
Chapter 10
Linear Models for Functional Responses

In this second chapter on the functional linear model, the dependent or response
variable is functional. We first consider a situation in which all of the independent
variables are scalar and in particular look at two functional analyses of variance.

When one or more of the independent variables is also function, we have two
possible classes of linear models. The simpler case is called concurrent, where
the value of the response variable y(t) is predicted solely by the values of one or
more functional covariates at the same time t. The more general case where func-
tional variables contribute to the prediction for all possible time values s is briefly
reviewed.

10.1 Functional Responses and an Analysis of Variance Model

While we often find functional covariates associated with scalar responses, there are
also cases where the interest lies in the prediction of a functional response. We begin
this chapter with two examples of functional analysis of variance (fANOVA), where
variation in a functional response is decomposed into functional effects through the
use of a scalar design matrix Z. That is, in both of these examples, the covariates
are all scalar.

10.1.1 Climate Region Effects on Temperature

In the Canadian weather data, for example, we can divide the weather stations into
four distinct groups: Atlantic, Pacific, Prairie and Arctic. It may be interesting to
know the effect of geographic location on the shape of the temperature curves. That
is, we have a model of the form
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148 10 Linear Models for Functional Responses

yi(t) = β0(t)+
4

∑
j=1

xi jβ j(t)+ εi(t) (10.1)

where yi(t) is a functional response. In this case, the values of xi j are either 0 or 1. If
the 35 by 5 matrix Z contains these values, then the first column has all entries equal
to 1, which codes the contribution of the Canadian mean temperature; the remaining
four columns contain 1 if that weather station is in the corresponding climate zone
and 0 otherwise. In order to identify the specific effects of the four climate zones,
we have to add the constraint

4

∑
j=1

β j(t) = 0 for all t. (10.2)

There are a number of methods of imposing this constraint. In this example we will
do this by adding the above equation as an additional 36th “observation” for which
y36(t) = 0.

We first create a list containing five indicator variables for the intercept term and
each of the regions. In this setup, the intercept term is effectively the Canadian mean
temperature curve, and each of the remaining regression coefficients is the pertur-
bation of the Canadian mean required to fit a region’s mean temperature. These
indicator variables are stored in the List object regionList.

regions = unique(CanadianWeather$region)
p = length(regions) + 1
regionList = vector("list", p)
regionList[[1]] = c(rep(1,35),0)
for (j in 2:p) {
xj = CanadianWeather$region == regions[j-1]
regionList[[j]] = c(xj,1)

}

The next step is to augment the temperature functional data object by a 36th obser-
vation that takes only zero values as required by (10.2).

coef = tempfd$coef
coef36 = cbind(coef,matrix(0,65,1))
temp36fd = fd(coef36,tempbasis,tempfd$fdnames)

We now create functional parameter objects for each of the coefficient functions,
using 11 Fourier basis functions for each.

betabasis = create.fourier.basis(c(0, 365), 11)
betafdPar = fdPar(betabasis)
betaList = vector("list",p)
for (j in 1:p) betaList[[j]] = betafdPar

Now call fRegress, extract the coefficients and plot them, along with the pre-
dicted curves for the regions.
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fRegressList = fRegress(temp36fd, regionList,
betaList)

betaestList = fRegressList$betaestlist
regionFit = fRegressList$yhatfd
regions = c("Canada", regions)
par(mfrow=c(2,3),cex=1)
for (j in 1:p) plot(betaestList[[j]]$fd, lwd=2,

xlab="Day (July 1 to June 30)",
ylab="", main=regions[j])

plot(regionFit, lwd=2, col=1, lty=1,
xlab="Day", ylab="",
main="Prediction")

The five regression coefficients are shown in Figure 10.1; the final panel shows
the predicted mean temperature curves for each of the four regions.
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Fig. 10.1 The regression coefficients estimated for predicting temperature from climate region.
The first panel is the intercept coefficient, corresponding to the Canadian mean temperature. The
last panel contains the predicted mean temperatures for the four regions.

10.1.2 Trends in Seabird Populations on Kodiak Island

Winter abundance of 13 seabird species has been monitored annually in a number of
bays on Kodiak Island, Alaska, since 1979 (Zwiefelhofer et al., 2008). Since 1986
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these marine surveys have been conducted by the Kodiak National Wildlife Refuge
using a standard protocol revisiting a fixed set of transects in each bay. The bird
counts analyzed here are from two bays, Uyak and Uganik, both influenced by the
waters of the Shelikof Strait. We focus on results from 1991 to 2005, less 1998 when
the boat was in dry dock. We want to investigate potential differences in time trends
of bird species that primarily eat fish compared to those that primarily eat shellfish
and mollusks.

Figure 10.2 shows the base 10 logarithms of counts of the 13 species averaged
over transects and sites, and separated according to diet. It is obvious that there
are substantial differences in abundances over species that are consistent across the
years of observation, and there is more variation in abundance among the fish-eating
birds. The two mean functions suggest a slight tendency for the fish-eating birds to
be increasing in abundance relative to what we see for shellfish and mollusk eaters,
although this may be due to the sharply increasing trend for one fish-eating species.
We will use fRegress to see how substantial this difference is.
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Fig. 10.2 The base 10 logarithms of seabird counts on Kodiak Island averaged over transects and
sites. The top panel shows counts for birds who eat shellfish and mollusks, and the bottom shows
counts for fish-eating birds. In each panel, the mean count taken across birds is shown as a heavy
solid line.
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We elected to fit the count data exactly using a polygonal basis, since we were
less interested in estimating smooth trends for each species than we were in esti-
mating the functional diet effect. By interpolating the data in this way, we were sure
to retain all the information in the original data. The following two commands set
up the polygonal basis and fit the data in the 19 by 26 matrix logCounts2, and
yearCode = c(1:12, 14:20) (because no data were collected for 1986, year
13). In this matrix, the first 13 columns are for the Uganik site and the remaining 13
for the Uyak site, and each row corresponds to a year of observation.

birdbasis = create.polygonal.basis(yearCode)
birdList = smooth.basis(yearCode,logCounts2,birdbasis)
birdfd = birdList$fd

