
Chapter 9
Functional Linear Models for Scalar Responses

This is the first of two chapters on the functional linear model. Here we have a
dependent or response variable whose value is to be predicted or approximated on
the basis of a set of independent or covariate variables, and at least one of these is
functional in nature. The focus here is on linear models, or functional analogues of
linear regression analysis. This chapter is confined to considering the prediction of a
scalar response on the basis of one or more functional covariates, as well as possible
scalar covariates.

Confidence intervals are developed for estimated regression functions in order to
permit conclusions about where along the t axis a covariate plays a strong role in
predicting a functional responses. The chapter also offers some permutation tests of
hypotheses.

More broadly, we begin here the study of input/output systems. This and the next
chapter lead in to Chapter 11, where the response is the derivative of the output from
the system.

9.1 Functional Linear Regression with a Scalar Response

We have so far focused on representing a finite number of observations as a func-
tional data object, which can theoretically be evaluated at an infinite number of
points, and on graphically exploring the variation and covariation of populations of
functions. However, we often need to model predictive relationships between differ-
ent types of data, and here we expect that some of these data will be functional.

In classic linear regression, predictive models are often of the form

yi =
p

∑
j=0

xi jβ j + εi, i = 1, . . . ,N (9.1)

that model the relationship between a response yi and covariates xi j as a linear
structure. The dummy covariate with j = 0, which has the value one for all i, is

J.O. Ramsay et al., Functional Data Analysis with R and MATLAB, Use R, 

© Springer Science + Business Media, LLC 2009

131
DOI: 10.1007/978-0-387-98185-7_9,



132 9 Functional Linear Models for Scalar Responses

usually included because origin of the response variable and/or one or more of the
independent variables can be arbitrary, and β0 codes the constant needed to allow
for this. It is often called the intercept term.

The term εi allows for sources of variation considered extraneous, such as mea-
surement error, unimportant additional causal factors, sources of nonlinearity and
so forth, all swept under the statistical rug called error. The εi are assumed to add to
the prediction of the response, and are usually considered to be independently and
identically distributed.

In this chapter we replace at least one of the p observed scalar covariate vari-
ables on the right side of the classic equation by a functional covariate. To simplify
the exposition, though, we will describe a model consisting of a single functional
independent variable plus an intercept term.

9.2 A Scalar Response Model for Log Annual Precipitation

Our test-bed problem in this section is to predict the logarithm of annual precipita-
tion for 35 Canadian weather stations from their temperature profiles. The response
in this case is, in terms of the fda package in R,

annualprec = log10(apply(daily$precav,2,sum))

We want to use as the predictor variable the complete temperature profile as well as
a constant intercept. These two covariates can be stored in a list of length 2, or in
Matlab as a cell array. Here we set up a functional data object for the 35 temperature
profiles, called tempfd. To keep things simple and the computation rapid, we will
use 65 basis functions without a roughness penalty. This number of basis functions
has been found to be adequate for most purposes, and can, for example, capture the
ripples observed in early spring in many weather stations.

tempbasis =create.fourier.basis(c(0,365),65)
tempSmooth=smooth.basis(day.5,daily$tempav,tempbasis)
tempfd =tempSmooth$fd

9.3 Setting Up the Functional Linear Model

But what can we do when the vector of covariate observations xi = (xi1, . . . ,xip) in
(9.1) is replaced by a function xi(t)? A first idea might be to discretize each of the
N functional covariates xi(t) by choosing a set of times t1, . . . , tq and consider fitting
the model

yi = α0 +
q

∑
j=1

xi(t j)β j + εi.
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But which times t j are important, given that we must have q < N?
If we choose a finer and finer mesh of times, the summation approaches an inte-

gral equation:

yi = α0 +
∫

xi(t)β (t)dt + εi. (9.2)

We now have a finite number N of observations with which to determine the infinite-
dimensional β (t). This is an impossible problem: it is almost always possible to find
a β (t) so that (9.2) is satisfied with εi = 0. More importantly, there are always an
infinite number of possible regression coefficient functions β (t) that will produce
exactly the same predictions ŷi. Even if we expand each functional covariate in terms
of a limited number of basis functions, it is entirely possible that the total number
of basis functions will exceed or at least approach N.

