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A spike-timing-dependent Hebbian mechanism governs the plasticity
of recurrent excitatory synapses in the neocortex: synapses that are ac-
tivated a few milliseconds before a postsynaptic spike are potentiated,
while those that are activated a few milliseconds after are depressed. We
show that such a mechanism can implement a form of temporal difference
learning for prediction of input sequences. Using a biophysical model of
a cortical neuron, we show that a temporal difference rule used in con-
junction with dendritic backpropagating action potentials reproduces the
temporally asymmetric window of Hebbian plasticity observed physio-
logically. Furthermore, the size and shape of the window vary with the
distance of the synapse from the soma. Using a simple example, we show
how a spike-timing-based temporal difference learning rule can allow a
network of neocortical neurons to predict an input a few milliseconds
before the input’s expected arrival.

1 Introduction

Neocortical circuits are dominated by massive excitatory feedback: more
than 80% of the synapses made by excitatory cortical neurons are onto other
excitatory cortical neurons (Douglas, Koch, Mahowald, Martin, & Suarez,
1995). Why is there such massive recurrent excitation in the neocortex, and
what is its role in cortical computation? Previous modeling studies have
suggested a role for excitatory feedback in amplifying feedforward inputs
(Douglas et al., 1995; Suarez, Koch, & Douglas, 1995; Ben-Yishai, Bar-Or, &
Sompolinsky, 1995; Somers, Nelson, & Sur, 1995; Chance, Nelson, & Abbott,
1999). Recently, however, it has been shown that recurrent excitatory con-
nections between cortical neurons are modi�ed according to a spike-timing-
dependent temporally asymmetric Hebbian learning rule: synapses that are
activated slightly before the cell �res are strengthened whereas those that
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are activated slightly after are weakened (Levy & Steward, 1983; Markram,
Lubke, Frotscher, & Sakmann, 1997; Gerstner, Kempter, van Hemmen, &
Wagner, 1996; Zhang, Tao, Holt, Harris, & Poo, 1998; Bi & Poo, 1998; Se-
jnowski, 1999). Information regarding the postsynaptic activity of the cell
is conveyed back to the dendritic locations of synapses by backpropagating
action potentials from the soma (Stuart & Sakmann, 1994).

In this article, we explore the hypothesis that recurrent excitation in neo-
cortical circuits subserves the function of prediction and generation of tem-
poral sequences (for related ideas, see Jordan, 1986; Elman, 1990; Minai
& Levy, 1993; Montague & Sejonowski, 1994; Abbott & Blum, 1996; Rao
& Ballard, 1997; Barlow, 1998; Westerman, Northmore, & Elias, 1999). In
particular, we show that a temporal-difference-based learning rule for pre-
diction (Sutton, 1988), when applied to backpropagating action potentials in
dendrites, reproduces the temporally asymmetric window of Hebbian plas-
ticity obtained in physiological experiments (see section 3). We examine the
stability of the learning rule in section 4 and discuss possible biophysical
mechanisms for implementing this rule in section 5. We also provide a sim-
ple example demonstrating how such a learning mechanism may allow cor-
tical networks to learn to predict their inputs using recurrent excitation. The
model predicts that cortical neurons may employ different temporal win-
dows of plasticity at different dendritic locations to allow them to capture
correlations between pre- and postsynaptic activity at different timescales
(see section 6). A preliminary report of this work appeared as Rao and Se-
jnowski (2000).

2 Temporal Difference Learning

To predict input sequences accurately, the recurrent excitatory connections
in a given network need to be adjusted such that the appropriate set of neu-
rons is activated at each time step. This can be achieved by using a temporal
difference (TD) learning rule (Sutton, 1988; Montague & Sejnowski, 1994).
In this paradigm of synaptic plasticity, an activated synapse is strength-
ened or weakened based on whether the difference between two temporally
separated predictions is positive or negative. This minimizes the errors in
prediction by ensuring that the prediction generated by the neuron after
synaptic modi�cation is closer to the desired value than before.

