
Chapter 11
Functional Models and Dynamics

This chapter brings us to the study of continuous time dynamics, where functional
data analysis has, perhaps, its greatest utility by providing direct access to relation-
ships between derivatives that could otherwise be studied only indirectly. Although
dynamic systems are the subject of a large mathematical literature, they are rela-
tively uncommon in statistics. We have therefore devoted the first section of this
chapter to reviewing them and their properties. Then we address how “principal
differential analysis (PDA)” can contribute to their study from an empirical per-
spective.

11.1 Introduction to Dynamics

Functional data offer access to estimated derivatives, which reflect rates of change.
We have already seen the interpretative advantage of looking at velocity and accel-
eration in the Berkeley growth data. The field of dynamics is the study of systems
that are characterized by relationships among derivatives. Newton’s Second Law,

F = ma

which we can rewrite in functional data analysis terms as

D2x(t) =
1
m

F(t), (11.1)

linear model with a constant coefficient function where force F is the functional
covariate predicting acceleration D2x. Dynamic models such as this are developed in
the physical sciences from first principles and are often proposed as approximations
to data derived from complex systems of all kinds.

is probably the most famous dynamic model. It is, in fact, a concurrent functional

J. Ramsay et al., Functional Data Analysis with R and MATLAB, Use R,

© Springer Science + Business Media, LLC 2009

179
DOI: 10.1007/978-0-387-98185-7_11,

O.

180 11 Functional Models and Dynamics

11.1.1 An Example of First-Order Dynamics

Consider a straight-sided bucket of water with a leak at the bottom. Water will leak
out from the hole at a rate proportional to the amount of pressure on the bottom
of the bucket and the size of the hole (ignoring second-order effects like surface
tension and flow turbulence). Since the pressure is proportional to the height x(t) of
the water in the bucket at time t, the flow rate Dx(t) can be described as follows:

Dx(t) =−βx(t). (11.2)

The negative sign is introduced here because water flowing out of the bucket reduces
the height.

Equations with this structure have the solution

x(t) = Ce−β t .

Since C = x(0), it is called the initial condition or state of this system. Since in our
example β > 0, the height of the water exhibits exponential decay.

If a hose adds water to the bucket at a rate g(t), Equation (11.2) becomes

Dx(t) =−βx(t)+αg(t). (11.3)

The coefficient α is required to match the units of the two terms. The input function
g(t) is called a forcing function, changing the unforced behavior of the system.

Of course most buckets change their diameter with height, and there will be ad-
ditional loss from evaporation, splashing and so forth. Effects such as these would
require the coefficients to change with time:

Dx(t) =−β (t)x(t)+α(t)g(t). (11.4)

This is a concurrent functional linear model predicting the instantaneous rate of
change Dx(t) on the basis of two covariates: the state x(t) and the external input or
forcing g(t).

Not all systems can be interpreted or developed so readily. Nonetheless, explor-
ing the relationships between derivatives in a system can provide a useful guide
to understanding its behavior. One of the useful aspects of first- and second-order
linear dynamics is that explicit solutions can be given for systems like (11.3) that
enable us to understand the instantaneous nature of the system’s behavior. These are
explored further in the next section.

Even fairly simple dynamic systems can produce highly complex behavior. This
is one of the reasons they are such powerful mathematical tools. Analyzing such
systems is an active area of research in applied mathematics with a large body of
literature. However, for linear systems, it is fairly easy to write down explicit solu-
tions.

When a forcing function is included the system, (11.3) leads to

11.1 Introduction to Dynamics 181

x(t) = Ce−β t + e−β t
∫ t

0
αeβτ g(τ)dτ.

To make this equation more interpretable, let us consider the situation where g(t) =
g is constant:

x(t) = Ce−β t +
αg
β

.

The height of water tends to a level αg/β that balances inflow of water with outflow
leaving the bucket. Moreover, it tends to that level at an exponential rate. As a rule
of thumb, the exponential term implies that x(t) will move approximately two thirds
of the distance to αg/β in 1/β time units.