We analyze the time trend in the log mean counts as affected by the type of diet,
with bird species nested within the diet factor. The model that we consider is

yi jk(t) = µ(t)+(−1)iα(t)+βi j(t)+ εi jk(t) (10.3)

where i = 1,2 indexes food groups, j = 1, . . . ,ni indexes birds within a food group,
and k = 1,2 indexes sites. The functional parameter µ(t) is the intercept or grand
mean indicating the average trend for all birds. Parameter α(t) will indicate the time
trend of the mean difference between the shellfish/mollusk-eating birds and the fish-
eating birds, and multiplies a scalar covariate taking two values: 1 if an observation
is for a shellfish/mollusk eater, and -1 otherwise. The 13 parameters βi j(t) are time
trends for each bird, but represent deviations from µ(t) that are specific to a food
group. This is achieved by imposing two constraint equations: ∑ j β1 j(t) = 0 and
∑ j β2 j(t) = 0 for all values of t. In each of these summations, index j takes values
only within the corresponding food group. Finally, εi jk(t) is the inevitable residual
function required to balance each equation. The total number of equations is 28,
being two blocks of 13 species plus one constraint for each food groups. There are
two blocks, one for each bay or observation site.

To set up this model, we first define a variable for the diet effect, containing val-
ues 1 for a shellfish eater and -1 for a fish eater. This covariate effectively indicates
the difference between being a shellfish eater and a fish eater.

foodindex = c(1,2,5,6,12,13)
foodvarbl = (2*rep(1:13 %in% foodindex, 2)-1)

Next we set up indicator variables for the effect of bird species; this is the identity
matrix of order 13 stacked on top of a replicate of itself.

birdvarbl = diag(rep(1,13))
birdvarbl = rbind(birdvarbl, birdvarbl)

Now we set up the 26 by 15 design matrix Z for the regression analysis. Its first
column is all 1’s in order to code the intercept or grand mean effect. Its second
column contains 1’s in the first 13 rows corresponding to the shellfish diet, and -1’s
in the remaining rows. The remaining 13 columns code the bird effects.



152 10 Linear Models for Functional Responses

Zmat0 = matrix(0,26,15)
Zmat0[,1] = 1
Zmat0[,2] = foodvarbl
Zmat0[,3:15] = birdvarbl

However, defining an effect for each bird in this way would make Z singular
since the sum of these effects (columns 3:15) in each row is 1, and so is the intercept
value. To correct for this, we need to force the sum of the bird effects within each diet
group to add to zero. This requires two steps: we add two rows to the bottom of Z
coding the sum of the bird effects for each diet group, and we add two corresponding
functional observations to the 26 log count curves whose values are identically zero
for all t.

Zmat = rbind(Zmat0, matrix(0,2,15))
fishindex = (1:13)[-foodindex]
Zmat[27,foodindex+2] = 1
Zmat[28,fishindex+2] = 1
birdextfd = birdfd
birdextfd$coef =

cbind(birdextfd$coefs, matrix(0,19,2))

Now we set up the arguments for fRegress. In these commands we insert each
column in turn in matrix Z into the corresponding position in a list object xfdlist.

xfdlist = vector("list",15)
names(xfdlist) = c("const", "diet", birds)
for (j in 1:15) xfdlist[[j]] = Zmat[,j]

Now we define the corresponding list object betalist. We only want constant
functions for the bird regression coefficient functions effects since there only the
mean counts at the two sites available to estimate any bird’s effect. However, for
both the intercept and the food effect, we use a B-spline basis with knots at observa-
tion times. We determined the level of smoothing to be applied to the intercept and
food regression functions by minimizing the cross-validated error sum of squares,
as described in the next section, and the result was λ = 10.

betalist = xfdlist
foodbasis = create.bspline.basis(rng,21,4,yearCode)
foodfdPar = fdPar(foodbasis, 2, 10)
betalist[[1]] = foodfdPar
betalist[[2]] = foodfdPar
conbasis = create.constant.basis(rng)
for (j in 3:15) betalist[[j]] = fdPar(conbasis)

Next we fit the model using fRegress, which involves first defining lists for
both the covariates (in this case all scalar) and a list of low-dimensional regression
functions.

birdRegress = fRegress(birdextfd, xfdlist, betalist)
betaestlist = birdRegress$betaestlist
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Figure 10.3 displays the regression functions for the intercept and food effects,
along with 95% pointwise confidence intervals estimated by the methods described
in Section 10.2.2. The trend in the intercept in the top panel models the mean trend
over all species, and indicates a steady increase up to 1999 followed by some de-
cline. The difference in the mean trends of the two food groups is shown in the
bottom panel, and suggests a steady decline in the shellfish and mollusk eaters rel-
ative to the fish eaters starting in 1988. This is what we noticed in the log mean
counts Figure 10.2.
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Fig. 10.3 The top panel shows the mean trend across all species, and the bottom panel shows
the difference between being a shellfish/mollusk eater and a fish eater. The dashed lines indicate
pointwise 95% confidence limits for these effects.

10.1.3 Choosing Smoothing Parameters

As for scalar response models, we would like to have a criterion for choosing any
smoothing parameters that we use. Unfortunately, while ordinary cross-validation
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can be calculated for scalar response models without repeatedly re-estimating the
model, this can no longer be done efficiently with functional response models.
Here, we use the function fRegress.CV to compute the cross-validated inte-
grated squared error:

CVISE(λ ) =
N

∑
i=1

∫ (
yi(t)− ŷ(−i)

i (t)
)2

dt

where y(−i)(t) is the predicted value for yi(t) when it is omitted from the estimation.
In the following code, we search over a range of values for λ applied to both the
intercept and the food effect:

loglam = seq(-2,4,0.25)
SSE.CV1 = rep(NA,length(loglam))
betalisti = betaestlist
for (i in 1:length(loglam){
for(j in 1:2)
betalisti[[j]]$lambda = 10ˆloglam[i]

CVi = fRegress.CV(birdRegress, xfdlist,
betalisti)

SSE.CV1[i] = CVi$SSE.CV
}

This produces Figure 10.4, which indicates a unique minimum with λ approxi-
mately

√
10, although the discontinuities in the plot suggest that the cross-validated

error sum of squares can be rather sensitive to non-smooth variation in the response
functions as we defined them.

