Chapter 7

Exploring Variation: Functional Principal and
Canonical Components Analysis

Now we look at how observations vary from one replication or sampled value to the
next. There is, of course, also variation within observations, but we focused on that
type of variation when considering data smoothing in Chapter 5.

Principal components analysis, or PCA, is often the first method that we turn to
after descriptive statistics and plots. We want to see what primary modes of varia-
tion are in the data, and how many of them seem to be substantial. As in multivariate
statistics, eigenvalues of the bivariate variance-covariance function v(s,t) are indi-
cators of the importance of these principal components, and plotting eigenvalues is
a method for determining how many principal components are required to produce
a reasonable summary of the data.

In functional PCA, there is an eigenfunction associated with each eigenvalue,
rather than an eigenvector. These eigenfunctions describe major variational compo-
nents. Applying a rotation to them often results in a more interpretable picture of
the dominant modes of variation in the functional data, without changing the total
amount of common variation.

We take some time over PCA partly because this may be the most common func-
tional data analysis and because the tasks that we face in PCA and our approaches to
them will also be found in more model-oriented tools such as functional regression
analysis. For example, we will see that each eigenfunction can be constrained to
be smooth by the use of roughness penalties, just as in the data smoothing process.
Should we use rough functions to capture every last bit of interesting variation in the
data and then force the eigenfunctions to be smooth, or should we carefully smooth
the data first before doing PCA?

A companion problem is the analysis of the covariation between two different
functional variables based on samples taken from the same set of cases or individu-
als. For example, what types of variation over weather stations do temperature and
log precipitation share? How do knee and hip angles covary over the gait cycle?
Canonical correlation analysis (CCA) is the method of choice here. We will see
many similarities between PCA and CCA.
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7.1 An Overview of Functional PCA

In multivariate statistics, variation is usually summarized by either the covariance
matrix or the correlation matrix. Because the variables in a multivariate observation
can vary a great deal in location and scale due to relatively arbitrary choices of
origin and unit of measurement, and because location/scale variation tends to be
uninteresting, multivariate analyses are usually based on the correlation matrix. But
when an observation is functional, values x;(s) and x;(¢) have the same origin and
scale. Consequently, either the estimated covariance function

v(s,t) = (N = 1)~ Y [xi(s) —(s)] (1) — %(0)],
or the cross-product function

c(s,r) =N"1 Z’x,-(s)xi(z‘)7

will tend to be more useful than the correlation function

r(s,t):L.

(s, $)v(z,1)]

Principal components analysis may be defined in many ways, but its motivation
is perhaps clearer if we define PCA as the search for a probe &, of the kind that we
defined in Chapter 6, that reveals the most important type of variation in the data.
That is, we ask, “For what weight function £ would the probe scores

pel) = [ &w)nar

have the largest possible variation?” In order for the question to make sense, we
have to impose a size restriction on &, and it is mathematically natural to require
that [E2(¢)ds = 1.

Of course, the mean curve by definition is a mode of variation that tends to be
shared by most curves, and we already know how to estimate this. Consequently, we
usually remove the mean first and then probe the functional residuals x; — X. Later,
when we look at various types of functional regression, we may also want to first
remove other known sources of variation that are explainable by multivariate and/or
functional covariates.

The probe score variance Var[[ &(t)(x;(t) — %(t))?dt] associated with a probe
weight € is the value of

U= mgax{Zpg(x,-)} subject to /éz(t)dt =1. (7.1)



7.1 An Overview of Functional PCA 101

In standard terminology, it and & are referred to as the largest eigenvalue and eigen-
function, respectively, of the estimated variance-covariance function v. An alterna-
tive to the slightly intimidating term “eigenfunction” is harmonic.