9.4 Three Estimates of the Regression Coefficient Predicting
Annual Precipitation

Three strategies have been developed to deal with this underdetermination issue.
The first two redefine the problem using a basis coefficient expansion of β :

β (t) =
K

∑
k

ckφk(t) = c′φ(t). (9.3)

The third replaces the potentially high-dimensional covariate functions by a low-
dimensional approximation using principal components analysis. The first two ap-
proaches will be illustrated using function fRegress. Function fRegress in R
and Matlab requires at least three arguments:

yfdPar This object contains the response variable. It can be a functional param-
eter object, a functional data object, or simply a vector of N scalar responses. In
this chapter we restrict ourselves to the scalar response situation.

xfdlist This object contains all the functional and scalar covariate functions
used to predict the response using the linear model. Each covariate is an element
or component in a list object in R or an entry in a cell array in Matlab.

betalist This is a list object in R or a cell array in Matlab of the same length
as the second argument; it specifies the functional regression coefficient objects.
Because it is possible that any or all of them can be subject to a roughness penalty,
they are all in principle functional parameter objects, although fRegress will by
default convert both functional data objects and basis objects into functional pa-
rameter objects.

Here we store the two functional data covariates required for predicting log an-
nual precipitation in a list of length two, which we here call templist, to be used
for the argument xfdlist.
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templist = vector("list",2)
templist[[1]] = rep(1,35)
templist[[2]] = tempfd

Notice that the intercept term is here set up as a constant function with 35 repli-
cations.

9.4.1 Low-Dimensional Regression Coefficient Function β

The simplest strategy for estimating β is just to keep the dimensionality K of β in
(9.3) small relative to N. In our test-bed expansion, we will work with five Fourier
basis functions for the regression coefficient β multiplying the temperature profiles;
we will also use a constant function for α , the multiplier of the constant intercept
covariate set up above.

conbasis = create.constant.basis(c(0,365))
betabasis = create.fourier.basis(c(0,365),5)
betalist = vector("list",2)
betalist[[1]] = conbasis
betalist[[2]] = betabasis

Now we can call function fRegress, which returns various results in a list object
that we call fRegressList.

fRegressList = fRegress(annualprec,templist,betalist)

The command names(fRegressList) reveals a component betaestlist
containing the estimated regression coefficient functions. Each of these is a func-
tional parameter object. We can plot the estimate of the regression function for the
temperature profiles with the commands

betaestlist = fRegressList$betaestlist
tempbetafd = betaestlist[[2]]$fd
plot(tempbetafd, xlab="Day",

ylab="Beta for temperature")

Figure 9.1 shows the result. The intercept term can be obtained from coef(
betaestlist[[1]]); its value in this case is 0.0095. We will defer commenting
on these estimates until we consider the next more sophisticated strategy.

We need to assess the quality of this fit. First, let us extract the fitted values
defined by this model and compute the residuals. We will also compute error sums
of squares associated with the fit as well as for the fit using only a constant or
intercept.

annualprechat1 = fRegressList$yhatfdobj
annualprecres1 = annualprec - annualprechat1
SSE1.1 = sum(annualprecres1ˆ2)
SSE0 = sum((annualprec - mean(annualprec))ˆ2)



9.4 Three Estimates of the Regression Coefficient Predicting Annual Precipitation 135

0 100 200 300

−0
.00

10
−0

.00
05

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

Day

Be
ta 

for
 te

mp
era

tur
e

Fig. 9.1 Estimated β (t) for predicting log annual precipitation from average daily temperature
using five Fourier basis functions.

We can now compute the squared multiple correlation and the usual F-ratio for
comparing these two fits.