10.2 Functional Responses with Functional Predictors: The
Concurrent Model

We can extend (10.1) to allow for functional covariates as follows:

yi(t) = β0(t)+
q−1

∑
j=1

xi j(t)β j(t)+ εi(t) (10.4)

where xi j(t) may be a functional observation. Of course, xi j may also be a scalar
observation or a categorical indicator, in which case it can be simply interpreted as
a function that is constant over time. Model (10.4) is called concurrent because it
only relates the value of yi(t) to the value of xi j(t) at the same time points t. The
intercept function β0(t) in effect multiplies a scalar covariate whose value is always
one, and captures the variation in the response that does not depend on any of the
covariate functions.
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Fig. 10.4 The cross-validated integrated square errors for the bird data over a range of logarithms
of λ .

10.2.1 Estimation for the Concurrent Model

As in ordinary regression, we must worry about redundancy or multicollinearity
among the intercept and the functional (and scalar if present) covariates. Multi-
collinearity brings a host of problems, including imprecision in estimates due to
rounding error, difficulty in discerning which covariates play an important role in
predicting the dependent variable, and instability in regression coefficient estimates
due to trade-offs between covariates in predicting variation in the dependent vari-
able. When more than one functional covariate is involved, multicollinearity is often
referred to as concurvity.

To better understand the multicollinearity problem, we look more closely at how
the functional regression coefficients β j are estimated by function fRegress by
reducing the problem down to the solution of a set of linear equations. The coeffi-
cient matrix defining this linear system can then be analyzed to detect and diagnose
problems with ill-conditioning and curvilinearity.

Let the N by q functional matrix Z contain these xi j functions, and let the vector
coefficient function β of length q contain each of the regression functions. The
concurrent functional linear model in matrix notation is then

y(t) = Z(t)β (t)+ ε(t) , (10.5)

where y is a functional vector of length N containing the response functions. Let

r(t) = y(t)−Z(t)β (t) (10.6)
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be the corresponding N-vector of residual functions. The weighted regularized fit-
ting criterion is

LMSSE(β ) =
∫

r(t)′r(t)dt +
p

∑
j

λ j

∫
[L jβ j(t)]2 dt. (10.7)

Let regression function β j have the expansion

β j(t) =
Kj

∑
k

bk jθk j(t) = θ j(t)′b j

in terms of Kj basis functions θk j. In order to express (10.5) and (10.7) in matrix no-
tation referring explicitly to these expansions, we need to construct some composite
or supermatrices.

Defining Kβ = ∑q
j Kj, we first construct vector b of length Kβ by stacking the

vectors vertically, that is,
b = (b′1,b

′
2, . . . ,b

′
q)
′ .

Now assemble q by Kβ matrix function Θ(t) as follows:

Θ(t) =




θ 1(t)′ 0 · · · 0
0 θ 2(t)′ · · · 0
...

... · · · ...
0 0 · · · θ q(t)′


 . (10.8)

Then β (t) = Θ(t)b. With this, (10.6) can be rewritten as follows:

r(t) = y(t)−Z(t)Θ(t)b

Next let R(λ ) be the block diagonal matrix with jth block as follows:

λ j

∫
[L jθ j(t)]′[L jθ j(t)]dt.

Then (10.7) can be written as follows:

LMSSE(β ) =
∫

[y(t)′y(t)−2b′Θ(t)′Z(t)′y(t)+b′Θ(t)′Z(t)′Z(t)Θ(t)b]dt

+b′R(λ )b

If we differentiate this with respect to the coefficient vector b and set it to zero, we
get the normal equations penalized least squares solution for the composite coeffi-
cient vector b̂:

[
∫

Θ ′(t)Z′(t)Z(t)Θ(t)dt +R(λ )]b̂ = [
∫

Θ ′(t)Z′(t)y(t)dt] . (10.9)
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This is a linear matrix equation defining the scalar coefficients in vector b̂, Ab̂ = d,
where the normal equation matrix is

A =
∫

Θ ′(t)Z′(t)Z(t)Θ(t)dt +R(λ ) , (10.10)

and the right-hand side vector of the system is

d =
∫

Θ ′(t)Z′(t)y(t)dt . (10.11)

These equations are all given in terms of integrals of basis functions with func-
tional data objects. In some cases, it is possible to evaluate them explicitly, but we
will otherwise revert to numerical integration. In practice, numerical integration is
both feasible and accurate (with reasonable choices for basis sets, etc.).

Concurrent linear models make up an important subset of all possible linear
functional response models, especially for examining dynamics (see Chapter 11).
However, they can be particularly restrictive; we discuss the general class of linear
functional response models in Section 10.3.

10.2.2 Confidence Intervals for Regression Functions

Confidence intervals for regression coefficients are produced by first estimating an
error covariance and observing that our estimates are linear functions of our data.
In doing this, we account for both the variation of the smoothed y(t) about their
predicted values and the residuals of the original smoothing process. The residual
for the ith observation of the jth curve is

ri j = yi j−Z j(ti)β (ti).

When the yi j all occur at a grid of times, we can produce an estimate

Σ ∗e =
1
N

rr′. (10.12)

Where r is the matrix of residuals.
In the Seabird data, the error variance is calculated from

yhatmat = eval.fd(year, yhatfdobj)
rmatb = logCounts2 - yhatmat
SigmaEb = var(t(rmatb))

With this estimate of Σ ∗e , we must consider the smoothing done to take the obser-
vations of the response y onto the space spanned by the response basis functions
φ(t). Let C denote the matrix of regression coefficients for this representation, so
y(t) = Cφ(t). Substituting this into (10.9), we get
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b̂ = A−1[∫
Θ(t)′Z(t)′Cφ(t)dt

]

= A−1[∫
φ(t)′ ⊗ (Θ(t)′Z(t)′)dt

]
vec(C)

= c2bMap vec(C) (10.13)

where ⊗ is used to represent the Kronecker product. The explicit use of a basis
expansion for y(t) allows the flexibility of modeling variation in y by itself or of
including the original measurements of each response curve into the variance calcu-
lation.