11.1.2 Interpreting Second-Order Linear Dynamics

Of course, relationships between x and Dx may not capture all the important infor-
mation about how a system evolves. Linear second-order dynamics are expressed
as

D2x(t) =−β0x(t)−β1Dx(t)+αg(t). (11.5)

A good way to understand (11.5) is to think of a physical system described by
Newton’s Second Law: Each of the terms represents a different “force” on the sys-
tem. The first term represents position-dependent forces like a spring for which the
“stress” (force) is proportional to the “strain” (deformation). The second term is pro-
portional to the speed at which the system moves, and can be thought of in terms of
friction or viscosity, especially when β1 is positive. As before, g(t) again represents
external inputs into a system that modify its behavior, like Newton’s Second Law,
expression (11.1) above.

Let us first suppose that β1 = α = 0 so that

D2x(t) =−β0x(t).

If β0 ≥ 0, the solutions are of the form

x(t) = c1 sin(
√

β0t)+ c2 cos(
√

β0t),

which are periodic with a period 1/
√

β0.
More generally, if β1 6= 0, we examine the discriminant

d = β 2
1 /4−β0.

Direct differentiation shows that solutions are given by linear combinations of ex-
ponential functions

x(t) = c1 exp(γ1t)+ c2 exp(γ2t)

with

182 11 Functional Models and Dynamics

γ1 =
−β1

2
+
√

d, γ2 =
−β1

2
−
√

d.

These solutions will decay exponentially if γ1 < 0 (since γ2 <= γ1). If d < 0, γ1 and
γ2 are complex conjugates, and

x(t) = exp(−β1t/2)[d1 sin(t
√
−d)+d2 cos(t

√
−d)]. (11.6)

This yields oscillations that increase or decrease according to the sign of β1. More-
over, the oscillations have period 2π/

√−d.
Using these observations, we can divide the (β0,β1) space into regions of dif-

ferent qualitative behavior: oscillatory and nonoscillatory, exponential growth and
exponential decay. This division is depicted in Figure 11.1.

0

0

β0

β1

Increasing
Oscillations

Increasing
Oscillations

Exponential
Growth

Exponential
Decay

d=0

Fig. 11.1 A diagram of the various dynamic regimes for a second-order differential equation for
different values of β0 and β1.

For many purposes, we may want to generalize expression (11.5) further to con-
sider time-varying coefficients:

D2x(t) =−β1(t)Dx(t)−β0(t)x(t) (11.7)

in terms of the instantaneous values of the functional discriminant

d(t) = β1(t)2/4−β0(t).

11.1 Introduction to Dynamics 183

These diagnostics should be understood with some caution: If the coefficient
functions in (11.7) vary rapidly, their instantaneous changes may not translate into
substantive changes in the overall behavior of x(t). For example, if d(t) becomes
negative only briefly, there may not be enough time for any meaningful oscillation
to occur. Rapidly changing coefficient functions or strong relationships between the
coefficient functions of x(t) and its derivatives may provide a good indication that a
more complex, nonlinear system could be considered.

We draw from all of this that a relatively simple dynamic equation like (11.5) can
define a wide variety of behaviors. We also see the important issue of system sta-
bility. There are multiple definitions of stability, but in general if the coefficient of
velocity, β1(t), is positive, the system will be stable, exhibiting something like ex-
ponential decay possibly with a damped oscillation; if β1(t) is negative, the system
will exhibit something like exponential growth or a similarly growing oscillation.

11.1.3 Higher-Dimensional Linear Systems

Dynamic models can include more than one state variable. The second-order system
discussed in Section 11.1.2 can be cast as a first-order system with a vector state,
with components representing the location and velocity. In this context it is less easy
to produce analytic expressions with which to analyze the stability properties of a
system. However, the rules are not very different. A multidimensional linear system
involving a k-dimensional state can be written as

Dx(t) =−B(t)x(t), (11.8)

where B(t) is now a k× k matrix. It is clear that for this system, x(t)≡ 0 results in
a stable solution.

We can specialize this system to constant coefficients and add a forcing function
to get the following:

Dx(t) =−Bx(t)+u(t).