As in multivariate PCA, a nonincreasing sequence of eigenvalues L > pp >
... Wy can be constructed stepwise by requiring each new eigenfunction, computed
in step ¢, to be orthogonal to those computed on previous steps,

/éj(t)ég(t)dtZO, j=1,....0—1 and /55@)&:1. (7.2)

In multivariate settings the entire suite of eigenvalue/eigenvector pairs would be
computed by the eigenanalysis of the covariance matrix V, solving the matrix eigen-
equation V& =M i j- The approach is essentially the same for functional data;
that is, we calculate eigenfunctions &§; of the bivariate covariance function v(s,?) as
solutions of the functional eigenequation

[0 = w&(s) (7.3)

We see here as well as elsewhere that going from multivariate to functional data
analysis is often only a matter of replacing summation over integer indices by inte-
gration over continuous indices such as t. Although the computation details are not
at all the same, this is thankfully hidden by the notation and dealt with in the fda
package.

However, there is an important difference between multivariate and functional
PCA caused by the fact that, whereas in multivariate data the number of variables p
is usually less than the number of observations N, for functional data the number of
observed function values 7 is usually greater than N. This implies that the maximum
number of nonzero eigenvalues in the functional context is min{N — 1,K,n}, and in
most applications will be N — 1.

Suppose, then, that our software can present us with, say, N — | positive eigen-
value/eigenfunction pairs (u;j,&;). What do we do next? For each choice of ¢,
1 < ¢ <N —1, the ¢ leading eigenfunctions or harmonics define a basis system
that can be used to approximate the sample functions x;. These basis functions are
orthogonal to each other and are normalized in the sense that [ épz = 1. They are
therefore referred to as an orthonormal basis. They are also the most efficient basis
possible of size £ in the sense that the total error sum of squares

N
PCASSE =) / i(t) — 7(1) — €& (1)]2de (7.4)

is the minimum achievable with only ¢ basis functions. Of course, other /-dimensional
systems certainly exist that will do as well, and we will consider some shortly, but
none will do better. In the physical sciences, these optimal basis functions &; are
often referred to as empirical orthogonal functions.

It turns out that there is a simple relationship between the optimal total squared
error and the eigenvalues that are discarded, namely that



102 7 Exploring Variation: Functional Principal and Canonical Components Analysis

N—-1

PCASSE= ) M.
j=lH1

It is usual, therefore, to base a decision on the number ¢ of harmonics to use on a
visual inspection of a plot of the eigenvalues (i; against their indices j, a display
that is often referred to in the social science literature as a scree plot. Although there
are a number of proposals for automatic data-based rules for deciding the value of
£, many nonstatistical considerations can also affect this choice.

The coefficient vectors ¢;,i = 1,...,N contain the coefficients ¢;; that define the
optimal fit to each function x;, and are referred to as principal component scores.
They are given by the following:

cij = P (i~ %) = / E5(1)[ile) — 5(1)]dr. (71.5)

As we will show below, they can be quite helpful in interpreting the nature of the
variation identified by the PCA. It is also common practice to treat these scores as
“data” to be subjected to a more conventional multivariate analysis.

We suggested that the eigenfunction basis was optimal but not unique. In fact, for
any nonsingular square matrix L of order ¢, the system ¢ = T¢ is also optimal and
spans exactly the same functional subspace as that spanned by the eigenfunctions.
Moreover, if T/ = T, such matrices being often referred to as rotation matrices,
the new system ¢ is also orthonormal. There is, in short, no mystical significance to
the eigenfunctions that PCA generates, a simple fact that is often overlooked in text-
books on multivariate statistics. Well, okay, perhaps ¢ = 1 is an exception. In fact,
it tends to happen that only the leading eigenfunction has an obvious meaningful
interpretation in terms of processes known to generate the data.

But for ¢ > 1, there is nothing to prevent us from searching among the infinite
number of alternative systems ¢ = T& to find one where all of the orthonormal basis
functions ¢; are seen to have some substantive interpretation. In the social sciences,
where this practice is routine, a number of criteria for optimizing the chances of
interpretability have been devised for choosing a rotation matrix T, and we will
demonstrate the usefulness of the popular VARIMAX criterion in our examples.