We now require the matrix y2cMap that is used compute the regression co-
efficient matrix C from the original observations, y. This this can be obtained
from functions like smooth.basis or smooth.basisPar. The map (c2bMap
y2cMap) now maps original observations directly to b̂. Therefore:

Var
[
b̂
]
= c2bMap y2cMap Σ ∗e y2cMap′ c2bMap′. (10.14)

In the fda package, these intervals are created using fRegress.stderr. This
requires the result of a call to fRegress along with the matrices y2cMap and
Σ ∗e . The standard errors for the regression coefficients used to create Figure 10.3 are
computed using the following code.

y2cMap = birdList2$y2cMap
stderrList = fRegress.stderr(birdRegress, y2cMap,

SigmaEb)
betastderrlist = stderrList$betastderrlist

Finally we plot the results using the special purpose plotting function plotbeta.
When the original curves are not the result of smoothing data that have common

observation times over curves, we can at least estimate confidence intervals based
on the variation of the smoothed curves about the model predictions. To do this,
we simply create pseudo data by evaluating the residual functions at a fine grid
of points and calculating variance matrix from this. When we do this, the use of
y2cMap above is no longer valid. Instead we replace it with a projection matrix
that takes the pseudo data to the coefficients C. This is simply [Φ(t)′Φ(t)]−1, but
we will not pursue this here.

10.2.3 Knee Angle Predicted from Hip Angle

The gait data displayed in Figure 1.6 are measurements of angle at the hip and knee
of 39 children as they walk through a single gait cycle. The cycle begins at the point
where the child’s heel under the leg being observed strikes the ground. For plotting
simplicity we run time here over the interval [0,20], since there are 20 times at which
the two angles are observed. This analysis is inspired by the question, “How much
control does the hip angle have over the knee angle?”
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Figure 10.5 plots the mean knee angle along with its angular velocity and accel-
eration, and Figure 10.6 plots knee angle acceleration against velocity. We can see
three distinct phases in knee angle of roughly equal durations:
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Fig. 10.5 Knee angle and its velocity and acceleration over a single gait cycle, which begins when
the heel strikes the ground. The vertical dashed lines separate distinct phases in the cycle.

1. From time 0 to 7.5, the leg is bearing the weight of the child by itself, and the
knee is close to being straight. This corresponds to the small loop in the cycle
plot starting just before the marker “1” and up to the cusp.

2. From time 7.5 to time 14.7, the knee flexes in order to lift the foot off the ground,
reaching a maximum mean angle of about 70 degrees.

3. From time 14.7 to time 20, the knee is extended to receive the load at the next
heel-strike.

Together the second and third phases look like straightforward harmonic motion. A
similar analysis of the hip motion reveals only a single harmonic phase. We wonder
how the hip motion is coupled to knee motion.

Starting with functional data objects kneefd and hipfd for knee and hip angle,
respectively, these commands execute a concurrent functional regression analysis
where knee angle is fit by intercept and hip angle coefficient functions:

xfdlist = list(rep(1,39), hipfd)
betafdPar = fdPar(gaitbasis, harmaccelLfd)
betalist = list(betafdPar,betafdPar)
fRegressList = fRegress(kneefd, xfdlist, betalist)
kneehatfd = fRegressList$yhatfd
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Fig. 10.6 A phase-plane plot of knee angle over a gait cycle. Numbers indicate indices of times of
observation of knee angle.

betaestlist = fRegressList$betaestlist

The intercept and hip regression coefficient functions are plotted as solid lines in
Figure 10.7.

These commands compute the residual variance-covariance matrix estimate,
which we leave as is rather than converting it to a diagonal matrix.

%kneemat = eval.fd(gaittime, kneefd)
kneehatmat = eval.fd(gaittime, kneehatfd)
resmat. = gait - kneehatmat
SigmaE = cov(t(resmat.))

We also set up error sums of square functions for variation about both the model fit
and mean knee angle. Then we compare the two via a squared multiple correlation
function.

kneefinemat = eval.fd(gaitfine, kneefd)
kneemeanvec = eval.fd(gaitfine, kneemeanfd)
kneehatfinemat = eval.fd(gaitfine, kneehatfd)
resmat = kneefinemat - kneehatfinemat
resmat0 = kneefinemat -

kneemeanvec %*% matrix(1,1,ncurve)
SSE0 = apply((resmat0)ˆ2, 1, sum)
SSE1 = apply(resmatˆ2, 1, sum)
Rsqr = (SSE0-SSE1)/SSE0
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Fig. 10.7 The top panel shows as a solid line the intercept term in the prediction of knee angle
from hip angle; the dashed line indicates the mean knee angle assuming no hip angle effect. The
bottom panel shows as a solid line the functional regression coefficient multiplying hip angle in
the functional concurrent linear model, and the dashed line shows the squared multiple correlation
coefficient function associated with this model. Vertical dashed lines indicated boundaries between
the three phases of the gait cycle.

The R2 function is included in the second panel of Figure 10.7 as a dashed line. We
see that it tracks pretty closely the variation in the hip regression coefficient.

The commands plot the intercept and hip regression coefficients with 95% con-
fidence intervals, shown in Figure 10.8:

y2cMap = kneefdPar$y2cMap
fRegressList1 = fRegress(kneefd, xfdlist, betalist,

y2cMap, SigmaE)
fRegressList2 = fRegress.stderr(fRegressList1,

y2cMap, SigmaE)
betastderrlist = fRegressList2$betastderrlist
titlelist = list("Intercept", "Hip coefficient")
plotbeta(betaestlist, betastderrlist, gaitfine,

titlelist)

We see that hip angle variation is coupled to knee angle variation in the middle of
each of these three episodes, and the relation is especially strong during the middle
flexing phase. It seems logical that a strongly flexed knee is associated with a sharper
hip angle.

We can repeat these analyses to explore the relationship between knee and hip
acceleration. This can be interesting because neural activation of these two muscle
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Fig. 10.8 The intercept and hip regression coefficient function for the gait cycle with 95% point-
wise confidence intervals.

groups produces contraction, and contraction impacts acceleration directly by New-
ton’s Second Law. Figure 10.9 shows the results of doing this. Now it is apparent
that these two angles are coupled at a nearly evenly spaced series of seven points in
the gait cycle. Given that a gait duration can be of the order of a second, it is striking
to compare these plots with those of the handwriting data in Figure 8.6.