RSQ1 = (SSE0-SSE1.1)/SSE0
Fratio1 = ((SSE0-SSE1)/5)/(SSE1/29)

The squared multiple correlation is 0.80, and the corresponding F-ratio with 5 and
29 degrees of freedom is 22.6, suggesting a fit to the data that is far better than we
would expect by chance.

9.4.2 Coefficient β Estimate Using a Roughness Penalty

There are two ways to obtain a smooth fit. The simplest is to use a low-dimensional
basis for β (t). However, we can get more direct control over what we mean by
“smooth” by using a roughness penalty. The combination of a high-dimensional
basis with a roughness penalty reduces the possibilities that either (a) important
features are missed or (b) extraneous features are forced into the image by using a
basis set that is too small for the application.

Suppose, for example, that we fit (9.2) by minimizing the penalized sum of
squares

PENSSEλ (α0,β ) = ∑[yi−α0−
∫

xi(t)β (t)dt]2 +λ
∫

[Lβ (t)]2dt. (9.4)
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This allows us to shrink variation in β as close as we wish to the solution of the dif-
ferential equation Lβ = 0. Suppose, for example, that we are working with periodic
data with a known period. As noted with expression (5.11), the use of a harmonic
acceleration operator,

Lβ = (ω2)Dβ +D3β ,

places no penalty on a simple sine wave and increases the penalty on higher-order
harmonics in a Fourier approximation approximately in proportion to the sixth
power of the order of the harmonic. (In this expression, ω is determined by the pe-
riod, which is assumed to be known.) Thus, increasing the penalty λ in (9.4) forces
β to look more and more like β (t) = c1 + c2 sin(ωt)+ c3 cos(ωt).

More than one functional covariate can be incorporated into this model and
scalar covariates may also be included. Let us suppose that in addition to yi we
have measured p scalar covariates zi = (zi1, . . . ,zip) and q functional covariates
xi1(t), . . . ,xiq(t). We can put these into a linear model as follows

yi = α0 + z′iα +
q

∑
j=1

∫
xi j(t)β j(t)dt + εi, (9.5)

where zi is the p− vector of scalar covariates. A separate smoothing penalty may
be employed for each of the β j(t), j = 1, . . . ,q.

Using (9.5), we can define a least-squares estimate as follows. We define Z by:

Z =




z′1
∫

x11(t)Φ1(t)dt · · · ∫
x1q(t)Φq(t)

...
...

z′n
∫

xn1(t)Φ1(t)dt · · · ∫
xnq(t)Φq(t)


 .

Here Φk is the basis expansion used to represent βk(t). We also define a penalty
matrix

R(λ ) =




0 · · · · · · · · ·
0 λ1R1 · · · 0
...

...
. . .

...
0 · · · λqRq


 (9.6)

where Rk is the penalty matrix associated with the smoothing penalty for βk and λk
is the corresponding smoothing parameter. With these objects, we can define

b̂ =
(
Z′Z+R(λ )

)−1 Z′y

to hold the vector of estimated coefficients α̂ along with the coefficients defining
each estimated coefficient function β̂k(t) estimated by penalized least squares. These
are then extracted to form the appropriate functional data objects.

Now let us apply this approach to predicting the log annual precipitations. First,
we set up a harmonic acceleration operator, as we did already in Chapter 5.

Lcoef = c(0,(2*pi/365)ˆ2,0)
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harmaccelLfd = vec2Lfd(Lcoef, c(0,365))

Now we replace our previous choice of basis for defining the β estimate by a func-
tional parameter object that incorporates both this roughness penalty and a level of
smoothing:

betabasis = create.fourier.basis(c(0, 365), 35)
lambda = 10ˆ12.5
betafdPar = fdPar(betabasis, harmaccelLfd, lambda)
betalist[[2]] = betafdPar

These now allow us to invoke fRegress to return the estimated functional coeffi-
cients and predicted values:

annPrecTemp = fRegress(annualprec, templist,
betalist)

betaestlist2 = annPrecTemp$betaestlist
annualprechat2 = annPrecTemp$yhatfdobj

The command print(fRegressList$df) indicates the degrees of freedom
for this model, including the intercept, is 4.7, somewhat below the value of 6 that
we used for the simple model above.