The simplest example of a TD learning rule arises in the problem of
predictinga scalar quantity z usinga neuronwith synaptic weights w(1), . . . ,
w(k) (represented as a vector w). The neuron receives as presynaptic input
the sequence of vectors x1, . . . , xm. The output of the neuron at time t is
assumed to be given by Pt D

P
i w(i)xt(i). The goal is to learn a set of

synaptic weights such that the prediction Pt is as close as possible to the
target z. According to the temporal difference (TD(0)) learning rule (Sutton,
1988), the weights are changed at time t by an amount given by:

Dwt D a(PtC1 ¡ Pt)xt, (2.1)
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Figure 1: Model neuron response properties. (A) Response of a model neuron to
a 70pA current pulse injection into the soma for 900milliseconds. (B) Response of
the same model neuron to Poisson distributed excitatory and inhibitory synaptic
inputs at random locations on the dendrite. (C) Example of a backpropagating
action potential in the dendrite of the model neuron as compared to the corre-
sponding action potential in the soma (enlarged from the initial portion of the
trace in B).

where a is a learning rate orgainparameter and PmC1 D z.Note that in sucha
learning paradigm, synaptic plasticity isgoverned by the TD in postsynaptic
activity at time instants t C 1 and t in conjunction with presynaptic activity
xt at time t. We use this paradigm of learning in the next section to model
spike-timing-dependent plasticity.

3 Modeling Spike-Timing-Dependent Plasticity as TD Learning

In order to ascertain whether spike-timing-dependent temporally asym-
metric plasticity in cortical neurons can be interpreted as a form of TD
learning, we used a two-compartment model of a cortical neuron consist-
ing of a dendrite and a soma-axon compartment (see Figure 1). The com-
partmental model was based on a previous study that demonstrated the
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ability of such a model to reproduce a range of cortical response prop-
erties (Mainen & Sejnowski, 1996). Four voltage-dependent currents and
one calcium-dependent current were simulated (as in Mainen & Sejnowski,
1996): fast NaC , INa; fast KC , IKv; slow noninactivating KC , IKm; high voltage-
activated Ca2C , ICa; and calcium-dependent KC current, IKCa. The following
active conductance densities were used in the soma-axon compartment (in
pS/m m2): gNa D 40,000 and gKv D 1400. For the dendritic compartment, we
used: gNa D 20, gCa D 0.2, gKm D 0.1, and gKCa D 3, with leak conductance
33.3 m S/cm2 and speci�c membrane resistance 30 kV-cm2. The presence
of voltage-activated sodium channels in the dendrite allowed backprop-
agation of action potentials from the soma into the dendrite as shown in
Figure 1C.

Conventional Hodgkin-Huxley-type kinetics were used for all currents
(integration time step D 25 m s, temperature D 37±C). Ionic currents I were
calculated using the ohmic equation,

I D gAxB(V ¡ E), (3.1)

where g is the maximal ionic conductance density, A and B are activation
and inactivation variables, respectively (x denotes the order of kinetics—
see Mainen & Sejonowski, 1996), and E is the reversal potential for the
given ion species (EK D ¡90 mV, ENa D 60 mV, ECa D 140 mV, Eleak D
¡70 mV). For all compartments, the speci�c membrane capacitance was
0.75 m F/cm2. Two key parameters governing the response properties of the
model neuron are (Mainen & Sejnowski, 1996): the ratio of axo-somatic area
to dendritic membrane area (r) and the coupling resistance between the
two compartments (k ). For the simulations, we used the values r D 150
(with an area of 100 m m2 for the soma-axon compartment) and a coupling
resistance ofk D 8 MV. Poisson-distributed synaptic inputs to the dendrite
(see Figure 1B) were simulated using alpha function–shaped (Koch, 1999)
current pulse injections (time constant D 5 ms) at Poisson intervals with a
mean presynaptic �ring frequency of 3 Hz.