10.3 Beyond the Concurrent Model

The concurrent linear model only relates the value of a functional response to the
current value of functional covariate(s). A more general version for a single func-
tional covariate and an intercept is

yi(t) = β0(t)+
∫

Ωt

β1(t,s)xi(s)ds+ εi(t). (10.15)

The bivariate regression coefficient function β1(s, t) defines the dependence of yi(t)
on covariate xi(s) at each time t. In this case xi(s) need not be defined over the same
range, or even the same continuum, as yi(t).

Set Ωt in (10.15) contains the range of values of argument s over which xi is
considered to influence response yi at time t, and the subscript t on this set indicates
that this set can change from one value of t to another. For example, when both s and
t are time, using xi(s) to predict yi(t) when s > t may imply backwards causation.
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Fig. 10.9 The solid line shows the regression function multiplying hip angle acceleration in the
prediction of knee angle acceleration, and the dashed line indicates the corresponding squared
multiple coerrelation function.

To avoid this nonsense, we consider only values of xi before time t. We may also
add a restriction on how far back in time the influence of xi on yi can happen. This
leads us to restrict the integral to

Ωt = {s|t−δ ≤ s≤ t} ,

where δ > 0 specifies how much history is relevant to the prediction. Malfait and
Ramsay (2003) described this as the historical linear model.

10.4 A Functional Linear Model for Swedish Mortality

We illustrate the estimation of (10.15) using Swedish life table data taken from
census records in Sweden. The data are the number of deaths at each age for women
born in each year from 1751 to 1914 and for ages 0 to 80. We will use the data up
until 1884 in order to allow the extrapolation problem to be considered (see Section
10.10). Figure 10.10 displays the log hazard rates for four selected years. The log
hazard rate is the natural logarithm of the ratio of the number of females who die at
a specific age to the number of females alive with that age. These data were obtained
from http://mortality.org. See also Chiou and Müller (2009) for another
approach to modeling these data.
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The hazard rate is greatest for infants and for the very elderly, and in most years
attains its minimum in the early teens. The four curves indicate that the hazard rate
decreases substantially as the health of the population improves over this period.
However, there are localized features in each curve that reflect various historical
events such as outbreaks of disease, war, and so on.
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Fig. 10.10 Log hazard rates as a function of age for Swedish women born in the years 1751, 1810,
1860 and 1914. These data are derived from mortality tables at http://mortality.org.

Let xi(t) represent the log hazard rate at age t for birth year i. We propose the
model

xi+1(t) = β0(t)+
∫

β1(s, t)xi(t)ds+ εi(t) . (10.16)

That is, for any year from 1752 to 1894, we model the log hazard function for that
year using as the functional covariate the log hazard curve for the preceding year.
Assume that the response curves have been smoothed and represented as functional
data object NextYear, and that the covariate curves are in functional data object
ThisYear.

The regression function β1 has the basis function expansion

β1(s, t) =
K1

∑
k=1

K2

∑̀
=1

bk`φk(s)ψ`(t)

= φ ′(s)Bψ(t), (10.17)
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where the coefficients for the expansion are in the K1 by K2 matrix B. We therefore
need to define two bases for β1, as well as a basis for the intercept function β0.

For a bivariate function such as β1(t,s) smoothness can be imposed by penalizing
the s and t directions separately:

PENλt ,λs(β1(t,s)) = λ1

∫
[Ltβ1(t,s)]

2 dsdt +λ2

∫
[Lsβ1(t,s)]

2 dsdt , (10.18)

where linear differential operator Ls only involves derivatives with respect to s and
Lt only involves derivatives with respect to t. We can also apply a penalty to the
roughness of the intercept β0.

The following code sets up a B-spline basis of order four with 23 basis functions.
This is used to define functional parameter objects for β0, β1(·, t) and β1(s, ·). The
second derivative is penalized in each case, but the smoothing parameter values vary
as shown. The final statement assembles these three functional parameter objects
into a list object to be supplied to function linmod as an argument.

betabasis = create.bspline.basis(c(0,80),23)
beta0Par = fdPar(betabasis, 2, 1e-5)
beta1sPar = fdPar(betabasis, 2, 1e3)
beta1tPar = fdPar(betabasis, 2, 1e3)
betaList = list(beta0Par, beta1sPar, beta1tPar)

Function linmod is invoked in R for these data by the command

linmodSmooth = linmod(NextYear, LastYear, betaList)

Figure 10.11 displays the estimated regression surface β1(s, t). The estimated in-
tercept function β0 ranged over values four orders of magnitude smaller than the re-
sponse functions, and can therefore be considered to be essentially zero. The strong
ridge one year off the diagonal, namely β1(s− 1,s), indicates that mortality at any
age is most strongly related to mortality at the previous year for that age less one.
In other words, mortality is most strongly determined by age-specific factors like
infectious diseases in infancy, accidents and violent death in early adulthood, and
aging late in life. The height of the surface declines to near zero for large differences
between s and t for this reason as well.

10.5 Permutation Tests of Functional Hypotheses

As was the case for scalar response models, we have so far focused on exploratory
analyses. In the context of functional response models, it would again be useful to
gauge the extent to which the estimated relationship can be distinguished from zero.

The type of questions that we are interested in are generalizations of common
statistical tests and of common statistical models:

• Are two or more groups of functions statistically distinguishable?
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Fig. 10.11 The bivariate regression coefficient function β1(s, t) for the model (10.16) estimated
from the 143 log hazard rate functions for the Swedish life table data. The ridge in β1(s, t) is one
year off the diagonal.

• Are there statistically significant relationships among functional random vari-
ables?

Since functional data are inherently high dimensional, we again use permutation
testing.

10.5.1 Functional t-Tests

Consider the Berkeley growth study data for both boys and girls in Figure 10.12.
This plot suggests that boys generally become taller than girls. However, is this
difference statistically significant? To evaluate this, we consider the absolute value
of a t-statistic at each point:
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Fig. 10.12 The heights of the first ten boys and the first ten girls in the Berkeley growth study. We
use a permutation test to evaluate whether the the growth curves for the two groups are different.