Now we compute the usual R2 and F-ratio statistics to assess the improvement
in fit achieved by including temperature as a covariate.

SSE1.2 = sum((annualprec-annualprechat2)ˆ2)
RSQ2 = (SSE0 - SSE1.2)/SSE0
Fratio2 = ((SSE0-SSE1.2)/3.7)/(SSE1/30.3)

The squared multiple correlation is now 0.75, a small drop from the value for the
simple model, due partly to using fewer degrees of freedom. The F-ratio is 25.1
with 3.7 and 30.3 degrees of freedom, and is even more significant than for the
simple model. The reader should note that because a smoothing penalty has been
used, the F-distribution only represents an approximation to the null distribution for
this model. Figure 9.2 compares predicted and observed values of log annual pre-
cipitation. Figure 9.3 plots the coefficient β (t) along with the confidence intervals
derived below. Comparing this version with that in Figure 9.1 shows why the rough-
ness penalty approach is to be preferred over the fixed low-dimension strategy; now
we see that only the autumn months really matter in defining the relationship, and
that the substantial oscillations over other parts of the year in Figure 9.1 are actually
extraneous.

To complete the picture, we should ask whether we could do just as well with
a constant value for β . Here we use the constant basis, run fRegress, and redo the
comparison using this fit as a benchmark. The degrees of freedom for this model is
now 2.

betalist[[2]] = fdPar(conbasis)
fRegressList = fRegress(annualprec, templist,

betalist)
betaestlist = fRegressList$betaestlist
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Now we compute the test statics for comparing these models.

annualprechat = fRegressList$yhatfdobj
SSE1 = sum((annualprec-annualprechat)ˆ2)
RSQ = (SSE0 - SSE1)/SSE0
Fratio = ((SSE0-SSE1)/1)/(SSE1/33)

We find that R2 = 0.49 and F = 31.3 for 1 and 33 degrees of freedom, so that
the contribution of our model is also important relative to this benchmark. That is,
functional linear regression is the right choice here.
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Fig. 9.2 Observed log annual precipitation values plotted against values predicted by functional
linear regression on temperature curves using a roughness penalty.

9.4.3 Choosing Smoothing Parameters

How did we come up with λ = 1012.5 for the smoothing parameter in this analysis?
Although smoothing parameters λ j can certainly be chosen subjectively, we can also
consider cross-validation as a way of using the data to define smoothing level. To
define a cross-validation score, we let α(−i)

λ and β (−i)
λ be the estimated regression

parameters estimated without the ith observation. The cross-validation score is then

CV(λ ) =
N

∑
i=1

[
yi−α(−i)

λ −
∫

xi(t)β
(−i)
λ dt

]2

. (9.7)
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Fig. 9.3 Estimate β (t) for predicting log annual precipitation from average daily temperature with
a harmonic acceleration penalty and smoothing parameter set to 1012.5. The dashed lines indicate
pointwise 95% confidence limits for values of β (t).

Observing that
ŷ = Z

(
Z′Z+R(λ )

)−1 Z′y = Hy

standard calculations give us that

CV(λ ) =
N

∑
i=1

(
yi− ŷi

1−Hii

)2

. (9.8)

We can similarly define a generalized cross-validation score:

GCV(λ ) = ∑n
i=1 (yi− ŷi)

2

(n−Tr(H))2 . (9.9)

These quantities are returned by fRegress for scalar responses only. This
GCV(λ ) was discussed (in different notation) in Section 5.2.5. For a comparison
of CV and GCV including reference to more literature, see Section 21.3.4, p. 368,
in Ramsay and Silverman (2005).