Readers are referred at this point to standard texts on multivariate data analysis
or to the more specialized treatment in Jolliffe (2002) for further information on
principal components analysis. Most of the material in these sources applies to this
functional context.

7.2 PCA with Function pca. fd

Principal component analysis is implemented in the functions pca . fd and pca_-fd
in R and Matlab, respectively. The call in R is

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar (fdobj),
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centerfns = TRUE)

The first argument is a functional data object containing the functional data to be
analyzed, and the second specifies the number ¢ of principal components to be re-
tained. The third argument is a functional parameter object that provides the in-
formation necessary to smooth the eigenfunctions if necessary; we will postpone
this topic to Section 7.3. Finally, although most principal components analyses are
applied to data with the mean function subtracted from each function, the final ar-
gument permits this to be suppressed.

Function pca . £d in R returns an object with the class name pca . £d, so that it
is effectively a constructor function. Here are the named components for this class:

harmonics A functional data object for the £ harmonics or eigenfunctions &;.

values The complete set of eigenvalues ;.

scores The matrix of scores ¢;; on the principal components or harmonics.

varprop A vector giving the proportion t;/ Y p; of variance explained by each
eigenfunction.

meanfd A functional data object giving the mean function X.

7.2.1 PCA of the Log Precipitation Data

Here is the command to do a PCA using only two principal components for the log
precipitation data and to display the eigenvalues.

logprec.pcalist = pca.fd(logprecfd, 2)
print (logprec.pcalist$values)

We observe that these two harmonics account for 96% of the variation around the
mean log precipitation curve; the first four eigenvalues are 39.5, 3.9, 1.0 and 0.4,
respectively.

The two principal components are plotted by the command

plot.pca.fd(logprec.pcalist)

Figure 7.1 shows the two principal component functions by displaying the mean
curve along +’s and —’s indicating the consequences of adding and subtracting a
small amount of each principal component. We do this because a principal com-
ponent represents variation around the mean, and therefore is naturally plotted as
such. We see that the first harmonic, accounting for 88% of the variation, represents
arelative constant vertical shift in the mean, and that the second shows essentially a
contrast between winter and summer precipitation levels.

It is in fact usual for unrotated functional principal components to display the
same sequence of variation no matter what is being analyzed. The first will be a
constant shift, the second a linear contrast between the first and second half with a
single crossing of zero, the third a quadratic pattern, and so on. That is, we tend to
see the sequence of orthogonal polynomials. However, for periodic data, where only
periodic harmonics are possible, the linear contrast is suppressed.
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PCA function 1 (Percentage of variability 87.4 )
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Fig. 7.1 The two principal component functions or harmonics are shown as perturbations of the
mean, which is the solid line. The +’s show what happens when a small amount of a principal
component is added to the mean, and the —’s show the effect of subtracting the component.

The fact that unrotated functional principal components are so predictable em-
phasizes the need for looking for a rotation of them that can reveal more meaningful
components of variation. The VARIMAX rotation algorithm is often used for this
purpose. The following command applies this rotation and then plots the result:

logprec.rotpcalist = varmx.pca.fd(logprec.pcalist)
plot.pca.fd(logprec.rotpcalist)

The results are plotted in Figure 7.2. The first component portrays variation that is
strongest in midwinter and the second captures primarily summer variation.

It can be profitable to plot the principal component scores for pairs of harmon-
ics to see how curves cluster and otherwise distribute themselves within the K-
dimensional subspace spanned by the eigenfunctions. Figure 7.3 reveals some fas-
cinating structure. Most of the stations are contained within two clusters: the upper
right with the Atlantic and central Canada stations and the lower left with the prairie
and mid-Arctic stations. The outliers are the three west coast stations and Resolute
in the high Arctic. Often, functional data analyses will turn into a multivariate data
analysis at this point by using the component scores as “data matrices” in more
conventional analyses.