If u is constant, this system has a fixed point at x = −B−1u at which the solution
does not change. We can understand the stability of this solution in terms of the
eigenvalues d1, . . . ,dk of −B. Letting

ξ j(t) = ed jt , j = 1, . . . ,k,

the solution to (11.8) is given in terms of linear combinations of the ξ j(t). For a
general matrix B, some of the eigenvalues may be complex. For real-valued matrices
B, any complex eigenvalue will be paired with its complex conjugate. Moreover,
the imaginary parts describe the oscillations that we observed for the second-order
system, with the period of oscillation being 2π over the (positive) imaginary part of
each complex conjugate pair. Moreover, any eigenvalue with a positive real part will
explode exponentially; a complex conjugate pair of eigenvalues with a positive real

184 11 Functional Models and Dynamics

part will exhibit an exponentially increasing oscillation. A forcing term may shift
the behavior but will not change the stability properties unless the forcing term is
a function of the state vector in a way that in essence modifies the state transition
matrix B.

How are we to deal with higher-order multivariate dynamics? In Section 11.4 we
use a model of the form

D2x(t) =−B0(t)x(t)−B1(t)Dx(t)+u(t).

In order to examine the stability of this system, we expand it by creating a new
variable y(t) = Dx(t). This system can be written down as

(
Dy(t)
Dx(t)

)
=

(−B1(t) −B0(t)
I 0

)(
y(t)
x(t)

)
+

(
u(t)

0

)
.

That is, we treat Dx(t) as extra dynamic variables to provide a first-order 2k× 2k
system. The same analysis may be made of the eigenvalues of the expanded matrix
above. As for one-dimensional systems, we can only interpret the local behavior of a
system if the parameters in the system change at a much slower rate than the system
itself.

11.2 Principal Differential Analysis for Linear Dynamics

We have seen how linear models describing relationships between derivatives results
in a system whose behavior can be qualitatively characterized. We would now like
to use this theory to characterize the behavior of a system from which we have data.

How can we fit linear dynamic models to functional data? One approach is to
solve a differential equation like (11.3) for some value of the parameters and fit
this to observed data by least squares. This procedure is computationally expensive,
however, and such models rarely fit observed data well since they do not account for
unobserved external influences on a system.

Instead, we use the fact that functional data analysis already gives us derivative
information. Given repeated measurements of the same process, we can model

Dxi(t) =−β (t)xi(t)+α(t)ui(t)+ εi(t), (11.9)

where the εi(t) are error terms to allow for variation between different curves.
This expression represents a functional linear regression and could be fit with
fRegress.

However, we can view the model in a different light: when ui(t) ≡ 0 functional
linear regression estimates β (t) to minimize

PDASSE(β) =
N

∑
i=1

∫
[Dxi(t)+β (t)xi(t)]

2 dt =
N

∑
i=1

∫ [
Lβ xi(t)

]2 dt. (11.10)

11.3 Principal Differential Analysis of the Lip Data 185

That is, the model looks for a linear differential operator to represent covariation be-
tween x and Dx. This method has been labeled principal differential analysis (PDA)
because of its similarity to principal components analysis:

• Functional PCA looked for linear operators defined by β (t) to explain variation
between curves.

• PDA looks for linear operators to explain variation between derivatives but within
curves.

Naturally, we can extend the same ideas to multivariate functions and to higher
derivatives; these are all accommodated in the fda package.

When we also wish to consider inputs into a dynamic system, the PDA objec-
tive criterion is the difference between the effective input and the linear differential
operator:

PDASSEu(β) =
N

∑
i=1

∫ [
Lβ xi(t)−α(t)u(t)

]2 dt. (11.11)

Both β and α here are functional objects to be estimated. This creates an input-
output system which responds to changes in u(t). Our examples below do not use
forcing functions, but we provide a description of how to incorporate them into the
code.

11.3 Principal Differential Analysis of the Lip Data

We illustrate the use of PDA with data on the movement of lips during speech pro-
duction. Figure 11.2 presents the position of the lower lip when saying the word
“Bob” 20 times. As is clear from the data, there are distinct opening and shutting
phases of the mouth surrounding a fairly linear trend that corresponds to the vo-
calization of the vowel. Muscle tissue behaves in many ways like a spring. This
observations suggests that we consider fitting a second-order equation to these data.