T (t) =
|x̄1(t)− x̄2(t)|√

1
n1

Var[x1(t)]+ 1
n2

Var[x2(t)]
. (10.19)

This is plotted in the solid line in Figure 10.13. By itself, this provides a sense of
the relative separation of the two groups of functions. However, a formal hypothesis
test requires a value or statistic to test and a probability value indicating the result
of the test. The test statistic that we use is the maximum value of the multivariate
T -test, T (t). To find a critical value of this statistic, we use a permutation test. We
perform the following procedure:

1. Randomly shuffle the labels of the curves.
2. Recalculate the maximum of T (t) with the new labels.

Repeating this many times allows a null distribution to be constructed. This pro-
vides a reference for evaluating the maximum value of the observed T (t).

The following code executes a permutation test and generates the graphic in Fig-
ure 10.13. It uses a default value of 200 random shuffles, which is more than ade-
quate for such a large difference as is shown, but might not suffice for more delicate
effects.

tperm.fd(hgtmfd,hgtffd)

Here hgtmfd and hgtffd are functional data objects for the males and females
in the study. It is apparent that there is little evidence for difference up to the age
of around 12, about the middle of the female growth spurt, at which point the boys
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rapidly become taller. We can conclude that the main reason why boys end up taller
than girls is that they get an extra couple of years of growth on the average.
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Fig. 10.13 A permutation test for the difference between girls and boys in the Berkeley growth
study. The dashed line gives the permutation 0.05 critical value for the maximum of the t-statistic
and the dotted the permutation critical value for the pointwise statistic.

10.5.2 Functional F-Tests

In the more general case of functional linear regression, the same approach can be
applied. In this case, we define a functional version of the univariate F-statistic:

F(t) =
Var[ŷ(t)]

1
n ∑(yi(t)− ŷ(t))2

(10.20)

where ŷ are the predicted values from a call to fRegress. Apart from a scale
factor, this is the functional equivalent of the scalar F-statistic in multiple linear
regression. It reduces to that for scalar-response models, as discussed in Section
9.5 above. As before, we reduce this to a single number by calculating max(F(t))
and conducting a permutation test. In this case, we permute the response curves (or
values), leaving the design unchanged. A test for no-effect of geographic region on
temperature profile is conducted below. Figure 10.14 reports pointwise and maximal
F-statistics and their corresponding permutation critical values for the temperature
data.
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F.res = Fperm.fd(temp36fd, regionList, betaList)
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Fig. 10.14 A permutation test for a predictive relationship between geographic region and temper-
ature profile for the Canadian weather data.

10.6 Details for R Functions fRegress, fRegress.CV and
fRegress.stderr

10.6.1 Function fRegress

Because of its importance, we have set up a number of calling sequences for
fRegress. These depend on the class of y, the first argument of the function.
The first three cases concern the response being a vector of numbers, a functional
data object or a functional parameter object. The last two allow the user to specify a
model using a formula as in the R core function lm. The Matlab version can handle
the first three cases, but not the last two:

numeric: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)

fd: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)
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fdPar: fRegress(y, xfdlist, betalist, wt=NULL,
y2cMap=NULL, SigmaE=NULL, ...)

character: fRegress(y, data=NULL, betalist=NULL,
wt=NULL, y2cMap=NULL, SigmaE=NULL,
method=c(’fRegress’, ’model’),
sep=’.’, ...)

formula: fRegress(y, data=NULL, betalist=NULL,
wt=NULL, y2cMap=NULL, SigmaE=NULL,
method=c(’fRegress’, ’model’),
sep=’.’, ...)

The arguments are described as follows:

y The dependent variable object. It may be an object of five possible classes:

scalar A vector if the dependent variable is scalar.
fd A functional data object if the dependent variable is functional. A y of this

class is replaced by fdPar(y, ...) and passed to fRegress.fdPar.
fdPar A functional parameter object if the dependent variable is functional,

and if it is desired to smooth the prediction of the dependent variable.
character or formula A formula object or a character object

that can be coerced into a formula providing a symbolic description of the
model to be fitted satisfying the following rules: The left-hand side, formula
y, must be either a numeric vector or a univariate object of class fd or fdPar.
If the former, it is replaced by fdPar(y, ...).

All objects named on the right-hand side must be either numeric or fd
(functional data) or fdPar. The number of replications of fd or fdPar ob-
ject(s) must match each other and the number of observations of numeric
objects named, as well as the number of replications of the dependent variable
object. The right-hand side of this formula is translated into xfdlist, then
passed to another method for fitting (unless method = ’model’). Multi-
variate independent variables are allowed in a formula and are split into
univariate independent variables in the resulting xfdlist. Similarly, cate-
gorical independent variables with k levels are translated into k-1 contrasts
in xfdlist. Any smoothing information is passed to the corresponding com-
ponent of betalist.

data An optional list or data.frame containing names of objects identified
in the formula or character y.

xfdlist A list of length equal to the number of independent variables (includ-
ing any intercept). Members of this list are the independent variables. They can
be objects of either of these two classes:

scalar A numeric vector if the independent variable is scalar.
fd A (univariate) functional data object.
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In either case, the object must have the same number of replications as the de-
pendent variable object. That is, if it is a scalar, it must be of the same length
as the dependent variable, and if it is functional, it must have the same number
of replications as the dependent variable. (Only univariate independent variables
are currently allowed in xfdlist.)

betalist For the fd, fdPar, and numeric methods, betalist must be
a list of length equal to length(xfdlist). Members of this list are func-
tional parameter objects (class fdPar) defining the regression functions to be
estimated. Even if a corresponding independent variable is scalar, its regression
coefficient must be functional if the dependent variable is functional. (If the de-
pendent variable is a scalar, the coefficients of scalar independent variables, in-
cluding the intercept, must be constants, but the coefficients of functional inde-
pendent variables must be functional.) Each of these functional parameter objects
defines a single functional data object, that is, with only one replication.