It may be revealing to apply PCA to some order of derivative rather than to
the curves themselves, because underlying processes may reveal their effects at the
change level rather than at the level of what we measure. This is certainly true of
growth curve data, where hormonal processes and other growth activators change
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Fig. 7.2 The two rotated principal component functions are shown as perturbations of the mean,
which is the solid line. The top panel contains the strongest component, with variation primarily in

the midwinter. The bottom panel shows primarily summer variation.
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Fig. 7.3 The scores for the two rotated principal component functions are shown as circles. Se-

lected stations are labeled in order to identify the two central clusters and the outlying stations.
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the rate of change of height and can be especially evident at the level of the acceler-
ation curves that we plotted in Section 1.1.

7.2.2 PCA of Log Precipitation Residuals

We can now return to exploring the residuals from the smooths of the log precipita-
tion curves in Chapter 5. First, we set up function versions of the residuals and plot
them:

logprecres.fd = smooth.basis(day.5, logprecres,
fdParobj) $fd
plot (logprecres.fd, lwd=2, col=1l, lty=1l, cex=1.2,
x1lim=c(0,365), ylim=c(-0.07, 0.07),
xlab="Day", ylab="Residual (log 10 mm)")

These are shown in Figure 7.4. There we see that, while most of these residual
functions show fairly chaotic variation, three stations have large oscillations in sum-
mer and autumn. The result of estimating a single principal component is shown
in Figure 7.5, where we see the mean residual along with the effect of adding and
subtracting this first component. The mean residual itself shows the oscillation that
we have noted. The principal component accounts for about 49% of the residual
variance about this mean. It defines variation around the mean oscillation located
in these months. Three stations have much larger scores on this component: They
are Kamloops, Victoria and Vancouver, all in southern British Columbia. It seems
that rainfall events come in cycles in this part of Canada at this time of the year, and
there is interesting structure to be uncovered in these residuals.

7.3 More Functional PCA Features

In multivariate PCA, we control the level of fit to the data by selecting the number
of principal components. In functional PCA, we can also modulate fit by controlling
the roughness of the estimated eigenfunctions. We do this by modifying the defini-
tion of orthogonality. If, for example, we want to penalize excessive curvature in
principal components, we can use this generalized form of orthogonality:

[E0&@d+ A [ 080D g0 =0, 76

where A controls the relative emphasis on orthogonality of second derivatives in
much the same way as it does in roughness—controlled smoothing. This gives us a
powerful new form of leverage in defining a decomposition of variation.
Roughness-penalized PCA also relates to a fundamental aspect of variation in
function spaces. Functions can be large in two distinct ways: first and most obvi-
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Fig. 7.4 The smoothed residual functions for the log precipitation data.
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Fig. 7.5 The first principal component for the log precipitation residual functions, shown by adding
(+) and subtracting (-) the component from the mean function (solid line).
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ously in terms of their amplitude, and second in terms of their complexity or amount
of high-frequency variation. This second feature is closely related to how rapidly a
Fourier series expansion of a function converges, and is therefore simply another
aspect of how PCA itself works. This second type of size of principal components
is what A controls. Ramsay and Silverman (2005) show how A in PCA can be data-
defined via cross-validation.

7.4 PCA of Joint X-Y Variation in Handwriting

Of course, functions themselves may be multivariate. When we apply PCA to the
data shown in Section 1.2 on the writing of the script “fda,” we have to do a simulta-
neous PCA of the X and Y coordinates. The corresponding eigenfunctions will also
be multivariate, but each eigenfunction is still associated with a single eigenvalue
u;. This means that multivariate PCA is not the same thing as separate PCA’s ap-
plied to each coordinate in turn. The multivariate PCA problem, therefore, blends
together the aspects of multivariate and functional data analyses.