The function pda.fd is the basic tool for this analysis. In a break from our
naming conventions, the equivalent Matlab function is pdacell. The arguments to
this function are similar to fRegress. We need to give it the functional data object
to be analyzed along with a list of functional parameter objects containing bases
and penalties for the β and α coefficient functions. The following code attempts to
derive a second-order homogeneous differential equation like expression (11.7) for
lipfd obtained from smoothing the lip data with no smoothing in the coefficients
β0(t) and β1(t):

lipfd = smooth.basisPar(liptime, lip, 6,
Lfdobj=int2Lfd(4), lambda=1e-12)$fd

names(lipfd$fdnames) = c("time(seconds)",
"replications", "mm")

lipbasis = lipfd$basis
bwtlist = list(fdPar(lipbasis,2,0),

186 11 Functional Models and Dynamics

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
10

−
5

0
5

10

Normalized Time

lip
 p

os
iti

on
 (

m
m

)

Fig. 11.2 The lip data. These give the position of the lower lip relative to the upper during 20
enunciations of the word ”Bob” by the same subject.

fdPar(lipbasis,2,0))
pdaList = pda.fd(lipfd,bwtlist)

The definition of pda.fd provides for arguments awtlist and ufdlist,
whose absence here indicates that the forcing function αg(t) in (11.5) is zero.

We now need to analyze the result. The function

plot.pda.fd(pdaList,whichdim=3)

will plot the first two panels in Figure 11.3. In higher dimensional systems these
coefficient functions can be grouped by dimension, equation, or observation. For
the third panel we have plotted the discriminant function:

dfd = (0.25*pdaList$bwtlist[[2]]$fdˆ2
- pdaList$bwtlist[[1]]$fd)

dfd$fdnames= list(’time’,’rep’,’discriminant’)

From this we see that there is an initial explosive motion as the lips, previously
sealed, are opened. This is followed by a period where the motion of the lips is
largely oscillatory with a period of about 30-40 ms. This corresponds approximately
to the spring constant of flaccid muscle tissue. During the “o” phase of the word,
there is a period of damped behavior when the lips are kept open in order to enunci-
ate the vowel.

11.4 PDA of the Handwriting Data 187

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35−
20

0
40

0
10

00

beta 0

time

be
ta

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
50

50

beta 1

time

be
ta

1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35−
10

00
20

00

discriminant

time

di
sc

rim
in

an
t

Fig. 11.3 Results of performing principal differential analysis on the lip data. Top two panels
represent the estimated β0(t) and β1(t) functional coefficients. The bottom panel shows the dis-
criminant function. This reveals in initial explosive motion as the lips part followed by oscillatory
motion, modulated for the production of the “o”.

We can also overlay our β coefficients on the bifurcation diagram in Figure 11.1.
The following code produces Figure 11.4:

pda.overlay(pdaList)

This tells much the same story. The initial impulse corresponds to explosive growth,
followed by largely stable oscillatory motion.

11.4 PDA of the Handwriting Data

PDA could be effectively carried out using fRegress. However pda.fd also
works for for multivariate functional observations, which cannot be handled by the
current version of fRegress. Here we examine the handwriting data in Figure 1.8
where PDA provides informative results. As for the lip data, since this is a physical
system, we model the second derivative of the data.

For multidimensional systems, a PDA will have three levels of weight functions.
Each function is indexed according to the equation in which it appears (i), the vari-
able it multiplies (j), and the derivative of that variable (k):

188 11 Functional Models and Dynamics

−100 −50 0 50

−
10

00
−

60
0

−
40

0
−

20
0

0
20

0

beta1

be
ta

0

0

0.035

0.07

0.105

0.14

0.175

0.21

0.2450.28

0.315

0.35

Fig. 11.4 An overlay of the PDA parameters estimated for the lip data on a bifurcation diagram of
a second-order linear system. Points are marked as time points from 0 to 0.35 seconds. The initial
explosive growth is followed by a period close to undamped oscillations.