For the formula and character methods, betalist can be either a
list, as for the other methods, or NULL, in which case a list is created. If
betalist is created, it will use the bases from the corresponding component
of xfdlist if it is function or from the response variable. Smoothing infor-
mation (arguments Lfdobj, lambda, estimate, and penmat of function
fdPar) will come from the corresponding component of xfdlist if it is of
class fdPar (or for scalar independent variables from the response variable if it
is of class fdPar) or from optional ... arguments if the reference variable is
not of class fdPar.

wt Weights for weighted least squares.
y2cMap The matrix mapping from the vector of observed values to the coeffi-

cients for the dependent variable. This is output by function smooth.basis.
If this is supplied, confidence limits are computed, otherwise not.

SigmaE Estimate of the covariances among the residuals. This can only be esti-
mated after a preliminary analysis with fRegress.

method A character string matching either fRegress for functional regression
estimation or mode to create the argument lists for functional regression estima-
tion without running it.

sep Separator for creating names for multiple variables for fRegress.fdPar
or fRegress.numeric created from single variables on the right-hand side
of the formula y. This happens with multidimensional fd objects as well as
with categorical variables.

... Optional arguments.

These functions return either a standard fRegress fit object or a model speci-
fication:

fRegress fit A list of class fRegress with the following components:

y The first argument in the call to fRegress (coerced to class fdPar).
xfdlist The second argument in the call to fRegress.
betalist The third argument in the call to fRegress.
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betaestlist A list of length equal to the number of independent variables
and with members having the same functional parameter structure as the cor-
responding members of betalist. These are the estimated regression coef-
ficient functions.

yhatfdobj A functional parameter object (class fdPar) if the dependent
variable is functional or a vector if the dependent variable is scalar. This is the
set of predicted by the functional regression model for the dependent variable.

Cmatinv A matrix containing the inverse of the coefficient matrix for the lin-
ear equations that define the solution to the regression problem. This matrix is
required for function fRegress.stderr that estimates confidence regions
for the regression coefficient function estimates.

wt The vector of weights input or inferred.
df, OCV, gcv Equivalent degrees of freedom for the fit, leave-one-out cross

validation score for the model, and generalized cross validation score; only
present if class(y) is numeric.

If class(y) is either fd or fdPar, the fRegress object returned
also includes 5 other components:

y2cMap An input y2cMap.
SigmaE An input SigmaE.
betastderrlist An fd object estimating the standard errors of
betaestlist.

bvar The covariance matrix defined in (10.14).
c2bMap A matrix converting the smoothing coefficients of the response vari-

able into the regression coeffient, as defined in 10.13.

function.
Alternatively, to see how the formula is translated, use the alternative

"model" value for the argument method. In that case, the function returns
a list with the arguments otherwise passed to other fRegress methods (func-
tions) plus the following additional components:

xfdlist0 A list of the objects named on the right hand side of formula.
This will differ from xfdlist for any categorical or multivariate right-hand
side object.

type The type component of any fd object on the right-hand side of
formula.

nbasis A vector containing the nbasis components of variables named in
formula having such components.

xVars An integer vector with all the variable names on the right-hand side
of formula containing the corresponding number of variables in xfdlist.
This can exceed 1 for any multivariate object on the right-hand side of class
either numeric or fd as well as any categorical variable.

functions translate the formula into the argument list required by fRegress.
modelspecification ThefRegress.formula andfRegress.character

fdPar or fRegress.numeric and then call the appropriate other fRegress
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10.6.2 Function fRegress.CV

fRegress.CV performs leave-one-out cross-validation for a model computed
with fRegress. In the case of a scalar response, ordinary and generalized cross-
validation scores can be computed analytically without having to leave each ob-
servation out one at a time. These scores are already returned by fRegress. For
functional response models, we must calculate the cross-validated scores by brute
force. This can take some time.

The function call is

fRegress.CV(y, xfdlist, betalist, CVobs,...)

The arguments are as follows:

y The dependent variable object; either a vector, a functional data object or a
functional parameter object.

xfdlist A list whose members are functional parameter objects specifying
functional independent variables. Some of these may also be vectors specifying
scalar independent variables.

betalist A list containing functional parameter objects specifying the regres-
sion functions and their level of smoothing.

CVobs A vector giving the indexes of the observations to leave out, one at a
time, in computing the cross-validation scores. This defaults to all observations,
but may be used to leave out artificial zero observations, as in the functional
ANOVA models described in this chapter.

... Optional arguments not used by fRegress.CV but needed for superficial
compatibability with fRegress methods.

The function returns a list object with components:

SSE.CV The sum of squared errors, or integrated squared errors.
errfd.cv Either a vector or a functional data object giving the cross-validated

errors.

10.6.3 Function fRegress.stderr

The calling sequence is

fRegress.stderr(y, y2cMap, SigmaE, ...)

The arguments are as follows:

y The named list of length six that is returned from a call to function fRegress.
y2cMap A matrix that contains the linear transformation that takes the raw data

values into the coefficients defining a smooth functional data object. Typically,
this matrix is returned from a call to function smooth.basis that generates
the dependent variable objects. If the dependent variable is scalar, this matrix is
an identity matrix of order equal to the length of the vector.



174 10 Linear Models for Functional Responses

SigmaE Either a matrix or a bivariate functional data object according to whether
the dependent variable is scalar or functional, respectively. This object has a num-
ber of replications equal to the length of the dependent variable object. It contains
an estimate of the variance-covariance matrix or function for the residuals.

... Optional arguments not used by fRegress.stderr but needed for su-
perficial compatibability with fRegress methods.

The function returns a list object with these three components:

betastderrlist A list object of length equal to the number of independent
variables. Each member contains a functional parameter object for the standard
error of a regression function.

bvar A symmetric matrix containing sampling variances and covariances for the
matrix of basis coefficients for the regression functions. These are stored column-
wise in defining BVARIANCE.

c2bMap A matrix containing the mapping from response variable coefficients to
coefficients for regression coefficients.

10.7 Details for Function plotbeta

The calling sequence is

plotbeta(betaestlist, betastderrlist, argvals=NULL,
xlab="", ...)