To study plasticity, excitatory postsynaptic potentials (EPSPs) were elicit-
ed at different time delays with respect to postsynaptic spiking by presynap-
tic activation of a single excitatory synapse located on the dendrite. Synaptic
currents werecalculated using a kinetic model of synaptic transmission with
model parameters �tted to whole-cell recorded AMPA currents (see Des-
texhe, Mainen, & Sejnowski, 1998 for more details). Synaptic plasticity was
simulated by incrementing or decrementing the value for maximal synap-
tic conductance by an amount proportional to the TD in the postsynaptic
membrane potential at time instants t C D t and t for presynaptic activation
at time t. The delay parameter D t was set to 10 ms to yield results consistent
with previous physiological experiments (Markram et al., 1997; Bi & Poo,
1998). Presynaptic input to the model neuron was paired with postsynap-
tic spiking by injecting a depolarizing current pulse (10 ms, 200 pA) into
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the soma. Changes in synaptic ef�cacy were monitored by applying a test
stimulus before and after pairing and recording the EPSP evoked by the test
stimulus.

Figure 2 shows the results of pairings in which the postsynaptic spike
was triggered 5 ms after and 5 ms before the onset of the EPSP, respectively.
While the peak EPSP amplitude was increased 58.5% in the former case, it
was decreased 49.4% in the latter case, qualitatively similar to experimental
observations (Markram et al., 1997; Bi & Poo, 1998). The critical window for
synaptic modi�cations in the model depends on the parameter D t as well as
the shape of the backpropagating action potential. This window of plasticity
was examined by varying the time interval between presynaptic stimula-
tion and postsynaptic spiking (with D t D 10 ms). As shown in Figure 2C,
changes in synaptic ef�cacy exhibited a highly asymmetric dependence on
spike timing similar to physiological data (Markram et al., 1997). Potentia-
tion was observed for EPSPs that occurred between 1 and 12 ms before the
postsynaptic spike, with maximal potentiation at 6 ms. Maximal depression
was observed for EPSPs occurring 6 ms after the peak of the postsynaptic
spike, and this depression gradually decreased, approaching zero for de-
lays greater than 10 ms. As in rat neocortical neurons (Markram et al., 1997),
Xenopus tectal neurons (Zhang et al, 1998), and cultured hippocampal neu-
rons (Bi & Poo, 1998), a narrow transition zone (roughly 3 ms in the model)
separated the potentiation and depression windows.

4 Stability of the Learning Rule

A crucial question regarding the spike-based Hebbian learning rule de-
scribed above is whether it produces a stable set of weights for a given
training set of inputs. In the case of the conventional Hebbian learning rule,
which only prescribes increases in synaptic weights based on pre- and post-
synaptic correlations, numerous methods have been suggested to ensure
stability, such as weight normalization and weight decay (see Sejnowski,
1977, and Montague & Sejnowski, 1994, for reviews). The classical TD learn-
ing rule is self-stabilizing because weight modi�cations are dependent on
the error in prediction (PtC1 ¡ Pt), which can be positive or negative. Thus,
when the weights w become large, the predictions Pt tend to become large
compared to PtC1 (e.g., at the end of the training sequence). This results in
a decrease in synaptic strength, as needed to ensure stability.

In the case of the spike-based learning rule, convergence to a stable set
of weights depends on both the biophysical properties of the neuron and
the TD parameter D t. To see this, consider the example in Figure 3, where
a presynaptic spike occurs at time tpre and causes a backpropagating action
potential (AP) at time tBPAP in a postsynaptic model neuron (model neu-
ron parameters were the same as those given in section 3). Using a �xed
D t D 10 milliseconds, the synaptic conductance initially increases because
the TD error (Ptpre CD t ¡ Ptpre