Lxqi(t) = Dmxqi(t)+
m−1

∑
k=0

d

∑
j=1

βi jk(t)Dkxq j(t). (11.12)

the subscript q is used here to represent repeated observations of a multivariate func-
tional process.

In order to account for these levels of functions, for multidimensional systems
pda.fd uses lists in R and cell arrays in Matlab for both functional data and func-
tional parameter objects. To begin with, we take x to be given by a list of functional
data objects, one for each dimension. This allows the various dimensions of x to be
defined with respect to different bases. In the handwriting data example we split the
fdafd object into each of its dimensions:

xfdlist = list(fdafd[,1],fdafd[,2])

If we want to construct a second-order analysis, we need a three-dimensional array
of functional parameter objects. In Matlab, this is simply a three-dimensional cell
array, the dimensions being in the order (i, j,k) in (11.12). In R, we achieve the
same result by nesting lists within lists: Once we have created the bwtlist ob-
ject, we should have that bwtlist[[i]][[j]][[k]] contains the functional
parameter object needed to define βi jk(t). The following code sets up the analysis
of the handwriting data:

11.4 PDA of the Handwriting Data 189

pdaPar = fdPar(fdabasis,2,1)
pdaParlist = list(pdaPar, pdaPar)
bwtlist = list(list(pdaParlist,pdaParlist),

list(pdaParlist,pdaParlist))
pdaList = pda.fd(xfdlist, bwtlist)

For higher-dimensional systems, the analysis presented in Figure 11.4 is no longer
feasible. Instead, we consider the pointwise eigenvalues of the system that we de-
scribed in Section 11.1.3. These can be plotted as functional quantities. Nonzero
eigenvalues sometimes come in conjugate pairs. Therefore, a plot of the imagi-
nary part of the eigenvalues may be symmetrical. With nonzero imaginary parts,
the system oscillates. When the real part of any eigenvalue is positive, the system
experiences exponential growth or a growing oscillation. Otherwise it is stable or
decaying.

The function eigen.pda(pdaList) takes the result of pda.fd and pro-
duces the stability analysis given in Figure 11.5. As can be see, there is a strong and
stable periodic solution in the data, with the real parts of the eigenvalues staying
close to zero, indicating that the writing is dominated by ellipsoidal motion.

0 500 1000 1500 2000−
0.

01
0

0.
01

0

time

R
ea

l

0 500 1000 1500 2000

−
0.

03
0.

01

time

Im
ag

in
ar

y

Fig. 11.5 Stability analysis of a principal differential analysis (PDA) of the handwriting data. The
nearly constant imaginary eigenvalue indicates a constant cycle modulated locally.

190 11 Functional Models and Dynamics

11.5 Registration and PDA

How do we reconcile registration and the analysis of dynamics? These appear to be
competing demands. The appearance of features in data such as the pubertal growth
spurt makes an a priori case for registration: the dynamics of growth are likely to
be markedly different during puberty than at other times. We therefore would like to
align individuals so that puberty occurs at the same time and the dynamics should
therefore be comparable across individuals. However, it is fairly easy to see that
registration can have a strong effect on the derivatives of functional data:

Dx(h(t)) = D[h](t)D[x] (h(t))

Here, D[x](h(t)) indicates that this is the derivative of x with respect to its argument
rather than with respect to t. This will be stronger for second derivatives. We may
thus lose the comparison that registration was designed to achieve.

One way around this is to register derivatives individually. That is, we first take
derivatives, register each of them individually with the same registration curve, and
then conduct a regression analysis. The register.newfd function is designed
to do this. The following code carries this out for the lip data. We first perform
landmark registration, then register each of the first and second derivatives with the
resulting registration function. Doing this creates a separate functional data object
for each derivative, and these objects no longer represent exact derivatives and anti-
derivatives of each other. The function pda.fd is designed to analyze the dynamic
properties of a single functional data object from which derivatives can be extracted.
It will therefore not be usable here. We instead use fRegress:

lipreglist = landmarkreg(lipfd, as.matrix(lipmarks),
lipmeanmarks, WfdPar)

Dlipregfd = register.newfd(deriv.fd(lipfd,1),
lipreglist$warpfd)

D2lipregfd = register.newfd(deriv.fd(lipfd,2),
lipreglist$warpfd)

xfdlist = list(-Dlipregfd,-lipreglist$regfd)
lipregpda = fRegress(D2lipregfd, xfdlist, bwtlist)

The results of this have been plotted with the original PDA results in Figure 11.6:
The registered coefficient functions are smoother. The period near the end in which
β0(t) is close to zero also suggests a pure frictional force when the mouth is closing.