The arguments are as follows:

betaestlist A list containing one or more functional parameter objects (class
= fdPar) or functional data objects (class = fd).

betastderrlist A list containing functional data objects for the standard
errors of the objects in betaestlist.

argvals A sequence of values at which to evaluate betaestlist and
betastderrlist.

xlab x axis label.
... Additional plotting parameters passed to plot.

There is no return value.

10.8 Details for Function linmod

The calling sequence is

linmod(yfdobj, xfdobj, betaList)

The arguments are as follows:



10.9 Details for Functions Fperm.fd and tperm.fd 175

yfdobj A functional data object for the response or dependent variable func-
tions.

xfdobj A functional data object for the covariate or independent variable func-
tions.

betaList A list object containing three functional parameter objects. The first
is for the intercept term β0 in (10.15), the second is for the bivariate regression
function β1 in (10.15) as a function of the first argument s, and the third is for β1
as a function of the second argument t.

The function returns a list of length three with components as follows:

beta0estfd A functional data object for the estimated intercept.
beta1estbifd A bivariate functional data object for the bivariate regression

function.
yhatfdobj A functional data object for the predicted response function.

10.9 Details for Functions Fperm.fd and tperm.fd

10.9.1 Function Fperm.fd

This function can be called with exactly the same calling sequence as fRegress,
it has additional arguments which all have default values:

nperm Number of permutations to use in creating the null distribution.
argvals If yfdPar is a fd object, the points at which to evaluate the point-
wise F-statistic.
q Critical upper-tail quantile of the null distribution to compare to the observed
F-statistic.
plotres Argument to plot a visual display of the null distribution displaying
the qth quantile and observed F-statistic.
... Additional plotting arguments that can be used with plot.

If yfdPar is a fd object, the maximal value of the pointwise F-statistic is calcu-
lated. The pointwise F-statistics are also returned. The default of setting q = 0.95
is, by now, fairly standard. The default nperm = 200may be small, depending on
the amount of computing time available. If argvals is not specified and yfdPar
is a fd object, it defaults to 101 equally spaced points on the range of yfdPar.

If plotres = TRUE and yfdPar is a functional data object, a plot is pro-
duced giving the functional F-statistic along with 95th quantiles of the null distribu-
tion at each point and the 95th quantile of the null distribution of maximal F-values.
If yfdPar is scalar, a histogram is plotted with the 95th quantile marked along with
the observed statistic. The function returns a list with the following elements which
may be used to reconstruct the plot.

pval The observed p-value of the permutation test.



176 10 Linear Models for Functional Responses

qval The qth quantile of the null distribution.
Fobs The observed maximal F-statistic.
Fnull A vector of length nperm giving the observed values of the permutation
distribution.
Fvals The pointwise values of the observed F-statistic.
Fnullvals The pointwise values of of the permutation observations.
pvals.pts Pointwise p-values of the F-statistic.
qvals.pts Pointwise qth quantiles of the null distribution.
fRegressList The result of fRegress on the observed data.
argvals Argument values for evaluating the F-statistic if yfdPar is a func-
tional data object.

10.9.2 Function tperm.fd

This function carries out a permutation t-test for the difference between two groups
of functional data objects. Its arguments are

x1fd and x2fd Functional data objects giving the two groups of functional
observations.
nperm The number of permutations to use in creating the null distribution.
q Critical upper-tail quantile of the null distribution to compare to the observed
t-statistic.
argvals If yfdPar is a fd object, the points at which to evaluate the point-
wise t-statistic.
plotres Argument to plot a visual display of the null distribution displaying
the 1-qth quantile and observed t-statistic.

If plotres=TRUE, a plot is given showing the functional t-statistic, along with
the critical values of the permutation distribution at each point and the permutation
critical value of the maximal t-statistic. It returns a list with the objects necessary to
recreate the plot:

pval The observed p-value of the permutation test.
qval The qth quantile of the null distribution.
Tobs The observed maximal t-statistic.
Tnull A vector of length nperm giving the observed values of the permutation
distribution.
Tvals The pointwise values of the observed t-statistic.
Tnullvals The pointwise values of of the permutation observations.
pvals.pts Pointwise p-values of the t-statistic.
qvals.pts Pointwise qth quantiles of the null distribution.
argvals Argument values for evaluating the F-statistic if yfdParis a func-
tional data object.
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10.10 Some Things to Try

The Swedish life table data consist of the log hazard rates (instantaneous risk of
death) at ages 0 to 80 for Swedish women by birth year from 1751 to 1914. We
want to develop a model for the way in which these have evolved over the years to
1894, and consider how well we can use this to forecast the hazard rate for women
born in the year 1914.

1. Smooth the data appropriately. Explore these smooths – are there clearly evident
features in how they change over time?

2. Create a functional linear model to predict the hazard curves from birth year for
years 1751 to 1894. Choose smoothing parameters by cross-validation. Provide a
plot of the error covariance. Plot the coefficient functions along with confidence
intervals.

3. Examine the residuals from your model above. Are there any indications of lack
of fit? If there are, construct an appropriately modified model. Plot the R-squared
for both the linear model and the new one. Does there appear to be evidence for
the effect of time on hazard curves?

4. Extrapolate your models to predict the hazard rate at 1914. How well does each
do? Do they give better predictions than just the mean hazard curve?

5. Because the hazard curves are ordered in time, it is also possible to consider
a functional time series model. Specifically, fit a model with the autoregressive
structure:

yi+1(t) = β0(t)+β1(t)yi(t)+ εi(t).

Report the results of your model. You should provide confidence intervals for
β0(t) and β1(t). If you think the model will benefit from smoothing, do so. Does
the model appear to fit well? Do you prefer this model or the model only using
time as a predictor? Why?

10.11 More to Read

The concurrent linear model is closely related to the varying coefficients model. See
Hastie and Tibshirani (1993), plus a large recent literature associated in Ramsay
and Silverman (2005). A theoretical coverage of more general functional response
models is given in Cuevas et al. (2002) as well as earlier papers by Cardot et al.
(1999) and Ferraty and Vieu (2001). An elegant discussion of the ways in which
the functional ANOVA can be treated is given in Brumback and Rice (1998) and
associated discussion.