) is positive. The increase in synaptic conduc-
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Figure 2: Synaptic plasticity in a model neocortical neuron. (A) EPSP in the
model neuron evoked by a presynaptic spike (S1) at an excitatory synapse (“be-
fore”). Pairing this presynaptic spike with postsynaptic spiking after a 5 ms
delay (“pairing”) induces long-term potentiation (“after”). (B) If presynaptic
stimulation (S2) occurs 5 ms after postsynaptic �ring, the synapse is weakened,
resulting in a corresponding decrease in peak EPSP amplitude. (C) Temporally
asymmetric window of synaptic plasticity obtained by varying the delay be-
tween pre- and postsynaptic spiking (negative delays refer to presynaptic before
postsynaptic spiking).

tance causes the postsynaptic neuron to �re earlier, which in turn causes
an increase in the TD error, until Ptpre CD t reaches a value close to Ptpre . This
happens when the time of the somatic AP is almost equal to tpre and the
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Figure 3: Stability of spike-timing based temporal difference learning. (A) A
presynaptic spike at time tpre results in a backpropagating action potential (BPAP)
a few milliseconds later at time tBPAP, causing an increase in synapticstrength due
to spike-timing-dependent plasticity. The TD parameter D t was set to 10 mil-
liseconds. After 100 trials of learning (pre- and postsynaptic pairing), the TD
error is reduced to zero, and the maximal synaptic conductance converges to
a stable value of 8.1 nS. The postsynaptic BPAP now occurs at an earlier time
t0 compared to its time of occurrence before learning. (B) When a shorter D t of
5 ms is used (with the same initial conditions as in A), the synaptic strength
continues to grow without bound after 100 trials because the TD error remains
positive. A burst of two spikes is elicited due to an unrealistically large synaptic
conductance. (C) An upper bound of 8 nS on the maximal synaptic conduc-
tance prevents unbounded synaptic growth and ensures that a single spike is
elicited.

backpropagating AP occurs slightly later at time tBPAP D t0 (Figure 3A, sec-
ond graph). The synaptic conductance then remains stable for this pair of
pre- and postsynaptic spikes (Figure 3A, right-most graph).

On the other hand, if D t is much smaller than the width of the backprop-
agating AP, the maximal synaptic conductance may grow without bound,
as shown in Figure 3B (right-most graph). In this case (D t D 5 ms), the back-
propagating AP does not peak soon enough after the presynaptic spike,
causing the TD error to remain positive. As a result, the synaptic conduc-
tance does not converge to a stable value, and multiple spikes, in the form
of a burst, are elicited (see Figure 3B, second graph). One solution to the
problem of unbounded growth in synaptic conductance is to place an up-
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per bound on the synaptic strength, as suggested by Abbott and Song (1999)
and Gerstner et al. (1996). In this case, although the TD error remains posi-
tive, the synaptic conductance remains clamped at the upper bound value,
and only a single spike is elicited (see Figure 3C). The use of an upper bound
is partially supported by physiological experiments showing a dependence
of spike-timing-based synaptic plasticity on initial synaptic strength: long-
term potentiation (LTP) was found to occur mostly in weak synapses, while
connections that already had large values for their synaptic strength con-
sistently failed to show LTP (Bi & Poo, 1998).

In summary, the stability of the TD learning rule for spike-timing-depen-
dent synaptic plasticity depends crucially on whether the temporal window
parameter D t is comparable in magnitude to the width of the backpropa-
gating AP at the location of the synapse. An upper bound on the maximal
synaptic conductance may be required to ensure stability in general (Ger-
stner et al., 1996; Abbott & Song, 1999; Song, Miller, & Abbott, 2000). Such
a saturation constraint is partially supported by experimental data (Bi &
Poo, 1998). An alternative approach that might be worth considering is to
explore a learning rule that uses a continuous form of the TD error, where,
for example, an average of postsynaptic activity is subtracted from the cur-
rent activity (Montague & Sejnowski, 1994; Doya, 2000). Such a rule may
offer better stability properties than the discrete TD rule that we have used,
although other parameters, such as the window over which average activity
is computed, may still need to be chosen carefully.