11.6 Details for pda.fd, eigen.pda, pda.overlay and register.newfd 191

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
10

00

time

be
ta

0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

−
50

50

time

be
ta

1

Fig. 11.6 A comparison of PDA results for the unregistered lip data (solid) and the lip data with
each derivative first calculated and then registered with the same warping function (dashed).

11.6 Details for pda.fd, eigen.pda, pda.overlay and
register.newfd

11.6.1 Function pda.fd

The pda.fd function is like fRegress except that since both the response and
covariates are given by derivatives of the same function, only one functional data ob-
ject needs to be specified. It also handles multivariate functional data, but insists that
each dimension be given in a separate element of a list. This allows each dimension
to be defined with respect to different bases. The standard call is

pda.fd(xfdlist, bwtlist,awtlist, ufdlist,nfine)

We divide the description of the arguments into two cases:

x(t) is univariate:

xfdlist A functional data object defining x(t).
bwtlist A list of functional parameter objects, the jth element of each

should specify the basis and smoothing penalty for β j(t).

192 11 Functional Models and Dynamics

awtlist A list of functional parameter objects defining the coefficient func-
tions for the inputs, this should be the same length as ufdlist and may be
NULL.

ufdlist A list of functional data objects that act as external influences on
the system.

x(t) is multivariate:

xfdlist A list of functional data objects, the ith entry defining xi(t).
bwtlist A list of lists of lists of functional parameter objects.
bwtlist[[i]][[j]][[k]] should define the basis and smoothing penalty
for βi jk(t).

awtlist A list of lists functional parameter objects. awtlist[[i]][[j]]
represents the coefficient of ufdlist[[i]][[j]] in equation i.

ufdlist A two-level list of functional data objects, ufdlist[[i]] repre-
sents the list of input functions that affect equation i.

Both awtlist and ufdlist default to NULL, in which case they are ignored.
Individual elements of bwtlist, awtlist and ufdlist can be set to NULL,
in which case the corresponding coefficient functions are forced to be zero. The
nfine component gives the number of evaluation points at which to perform a lin-
ear regression. It defaults to 501.

The function returns:

bwtlist A list array of the same dimensions as the corresponding argument,
containing the estimated or fixed weight functions defining the system of linear
differential equations.

resfdlist A list of length equal to the number of variables or equations. Each
member is a functional data object giving the residual functions or forcing func-
tions defined as the left side of the equation (the derivative of order m of a vari-
able) minus the linear fit on the right side. The number of replicates for each
residual functional data object is the same as that for the variables.

awtlist A list of the same dimensions as the corresponding argument. Each
member is an estimated or fixed weighting function for a forcing function.

11.6.2 Function eigen.pda

This function calculates the pointwise eigenvalues of the system and produces a
plot of the same format as Figure 11.5. If awtlist is present, the fixed point of
the system is also calculated at each time and plotted. Its arguments are

pdaList A list object returned by pda.fd.
plotresult Should the result be plotted? Default is TRUE.
npts Number of points to use for plotting.

11.7 Some Things to Try 193

... Other arguments for plot.

In addition to producing the plot the function returns a list with elements

argvals The evaluation points of the coefficient functions.
eigvals The corresponding eigenvalues of the system at each point.
limvals The pointwise fixed-point of the system.

11.6.3 Function pda.overlay

For a second-order univariate principal differential analysis, this function plots β0(t)
against β1(t) and overlays a bifurcation diagram. It requires

pdaList A list object returned by pda.fd.
nfine Number of points to use for plotting.
ncoarse Number of points use as time markers along the plot.

