will have a variance-covariance
matrix

Σc = y2cMap Σe y2cMap
′

We use the conditional variance of the residuals in this equation because we are
only interested in the uncertainty in our estimate of c that comes from unexplained
variation in y after we have explained what we can with our smoothing process. This
in turn estimates the random variability in our estimate of the smooth.

We apply (6.3) a second time to get the variance-covariance matrix Σξ for a
functional probe by

Σξ = c2rMap Σc c2rMap
′ = c2rMap y2cMap Σe y2cMap

′ c2rMap′. (6.4)

6.5.3 Confidence Limits for Prince Rupert’s Log Precipitation

We can now plot the smooth of the precipitation data for Prince Rupert, British
Columbia, Canada’s rainiest weather station. The log precipitation data are stored
in 365 by 35 matrix logprecav, and Prince Rupert is the 29th weather station in
our database. We first smooth the data:

lambda = 1e6;
fdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logprecList= smooth.basis(day.5, logprecav, fdParobj)
logprec.fd = logprecList$fd
fdnames = list("Day (July 1 to June 30)",

"Weather Station" = CanadianWeather$place,
"Log 10 Precipitation (mm)")

logprec.fd$fdnames = fdnames

Next we estimate Σe, which we assume is diagonal. Consequently, we need only
estimate the variance of the residuals across weather stations for each day. We do
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this by smoothing the log of the mean square residuals and then exponentiating the
result:

logprecmat = eval.fd(day.5, logprec.fd)
logprecres = logprecav - logprecmat
logprecvar = apply(logprecresˆ2, 1, sum)/(35-1)
lambda = 1e8
resfdParobj = fdPar(daybasis, harmaccelLfd, lambda)
logvar.fit = smooth.basis(day.5, log(logprecvar),

resfdParobj)
logvar.fd = logvar.fit$fd
varvec = exp(eval.fd(daytime, logvar.fd))
SigmaE = diag(as.vector(varvec))

Next we get y2cMap from the output of smooth.basis, and compute c2rMap
by evaluating the smoothing basis at the sampling points. We then compute the
variance-covariance matrix for curve values, and finish by plotting the log precip-
itation curve for Prince Rupert along with this curve plus and minus two standard
errors. The result is Figure 6.6.

y2cMap = logprecList$y2cMap
c2rMap = eval.basis(day.5, daybasis)
Sigmayhat = c2rMap %*% y2cMap %*% SigmaE %*%

t(y2cMap) %*% t(c2rMap)
logprec.stderr = sqrt(diag(Sigmayhat))
logprec29 = eval.fd(day.5, logprec.fd[29])
plot(logprec.fd[29], lwd=2, ylim=c(0.2, 1.3))
lines(day.5, logprec29 + 2*logprec.stderr,

lty=2, lwd=2)
lines(day.5, logprec29 - 2*logprec.stderr,

lty=2, lwd=2)
points(day.5, logprecav[,29]))

6.6 Some Things to Try

1. The 35 Canadian weather stations are divided into four climate zones. These are
given in the character vector CanadianWeather$region that is available
in the fda package. After computing and plotting the variance-covariance func-
tional data object for the temperature data, compare this with the same analysis
applied only to the stations within each region to see if the variability varies be-
tween regions. In Chapter 10 we will examine how the mean temperature curves
changes from one region to another.

2. What does the covariance bivariate functional data object look like describing the
covariation between temperature and log precipitation?
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Fig. 6.6 The solid curve is the smoothed base 10 logarithm of the precipitation at Prince Rupert,
British Columbia. The dashed lines indicate 95% pointwise confidence limits for the smooth curve
based on the data shown as circles.

3. Examine the phase-plane diagram for each of the temperature curves.
4. Compute the standard deviation function for the precipitation data and for the log

precipitation data. For each case, plot values of the standard deviation function
against values of the mean function. Do you see a general linear trend for the
precipitation data and less of that trend for the log precipitation data?

5. Examine the residuals for the growth data from their monotone smooths. Do
they appear to be normally distributed or do they exhibit long tails? Do the error
variances seem to vary substantially from child to child? Are there any outliers,
perhaps due to a failure of the smoothing algorithm, or problems with the mea-
surement process? How does error variance depend on age?

6. Explore the residuals for correlation structure. How would one do this when the
data are not equally distributed? One possibility is to treat them as spatial data,
and use methods developed in that domain to answer these questions.