The following code generates the data plotted in Figure 9.4.

loglam = seq(5,15,0.5)
nlam = length(loglam)
SSE.CV = matrix(0,nlam,1)
for (ilam in 1:nlam) {
lambda = 10ˆloglam[ilam]
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Fig. 9.4 Cross-validation scores CV(λ ) for fitting log annual precipitation by daily temperature
profile, with a penalty on the harmonic acceleration of β (t).

betalisti = betalist
betafdPar2 = betalisti[[2]]
betafdPar2$lambda = lambda
betalisti[[2]] = betafdPar2
fRegi = fRegress.CV(annualprec, templist,

betalisti)
SSE.CV[ilam] = fRegi$SSE.CV

}

9.4.4 Confidence Intervals

Once we have conducted a functional linear regression, we want to measure the pre-
cision to which we have estimated each of the β̂ j(t). This can be done in the same
manner as confidence intervals for probes in smoothing. Under the usual indepen-
dence assumption, the εi are independently normally distributed around zero with
variance σ2

e . The covariance of ε is then

Σ = σ2
e I.

Following a δ -method calculation, the sampling variance of the estimated parameter
vector b̂ is



9.4 Three Estimates of the Regression Coefficient Predicting Annual Precipitation 141

Var
[
b̂
]
=

(
Z′Z+R(λ )

)−1 Z′ΣZ
(
Z′Z+R

)−1
.

Naturally, any more general estimate of Σ , allowing correlation between the errors,
can be used here.

We can now obtain confidence intervals for each of the β j(t). To do this, we need
an estimate of σ2

e . This can be obtained from the residuals. The following code does
the trick in R:

resid = annualprec - annualprechat
SigmaE.= sum(residˆ2)/(35-fRegressList$df)
SigmaE = SigmaE.*diag(rep(1,35))
y2cMap = tempSmooth$y2cMap
stderrList = fRegress.stderr(fRegressList, y2cMap,

SigmaE)

Here the second argument to fRegress.stderr is a place-holder for a projec-
tion matrix that will be used for functional responses (see Chapter 10). We can then
plot the coefficient function β (t) along with plus and minus two times its standard
error to obtain the approximate confidence bounds in Figure 9.3:

betafdPar = betaestlist[[2]]
betafd = betafdPar$fd
betastderrList = stderrList$betastderrlist
betastderrfd = betastderrList[[2]]
plot(betafd, xlab="Day",

ylab="Temperature Reg. Coeff.",
ylim=c(-6e-4,1.2e-03), lwd=2)

lines(betafd+2*betastderrfd, lty=2, lwd=1)
lines(betafd-2*betastderrfd, lty=2, lwd=1)

We note that, like the confidence intervals that we derived for probes, these intervals
are given pointwise and do not take account of bias or of the choice of smoothing
parameters. In order to provide tests for the overall effectiveness of the regression
we resort to permutation tests described in Section 9.5 below.

9.4.5 Scalar Response Models by Functional Principal
Components

A third alternative for functional linear regression with a scalar response is to regress
y on the principal component scores for functional covariate. The use of principal
components analysis in multiple linear regression is a standard technique:

1. Perform a principal components analysis on the covariate matrix X and derive the
principal components scores fi j for each observation i on each principal compo-
nent j.

2. Regress the response yi on the principal component scores ci j.
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We often observe that we need only the first few principal component scores, thereby
considerably improving the stability of the estimate by increasing the degrees of
freedom for error.

In functional linear regression, we consider the scores resulting from a functional
principal components analysis of the temperature curves conducted in Chapter 7. We
can write

xi(t) = x̄(t)+ ∑
j>=0

ci jξ j(t).

Regressing on the principal component scores gives us the following model:

yi = β0 +∑ci jβ j + εi. (9.10)

Now we recall that ci j =
∫

ξ j(t)(xi(t)− x̄(t))dt. If we substitute this in (9.10), we
can see that

yi = β0 +
∫

∑β jξ j(t)(xi j(t)− x̄(t))dt + εi.

This gives us
β (t) = ∑β jξ j(t).

Thus, (9.10) expresses exactly the same relationship as (9.2) when we absorb the
mean function into the intercept:

β̃0 = β0−
∫

β (t)x̄(t)dt.