5 Biophysical Mechanisms

An interesting question is whether a biophysical basis can be found for the
TD learning model described above. Neurophysiological and imaging stud-
ies suggest a role for dendritic Ca2C signals in the induction of spike-timing-
dependent LTP and LTD (long-term depression) in hippocampal and corti-
cal neurons (Magee & Johnston, 1997; Koester & Sakmann, 1998; Paulsen &
Sejnowski, 2000). In particular, when an EPSP preceded a postsynaptic ac-
tion potential, the Ca2C transient in dendritic spines, where most excitatory
synaptic connections occur, was observed to be larger than the sum of the
Ca2C signals generated by the EPSP or AP alone, causing LTP; on the other
hand, when the EPSP occurred after the AP, the Ca2C transient was found to
be a sublinear sum of the signals generated by the EPSP or AP alone, result-
ing in LTD (Koester & Sakmann, 1998; Linden, 1999; Paulsen & Sejnowski,
2000). Possible sources contributing to the spinous Ca2C transients include
Ca2C ions entering through NMDA receptors (Bliss & Collingridge, 1993;
Koester & Sakmann, 1998), voltage-gated Ca2C channels in the dendrites
(Schiller, Schiller, & Clapham, 1998), and calcium-induced calcium release
from intracellular stores (Emptage, 1999).

How do the above experimental observations support the TD model? In
a recent study (Franks, Bartol, Egelman, Poo, & Sejnowski, 1999), a Monte
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Carlo simulation program MCell (Stiles, Bartol, Salpeter, Salpeter, & Se-
jnowski, 2000) was used to model the Ca2C dynamics in dendritic spines
following pre- and postsynaptic activity and to track the binding of Ca2C

to endogenous proteins. The in�ux of Ca2C into a spine is governed by the
rapid depolarization pulse caused by the backpropagating AP. The width of
the backpropagating AP is much smaller than the time course of glutamate
binding to the NMDA receptor. As a result, the dynamics of Ca2C in�ux and
binding to calcium-binding proteins such as calmodulin depends highly
nonlinearly on the relative timing of presynaptic activation (with release
of glutamate) and postsynaptic depolarization (due to the backpropagat-
ing AP). In particular, due to its kinetics, the binding protein calmodulin
could serveas a differentiator of intracellular calcium concentration, causing
synapses either to potentiate or depress depending on the spatiotemporal
pro�le of the dendritic Ca2C signal (Franks et al., 1999). As a consequence
of these biophysical mechanisms, the change in synaptic strength depends,
to a �rst approximation, on the time derivative of the postsynaptic activity,
as postulated by the TD model.

6 Model Predictions

The shape and size of backpropagating APs at different locations in a cortical
dendrite depend on the distance of the dendritic location from the soma. For
example, as backpropagating APs progress from the soma to the distal parts
of a dendrite, they tend to become broader as compared to more proximal
parts of the dendrite. This is shown in Figure 4 for a reconstructed layer 5
neocortical neuron (Douglas, Martin, & Whitteridge, 1991) from cat visual
cortex with ionic channels based on those used for this neuron in the study
by Mainen and Sejnowski (1996).

Since synaptic plasticity in our model depends on the TD in postsynap-
tic activity, the model predicts that synapses situated at different locations
on a dendrite should exhibit different temporally asymmetric windows of
plasticity. This is illustrated in Figure 4 for the reconstructed model neu-
ron. Learning windows were calculated by applying the TD operator to
the backpropagating APs with D t D 2 ms. The model predicts that the
window of plasticity for distal synapses should be broader than for prox-
imal synapses. Having broader windows would allow distal synapses to
encode longer timescale correlations between pre- and postsynaptic activ-
ity. Proximal synapses would encode correlations at shorter timescales due
to sharper learning windows. Thus, by distributing its synapses through-
out its dendritic tree, a cortical neuron could in principle capture a wide
range of temporal correlations between its inputs and its output. This in
turn would allow a network of cortical neurons to predict sequences ac-
curately and reduce possible ambiguities such as aliasing between learned
sequences by tracking the sequence at multiple timescales (Rao & Ballard,
1997; Rao, 1999).
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Figure 4: Dependence of learning window on synaptic location. The traces in
the middle column show size and shape of a backpropagating AP at different
dendritic locations in a compartmental model of a reconstructed layer 5 neocor-
tical neuron. The corresponding TD learning window for putative synapses at
these dendritic locations is shown on the right. Note the gradual broadening of
the learning window in time as one progresses from proximal to distal synapses.