At the level of code, however, multivariate PCA is achieved seamlessly by func-
tion pca.fd. These R commands define a small but sufficient number of basis
functions for representing the “fda” handwriting data as a bivariate functional data
object, smooth the data, and install appropriate labels for the dimensions.

fdarange = c (0, 2300)

fdabasis = create.bspline.basis (fdarange, 105, 6)
fdatime = seqg(0, 2300, len=1401)
fdafd =

smooth.basis (fdatime, handwrit, fdabasis)S$fd
fdafd$Sfdnames[[1]] = "Milliseconds"
fdafdSfdnames[[2]] = "Replications"
fdafd$Sfdnames[[3]] = list ("X", "Y")

These R commands carry out the PCA of the bivariate functional data object fdafd
using three harmonics, plot the unrotated eigenfunctions, perform a VARIMAX ro-
tation of these eigenfunctions, and replot the results.

nharm = 3

fdapcalist = pca.fd(fdafd, nharm)
plot.pca.fd(fdapcalist)

fdarotpcalist = varmx.pca.fd(fdapcalist)
plot.pca.fd(fdarotpcalist)

How did we settle on three for the number of harmonics? We have found that the
logarithm of eigenvalues tend to decrease linearly after an initial few that are large.
The following commands plot the log eigenvalues up to j = 12 with the least-squares
linear trend in the eigenvalue with indices 4 to 12.

fdaeig = fdapcalist$values
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neig = 12

X = matrix (1, neig-nharm, 2)

x[,2] = (nharm+1l) :neig

y = loglO(fdaeig[ (nharm+l) :neig])
c = 1sfit (x,y,int=FALSE) Scoef

par (mfrow=c(1l,1),cex=1.2)

plot (l:neig, loglO(fdaeig[l:neig]), "b",
xlab="Eigenvalue Number",
ylab="Logl0 Eigenvalue")

lines(l:neig, c[l]+ c[2]*(l:neiqg), 1lty=2)

The result is Figure 7.6. The first three log eigenvalues seem well above the linear
trend in the next nine, suggesting that the leading three harmonics are important.
Together they account for 62% of the variation in the scripts.

-2.6
|

Log10 Eigenvalue
X -3.4 . .
|

-36
|
s

Eigenvalue Number

Fig. 7.6 The logarithms (base 10) of the first 12 eigenvalues in the principal components analysis
of the “fda” handwriting data. The dashed line indicates the linear trend in the last nine in the
sequence.

Figure 7.7 plots two of the VARIMAX-rotated eigenfunctions as perturbations
of the mean script. The rotated harmonic on the left mostly captures variation in the
lower loop of “f”, and the harmonic on the right displays primarily variation in its
upper loop. This suggests that variabilities in these two loops are independent of
each other.

We can also analyze situations where there are both functional and multivariate
data available, such as handwritings from many subjects along with measurements
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Fig. 7.7 Two of the rotated harmonics are plotted as a perturbations of the mean “fda” script,
shown as a heavy solid line.

of subject characteristics such as age, ethnicity, etc. See Ramsay and Silverman
(2005) for further details.

7.5 Exploring Functional Covariation with Canonical
Correlation Analysis

We often want to examine the ways in which two sets of curves (x;,y;),i =1,...,N,
share variation. How much variation, for example, is shared between temperature
and log precipitation over the 35 Canadian weather stations? This question is re-
lated to the issue of how well one can predict one from another, which we will take
up in the next chapter. Here, we consider a symmetric view on the matter that does
not privilege either variable. We offer here only a quick summary of the mathemat-
ical aspects of canonical correlation analysis, and refer the reader to Ramsay and
Silverman (2005) for a more detailed account.

To keep the notation tidy, we will assume that the two sets of variables have been
centered, that is, x; and y; have been replaced by the residuals x; — X and y; — §,
respectively, if this was considered appropriate. That is, we assume that ¥ = j = 0.
As before, we define modes of variation for the x;’s and the y;’s in terms of the pair
of probe weight functions & and 1 that define the integrals

pei = / E(Nx(t)de and pp; = / n()yi()dr, 1.7)
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respectively. The N pairs of probe scores (pg;, pni) defined in this way represent
shared variation if they correlate strongly with one another.
The canonical correlation criterion is the squared correlation

e PPl IS E0S0 M@0
e = 5 plmel] ~ B E0sOa i nowway] 7

As in PCA, the probe weights & and 1 are then specified by finding that weight
pair that optimizes the criterion R?(&, 7). But, again as in PCA, we can compute a
nonincreasing series of squared canonical correlations R, R3, ..., R? by constraining
successive canonical probe values to be orthogonal. The length & of the sequence is
the smallest of the sample size N, the number of basis functions for either functional
variable, or the number of basis functions used for & and 7.