11.6.4 Function register.newfd

This function will register a given functional data object with a specified warping
function. It requires

yfd A multivariate functional data object defining the functions to be registered
with Wfd.

Wfd A functional data object defining the registration functions to be used to
register yfd. This can be the result of either landmarkreg or register.fd.

type Indicates the type of registration function.

direct Assumes Wfd is a direct definition of the registration functions. This
is produced by landmarkreg.

monotone Assumes that Wfd defines a monotone functional data objected,
up to shifting and scaling to make end points agree. This is produced by
register.fd.

periodic Does shift registration for periodic functions. This is output from
register.fd if periodic=TRUE.

It outputs a functional data object containing the registered curves.

11.7 Some Things to Try

1. Instead of the time-varying principal differential analysis given for the handwrit-
ing data, try a constant-coefficient principal differential analysis, but include a

194 11 Functional Models and Dynamics

constant forcing term. Does your interpretation differ markedly? What does the
fixed point of the system tell you?

2. Try a PDA of the Chinese handwriting data. Do the dynamics of this system
appear to be very different from the cursive script?

3. PDA can be performed on a single time series as well, but we have to borrow
strength across times instead of across replicates. One easy way to do this is
to insist that all the βi jk(t) be constant. Try this with data on the incidence of
melanoma over a 30-year period. These data are available in the melanoma
object.

a. Smooth the data, choosing the optimal λ by gcv and plot both data and the
smooth. We observe that there are two distinct dynamics: a linear trend and a
cycle with a period of about 10 years.

b. These observations suggest that

D4x(t)+αD2(x)≈ 0.

We would like to get a handle on α . To do this, conduct a PDA using your
estimated smooth and representing α as a constant functional data object.

c. The pda.fd function produces an Lfd object. Try resmoothing the data us-
ing this object to define a penalty. How does the optimal value of λ change?
How do the degrees of freedom change?

11.8 More to Read

The study of dynamics has a long history in applied mathematics. Borrelli and Cole-
man (2004) provide a good introductory overview. While linear differential equa-
tions with constant coefficients are relatively easily studied, nonlinear systems are
harder to analyze. Generalizing (11.8) a system is described by a vector of states,
and its evolution is given in terms of

Dx = f(x,u,θ), (11.13)

where f is a vector-valued nonlinear function. Unlike (11.8), however, it is not usu-
ally possible to write down solutions to (11.13) analytically. Instead, we must rely
on numerical methods to approximate them. Despite these challenges, nonlinear
dynamic systems have proved enormously versatile in producing different forms of
qualitative behavior that mimic real-world processes, from bursts of neural firing
through epidemic processes and chemical reactions. We can examine the behavior
of these systems by extending the analysis of the stability of linear systems that we
described above and examining how the stability of fixed points and cycles changes
with elements of the parameter vector θ . This is a large field and the reader is di-
rected to the relevant literature such as Kuznetsov (2004) to learn more.

11.8 More to Read 195

Despite the usefulness of such models, there is relatively little literature on as-
sessing their agreement with data or on estimating and performing inference for θ .
This is partly due to the numerical difficulties involved in finding solutions to (11.13)
and partly due to the idealization involved in assuming that a system evolves deter-
ministically. One way of reducing the numerical challenges in fitting these data is a
nonlinear version of PDA; if all the components of x are measured, we can smooth
the data to create x̂ and estimate θ to minimize

SISE(θ) =
∫

(Dx̂(t)− f(x(t),u(t),θ))2 dt.

The idea has been rediscovered numerous times (see Bellman and Roth, 1971;
Varah, 1982; Pascual and Ellner, 2000; Chen and Wu, 2008). The statistical prop-
erties of the resulting estimates have recently been examined (Brunel, 2008). This
technique can only be used, however, when there are enough data to smooth each
component of x. More recent work has focused on using (11.13) as a smoothing
penalty and iteratively refining θ to match the data (Ramsay et al., 2007). The use
of functional data analysis in statistical inference for nonlinear systems remains an
important research area.