The TD model also predicts asymmetries in size and shape between the
LTP and LTD windows. For example, in Figure 4, the LTD window for the
two apical synapses (labeled a and b) is much broader and shallower than
the corresponding LTP window. Such an asymmetry between LTP and LTD
has recently been reported for synapses in rat primary somatosensory cortex
(S1) (Feldman, 2000). In particular, the range of time delays between pre- and
postsynaptic spiking that induces LTD was found to be much longer than
the range of delays that induces LTP, generating learning windows similar to
the top two windows in Figure 4. One computational consequence of such a
learning window is that synapses that elicit subthreshold EPSPs in a manner
uncorrelated with postsynaptic spiking will become depressed over time.
In rat primary somatosensory cortex, plucking one whisker but sparing its
neighbor causes neuronal responses to the deprived whisker in layer II/III
to become rapidly depressed. The asymmetry in the LTP/LTD learning win-
dows provides an explanation for this phenomenon: spontaneously spiking
inputs from plucked whiskers are uncorrelated with postsynaptic spiking,
and therefore, synapses receiving these inputs will become depressed (Feld-
man, 2000). Such a mechanism may contribute to experience-dependent de-
pression of responses and related changes in the receptive �eld properties
of neurons in other cortical areas as well.
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7 Discussion

Our results suggest that spike-timing-dependent plasticity in neocortical
synapses can be interpreted as a form of TD learning for prediction. To see
how a network of model neurons can learn to predict sequences using such
a learning mechanism, consider the simple case of two excitatory neurons
N1 and N2 connected to each other, receiving inputs from two separate
input neurons I1 and I2 (see Figure 5A). Model neuron parameters were the
same as those used in section 3. Suppose input neuron I1 �res before input
neuron I2, causing neuron N1 to �re (see Figure 5B). The spike from N1
results in a subthreshold EPSP in N2 due to the synapse S2. If input arrives
from I2 between 1 and 12 ms after this EPSP and if the temporal summation
of these two EPSPs causes N2 to �re, synapse S2 will be strengthened. The
synapse S1, on the other hand, will be weakened because the EPSP due to
N2 arrives a few milliseconds after N1 has �red.

After several exposures to the I1–I2 training sequence, when I1 causes
neuron N1 to �re, N1 in turn causes N2 to �re several milliseconds be-
fore input I2 occurs due to the potentiation of the recurrent synapse S2 in
previous trials (see Figure 5C). Input neuron I2 can thus be inhibited by
the predictive feedback from N2 just before the occurrence of imminent
input activity (marked by the asterisk in Figure 5C). This inhibition pre-
vents input I2 from further exciting N2, thereby implementing a negative
feedback–based predictive coding circuit (Rao & Ballard, 1999). Similarly, a
positive feedback loop between neurons N1 and N2 is avoided because the
synapse S1 was weakened in previous trials (see the arrows in Figures 5B
and 5C, top row). Figure 6A depicts the process of potentiation and de-
pression of the two synapses as a function of the number of exposures to
the I1–I2 input sequence. The decrease in latency of the predictive spike
elicited in N2 with respect to the timing of input I2 is shown in Figure 6B.
Notice that before learning, the spike occurs 3.2 ms after the occurrence
of the input, whereas after learning, it occurs 7.7 ms before the input. Al-
though the postsynaptic spike continues to occur shortly after the activation
of synapse S2, this synapse is prevented from assuming larger values due
to a saturation constraint of 0.03 m S on the maximal synaptic conductance
(see section 4 for a discussion of this constraint). In related work (Rao &
Sejnowkski, 2000), we have shown how such a learning mechanism can ex-
plain the development of direction selectivity in recurrent cortical networks,
yielding receptive �eld properties similar to those observed in awake mon-
key V1.