The following code carries out this idea for the annual cycles in daily tempera-
tures at 35 Canadian weather stations. First we resmooth the data using a saturated
basis with a roughness penalty. This represents rather more smoothing than in the
earlier version of tempfd that did not use a roughness penalty.

daybasis365=create.fourier.basis(c(0, 365), 365)
lambda =1e6
tempfdPar =fdPar(daybasis365, harmaccelLfd, lambda)
tempfd =smooth.basis(day.5, daily$tempav,

tempfdPar)$fd

Next we perform the principal components analysis, again using a roughness
penalty.

lambda = 1e0
tempfdPar = fdPar(daybasis365, harmaccelLfd, lambda)
temppca = pca.fd(tempfd, 4, tempfdPar)
harmonics = temppca$harmonics

Approximate pointwise standard errors can now be constructed out of the covari-
ance matrix of the β j:
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var[β̂ (t)] = [ξ1(t) . . . ξk(t)]Var [β ]




ξ1(t)
...

ξk(t)


 .

Since the coefficients are orthogonal, the covariance of the β j is diagonal and can be
extracted from the standard errors reported by lm. When smoothed principal com-
ponents are used, however, this orthogonality no longer holds and the full covariance
must be used.

The final step is to do the linear model using principal component scores and to
construct the corresponding functional data objects for the regression functions.

pcamodel = lm(annualprec˜temppca$scores)
pcacoefs = summary(pcamodel)$coef
betafd = pcacoefs[2,1]*harmonics[1] +

pcacoefs[3,1]*harmonics[2] +
pcacoefs[4,1]*harmonics[3]

coefvar = pcacoefs[,2]ˆ2
betavar = coefvar[2]*harmonics[1]ˆ2 +

coefvar[3]*harmonics[2]ˆ2 +
coefvar[4]*harmonics[3]ˆ2

The quantities resulting from the code below are plotted in Figure 9.5. In this
case the R-squared statistic is similar to the previous analysis at 0.72.

plot(betafd, xlab="Day", ylab="Regression Coef.",
ylim=c(-6e-4,1.2e-03), lwd=2)

lines(betafd+2*sqrt(betavar), lty=2, lwd=1)
lines(betafd-2*sqrt(betavar), lty=2, lwd=1)

Functional linear regression by functional principal components has been studied
extensively. Yao et al. (2005) observes that instead of presmoothing the data, we can
estimate the covariance surface directly by a two-dimensional smooth and use this
to derive the fPCA. From here the principal component scores can be calculated by
fitting the principal component functions to the data by least squares. This can be
advantageous when some curves are sparsely observed.

9.5 Statistical Tests

So far, our tools have concentrated on exploratory analysis. We have developed
approximate pointwise confidence intervals for functional coefficients. However, we
have not attempted to formalize these into test statistics. Hypothesis tests provide
a formal criterion for judging whether a scientific hypothesis is valid. They also
perform the useful function of allowing us to assess “What would the results look
like if there really were no relationship in the data?”
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Fig. 9.5 Estimate β (t) for predicting log annual precipitation from average daily temperature us-
ing scores from the first three functional principal components of temperature. The dashed lines
indicate pointwise 95% confidence limits for values of β (t).

Because of the nature of functional statistics, it is difficult to attempt to derive a
theoretical null distribution for any given test statistic since we would need to ac-
count for selecting a smoothing parameter as well as the smoothing itself. Instead,
the package employs a permutation test methodology. This involves constructing a
null distribution from the observed data directly. If there is no relationship between
the response and the covariates, it should make no difference if we randomly rear-
range the way they are paired. To see what a result might look in this case, we can
simply perform the experiment of rearranging the vector of responses while keep-
ing the covariates in the same order and trying to fit the model again. The advantage
of this is that we no longer need to rely on distributional assumptions. The disad-
vantage is that we cannot test for the significance of an individual covariate among
many.