That we are now optimizing with respect to two probes at the same time makes
canonical correlation analysis an exceedingly greedy procedure, where this term
borrowed from data mining implies that CCA can capitalize on the tiniest variation
in either set of functions in maximizing this ratio to the extent that, unless we ex-
ert some control over the process, it can be hard to see anything of interest in the
result. It is in practice essential to enforce strong smoothness on the two weight
functions & and 7 to limit this greediness. This can be done by either selecting a
low-dimensional basis for each or by using an explicit roughness penalty in much
the same manner as is possible for functional PCA.

Let us see how this plays out in the exploration of covariation between daily
temperature and log precipitation, being careful to avoid the greediness pitfall by
placing very heavy penalties on roughness of the canonical weight functions as
measured by the size of their second derivatives. Here are the commands in R that
function cca . £d to do the job:

ccafdPar = fdPar (daybasis, 2, 5e06)

ncon = 3

ccalist = cca.fd(temp.fd, logprec.fd, ncon,
ccafdPar, ccafdPar)

The third argument of cca. £d specifies the number of canonical weight/variable
pairs that we want to examine, which, in this case, is the complete sequence. The
final two arguments specify the bases for the expansion of & and 7, respectively, as
well as their roughness penalties.

The canonical weight functional data objects and the corresponding three squared
canonical correlations are extracted from the list object ccalist produced by
function cca . £d as follows:

ccawt.temp = ccalistS$Sccawtfdl
ccawt.logprec = ccalistSccawtfd2
corrs = ccalist$ccacorr

The squared correlations are 0.92, 0.62 and 0.35; so that there is a dominant pair
of modes of variation that correlates at a high level, and then two subsequent pairs
with modest but perhaps interesting correlations.
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Consider first the type of variation associated with the first canonical correlation.
Figure 7.8 displays the corresponding two canonical weight functions. The tempera-
ture canonical weight function &; resembles a sinusoid with period 365/2 and having
zeros in July, October, January and April. But the log precipitation counterpart 1,
is close to a sinusoid with period 365 and zeros in July and January.
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Fig. 7.8 The first pair of canonical weight functions or probes (&,1) correlating temperature and
log precipitation for the Canadian weather data.

Regarding each weight function as contrasting corresponding variable values, the
temperature curve seems primarily to contrast spring and autumn temperatures with
winter temperatures; while the corresponding log precipitation contrast is between
rainfall in the spring and autumn. A station will score high on both canonical vari-
ables if it is cool in winter relative to its temperatures in spring and autumn, and at
the same time has more precipitation in the spring than in the fall.

The scores of each weather station on each set of canonical variables are extracted
by

ccascr.temp = ccalistS$ccavarl
ccascr.logprec = ccalistS$Sccavar?2

Figure7.9 plots the scores for the first log precipitation canonical variable scores
against their temperature counterparts for selected weather stations. We see a near-
perfect ordering with respect to latitude, although favoring eastern stations over
western stations at the same latitudes so that Vancouver and Victoria wind up at
the bottom left. Certainly Resolute’s temperatures are cold in winter, and what pre-
cipitation it gets comes more in the spring than at another time, so that it earns it’s
place in the upper right of the plot. The marine weather stations, Prince Rupert and
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St. John’s, on the other hand, are actually relatively warm in the winter and get
more precipitation in the fall than in the winter, and therefore anchor the lower left
of the plot. Note, though, that the linear order in Figure7.9 misses Kamloops by a
noticeable amount. The position of this interior British Columbia city deep in a val-
ley, where relatively little rain or snow falls at any time of the year, causes it to be
anomalous in many types of analysis.
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Fig. 7.9 The scores for the first pair of canonical variables plotted against each other, with labels
for selected weather stations.