Theprecisebiophysical mechanisms underlyingspike-timing-dependent
temporal difference learning remain unclear. However, as discussed in sec-
tion 5, calcium �uctuations in dendritic spines are known to be strongly
dependent on the timing between pre- and postsynaptic spikes. Such cal-
cium transients may cause, via calcium-mediated signaling cascades, asym-
metric synaptic modi�cations that are dependent, to a �rst approximation,
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Figure 5: Learning to predict using spike-timing-dependent Hebbian learning.
(A) Network of two model neurons N1 and N2 recurrently connected via exci-
tatory synapses S1 and S2, with input neurons I1 and I2. N1 and N2 inhibit the
input neurons via inhibitory interneurons (dark circles). (B) Network activity
elicited by the sequence I1 followed by I2. (C) Network activity for the same se-
quence after 40 trials of learning. Due to strengthening of recurrent synapse S2,
recurrent excitation from N1 now causes N2 to �re several milliseconds before
the expected arrival of input I2 (dashed line), allowing it to inhibit I2 (aster-
isk). Synapse S1 has been weakened, preventing reexcitation of N1 (downward
arrows show a decrease in EPSP).
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Figure 6: Synaptic strength and latency reduction due to learning. (A) Poten-
tiation and depression of synapses S1 and S2, respectively, during the course
of learning. Synaptic strength was de�ned as maximal synaptic conductance in
the kinetic model of synaptic transmission (Destexhe et al., 1998). (B) Latency
of predictive spike in N2 during the course of learning measured with respect
to the time of input spike in I2 (dotted line).
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on the temporal derivative of postsynaptic activity. An interesting topic
worthy of further investigation is therefore the development of more real-
istic implementations of TD learning based on, for instance, the temporal
derivative of postsynaptic calcium activity rather than the TD in postsynap-
tic membrane potential as modeled here.

An alternate approach to analyzing spike-timing-dependent learning
rules is to decompose an observed asymmetric learning window into a
TD component plus noise and to analyze the noise component. However,
the advantage of our approach is that one can predict the shape of plastic-
ity windows at different dendritic locations based on an estimate of post-
synaptic activity, as described in section 6. Conversely, given a particular
learning window, one can use the model to explain the temporal asym-
metry of the window as a function of the neuron’s postsynaptic activity
pro�le.

Temporally asymmetric learning has previously been suggested as a pos-
sible mechanism for sequence learning in the hippocampus (Minai & Levy,
1993; Abbott & Blum, 1996) and as an explanation for the asymmetric ex-
pansion of hippocampal place �elds during route learning (Mehta, Barnes,
& McNaughton, 1997). Some of these models used relatively long temporal
windows of synaptic plasticity, on the order of several hundreds of millisec-
onds (Abbott & Blum, 1996), while others used temporal windows in the
submillisecond range for coincidence detection (Gerstner et al., 1996). Se-
quence learning in our model is based on a window of plasticity that spans
approximately §20 milliseconds, which is roughly consistent with recent
physiological observations (Markram et al., 1997) (see also Abbott & Song,
1999; Roberts, 1999; Westerman et al., 1999; Mehta & Wilson, 2000; Song et
al., 2000).

Several theories of prediction and sequence learning in the hippocampus
and neocortex have been proposed based on statistical and information
theoretic ideas (Minai & Levy, 1993; Montague & Sejnowski, 1994; Abbott
& Blum, 1996; Dayan & Hinton, 1996; Daugman & Downing, 1995; Barlow,
1998; Rao & Ballard, 1999). Our biophysical simulations suggest a possible
implementation of such models in cortical circuitry. Given the universality
of the problem of encoding and generating temporal sequences in both
sensory and motor domains, the hypothesis of TD-based sequence learning
in recurrent neocortical circuits may help provide a unifying principle for
studying cortical structure and function.
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