In order to turn this idea into a formalized statistical procedure, we need a way to
determine whether the result we get from the observed data is different from what
is obtained by rearranging the response vector. We do this in the classic manner, by
deciding on a test statistic that measures the strength of the predictive relationship in
our model. We now have a single number which we can compare to the distribution
that is obtained when we calculate the same statistic with a randomly permuted
response. If the observed test statistic is in the tail of this distribution, we conclude
that there is a relationship between the response and covariates.

In our case, we compute an F statistic for the regression
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F =
Var[ŷ]

1
n ∑(yi− ŷi)2

where ŷ is the vector of predicted responses. This statistic varies from the classic F
statistic in the manner in which it normalizes the numerator and denominator sums
of squares. The statistic is calculated several hundred times using a different random
permutation each time. The p value for the test can then be calculated by counting
the proportion of permutation F values that are larger than the F statistic for the
observed pairing.

The following code implements this procedure for the Canadian weather exam-
ple:

F.res = Fperm.fd(annualprec, templist, betalist)

Here the observed F statistic (stored in F.res$Fobs) is 3.03, while the 95th quar-
tile of the permutation distribution (F.res$qval) is 0.27, giving strong evidence
for the effect.

9.6 Some Things to Try

1. Medfly Data: We reconsider the medfly data described in Section 7.7.

a. Perform a functional linear regression to predict the total lifespan of the fly
from their egg laying. Choose a smoothing parameter by cross-validation and
plot the coefficient function with confidence intervals.

b. What is the R2 of your fit to these data? How does this compare with that for
the principal components regression you tried earlier?

c. Construct confidence intervals for the coefficient function obtained using prin-
cipal components regression. How do these compare to that for your estimates
found using fRegress? Experiment with increasing the smoothing param-
eter in fRegress and the number of components for principal components
regression.

d. Conduct a permutation test for the significance of the regression. Calculate
the R2 for your regression.

2. Tecator Data: The Tecator data available from

http://lib.stat.cmu.edu/datasets/tecator

provides an example of functional data in which the domain of the function is
not time. Instead, we observe the spectra of meat samples from which we would
like to determine a number of chemical components. In particular, the moisture
content of the meat is of interest.

a. Represent the spectra using a reasonable basis and smoothing penalty.
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b. Experiment with functional linear regression using these spectra as covariates
for the regression model. Plot the coefficient function along with confidence
intervals. What is the R2 for your regression?

c. Try using the derivative of the spectrum to predict moisture content. What
happens if you use both the derivative and the original spectrum?

3. Diagnostics: Residual diagnostics for functional linear regression is a largely
unexplored area. Here are some suggestions for checking regression assumptions
for one of the models suggested above.

a. Residual by predicted plots can still be constructed, as can QQ plots for resid-
uals. Do these tell you anything about the data?

b. In linear regression, we look for curvature in a model by plotting residuals
against covariates. In functional linear regression, we would need to plot resid-
uals against the predictor value at each time t. Experiment with doing this at
a fine grid of t. Alternatively, you can plot these as lines in three-dimensional
space using the lattice or rgl package.

c. Do any points concern you as exhibiting undue influence? Consider remov-
ing them and measure the effect on your model. One way to get an idea of
influence is the integrated squared difference in the βi(t) coefficients. You can
calculate this using the inprod function.

9.7 More to Read

Functional linear regression for scalar responses has a large associated literature.
Models based on functional principal components analysis are found in Cardot et al.
(1999), Cardot et al. (2003a) and Yao et al. (2005). Tests for no effect are developed
in Cardot et al. (2004), Cardot et al. (2003b) and Delsol et al. (2008). More recent
work by James et al. (2009) has focused on using absolute value penalties to insist
that β (t) be zero or exactly linear over large regions.

Escabias et al. (2004) and James (2002) look at the larger problem of how to
adapt the generalized linear model to the presence of a functional predictor vari-
able. Müller and Stadtmüller (2005) also investigate what they call the generalized
functional linear model. James and Hastie (2001) consider linear discriminant anal-
ysis where at least one of the independent variables used for prediction is a function
and where the curves are irregularly sampled.