7.6 Details for the pca. £d and cca. £d Functions

7.6.1 The pca. £d Function

We give here the arguments of the constructor function pca . £d that carries out a
functional principal components analysis and constructs an object of the pca. fd
class. The complete calling sequence is

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar (fdob7j),
centerfns = TRUE)

The arguments are as follows:

fdobj A functional data object.
nharm The number of harmonics or principal components to compute.
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harmfdPar A functional parameter object that defines the harmonic or principal
component functions to be estimated.

centerfns A logical value: if TRUE, subtract the mean function from each
function before computing principal components.

Function pca . £d returns an argument of the pca. £d class, which is a named
list with the following components:

harmonics A functional data object for the harmonics or eigenfunctions.

values The complete set of eigenvalues.

scores A matrix of scores on the principal components or harmonics.

varprop A vector giving the proportion of variance explained by each eigen-
function.

meanfd A functional data object giving the mean function.

7.6.2 The cca. fd Function

The calling sequence for cca. fdis

cca.fd(fdobjl, fdobj2=fdobijl, ncan = 2,
ccafdParobjl=fdPar (basisobjl, 2, le-10),
ccafdParobj2=ccafdParobijl, centerfns=TRUE)

The arguments are as follows:

fdobjl A functional data object.

fdobj2 A functional data object. By default this is fdobj1, in which case the
first argument must be a bivariate functional data object.

ncan The number of canonical variables and weight functions to be computed.
The default is 2.

ccafdParobijl A functional parameter object defining the first set of canonical
weight functions. The object may contain specifications for a roughness penalty.
The default is defined using the same basis as that used for fdobj1 with a slight
penalty on its second derivative.

ccafdParobj2 A functional parameter object defining the second set of canon-
ical weight functions. The object may contain specifications for a roughness
penalty. The default is ccafdParobijl.

centerfns If TRUE, the functions are centered prior to analysis. This is the
default.

7.7 Some Things to Try

1. Medfly Data: The medfly data have been a popular dataset for functional data
analysis and are included in the fda package. The medfly data consist of records
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of the number of eggs laid by 50 fruit flies on each of 31 days, along with each
individual’s total lifespan.

a. Smooth the data for the number of eggs, choosing the smoothing parameter
by generalized cross-validation (GCV). Plot the smooths.

b. Conduct a principal components analysis using these smooths. Are the com-
ponents interpretable? How many do you need to retain to recover 90% of the
variation. If you believe that smoothing the PCA will help, do so.

c. Try a linear regression of lifespan on the principal component scores from
your analysis. What is the R? for this model? Does 1m find that the model is
significant? Reconstruct and plot the coefficient function for this model along
with confidence intervals. How does it compare to the model obtained through
functional linear regression?

2. Apply principal components analysis to the functional data object Wfd re-
turned by the monotone smoothing function smooth.monotone applied to
the growth data. These functions are the logs of the first derivatives of the growth
curves. What is the impact of the variation in the age of the purbertal growth
spurt on these components?

7.8 More to Read

Functional principal components analysis predates the emergence of functional data
analysis, especially in fields in engineering and sciences that work with functional
data routinely, such as climatology. Principal components are often referred to in
these fields as empirical basis functions, a phrase that is exactly the right thing since
functional principal components are both orthogonal and can also serve well as a
customized low-dimensional basis system for representing the actual functions.

There are many currently active and unexplored areas of research into functional
PCA. James et al. (2000) consider situations where curves are observed in frag-
ments, so that the interval of observation varies from record to record. James and
Sugar (2003) look at the same data situation in the context of cluster analysis, an-
other multivariate exploratory tool that is now associated with a large functional lit-
erature. Readers with a background in psychometrics will wonder about a functional
version of factor analysis, whether exploratory or confirmatory; and functional ver-
sions of structural equation models are well down the road, but no doubt perfectly
feasible.





