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The responses of neurons in cortical areasV2 and V4 can be signif-
icantlymodulatedby attention to particular locations within an in-
put image. We show that such e¡ects emerge naturally when
perception is viewed as a probabilistic inference process governed
by Bayesian principles and implemented in hierarchical cortical
networks.The proposedmodel can explain a rich variety of atten-
tion-related responses in cortical area V4 including multiplicative
modulation of tuning curves, restoration of neural responses

in the presence of distracting stimuli, and in£uence of attention
on neighboring unattended locations. Our results suggest a
new interpretation of attention as a cortical mechanism for
reducing perceptual uncertainty by combining top-down task-
relevant information with bottom-up sensory inputs in a probabi-
listic manner. NeuroReport 16:1843^1848 �c 2005 Lippincott
Williams &Wilkins.
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Introduction
Visual attention plays a crucial role in the perception of
objects in complex scenes [1,2]. By selecting specific scene
locations or objects for preferential processing, attentional
mechanisms allow efficient use of the brain’s limited
computational resources. Given its importance in percep-
tion, several studies have sought to unravel the neural
mechanisms of attention. McAdams and Maunsell [3]
showed that the tuning curve of a neuron in cortical area
V4 is multiplied by an approximately constant factor when
the monkey focuses attention on a stimulus within the
neuron’s receptive field. Reynolds et al. [4] have shown that
focusing attention on a target in the presence of distractors
causes the response of a V2 or V4 neuron to closely
approximate the response elicited when the target appears
alone. Finally, a study by Connor et al. [5] demonstrated that
responses to unattended stimuli can be affected by spatial
attention to nearby locations. In all three studies, neural
responses are determined by combining a task-relevant
constraint (such as a prespecified spatial location) with
sensory information (the input image).

A rigorous approach to combining sensory evidence with
prior constraints is to use Bayesian models [6–8]. In such
models, prior knowledge and sensory information are
probabilistically combined according to Bayes’ rule. In this
article, we show that a Bayesian model for visual processing
can explain all three classes of attentional effects discussed
above. These effects emerge as a consequence of Bayesian
inference in a hierarchical network of neurons encoding the
probabilistic interaction between visual features and their

spatial locations. We additionally show that the responses of
model neurons become invariant to changes in the spatial
position of features, mimicking the responses of neurons in
the occipitotemporal pathway [9]. The model and simula-
tion results together suggest a new interpretation of cortical
neurons as probabilistic integrators of top-down and
bottom-up information in hierarchical networks, and of
attention as a cortical mechanism for reducing uncertainty
in complex scenes.

Methods
Probabilistic generative model
Bayesian models typically assume a probabilistic generative
model specifying conditional dependencies between inputs
and their causes. Figure 1a shows a simple three-level
generative model incorporating two variables relevant to V4
neurons: spatial location L, which is assumed to be one of n
values L1, L2, y, Ln, and visual feature F, which can be one
of m different values F1, F2, y, Fm. The ‘intermediate
representation’ node C denotes different combinations of
features and locations, each of its values C1, C2, y, Cp

encoding a specific feature at a specific location. Re-
presenting all possible combinations is infeasible but it is
sufficient to represent those that occur frequently and to
map each feature–location (L, F) combination to the closest
Ci using an appropriate distribution P(Ci|L, F) (see Simula-
tion details). An image with a specific feature at a specific
location is generated according to the image likelihood
P(I|C).
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Bayesian inference
We interpret perception as estimating the posterior prob-
abilities of features (more generally, objects or object parts)
and their locations in an input image. This can be done for
arbitrary generative models using a well known Bayesian
algorithm called ‘belief propagation’ [10]. Given the model
in Fig. 1a and a specific input image I¼I0, belief propagation
prescribes that the following ‘messages’ (probabilities) be
transmitted from one node to another, as given by the
arrows in the subscripts:

mL!C ¼ PðLÞ; mF!C ¼ PðFÞ; mI!C ¼ PðI ¼ I0jCÞ; ð1Þ

mC!L ¼
X

F

X
C

PðCjL; FÞPðFÞPðI ¼ I0jCÞ; ð2Þ

mC!F ¼
X

L

X
C

PðCjL; FÞPðLÞPðI ¼ I0jCÞ: ð3Þ

The first two messages in Equation (1) are prior probabilities
encoding beliefs about locations and features before a
sensory input becomes available. These are used in forming
the messages in Equations (2) and (3). The posterior

probabilities of the unknown variables C, L, and F, given
the input image I0, are calculated by combining messages at
each node as follows:

PðCjI ¼ I0Þ ¼
1

a
mI!C

X
F

X
L

PðCjL; FÞmL!CmF!C; ð4Þ

PðLjI ¼ I0Þ ¼
1

b
mC!LPðLÞ; ð5Þ

PðFjI ¼ I0Þ ¼
1

g
mC!FPðFÞ; ð6Þ

where a, b, and g are normalization constants that make
each of the above probabilities sum to 1. Note how the prior
P(L) multiplicatively modulates the posterior probability of
a feature in Equation (6) via Equation (3). As described
below, we simulate spatial attention by increasing P(L) for a
desired location.

Modeling cortical neurons and networks
We use the standard leaky integrator model. At any given
hierarchical level, the instantaneous firing rate vi of neuron i
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Fig.1 Model network and invariant responses. (a) Probabilistic generativemodel that factors images into spatial locations and features. (b) Three-level
network for implementing Bayesian inference for the generativemodel in (a).Circles represent neurons, arrows represent feedforward connections, and
lines representbidirectional connections. (c) Leftpanel: example image locations (labeled1^5 andUp,Dn,Lt, andRt for up, down, left, andright) relevant
to the experiments discussed in the paper.Right panel: each bar plot shows P(Ci|L,F ) for a ¢xed value of L (¼Lt, Rt,Up, or Dn) and for an arbitrary ¢xed
value of F. Each bar represents the probability for the feature^ location combination Ci encoding one of the locations 1^5. (d) Each plot represents the
responses of three model neurons, the ¢rst coding for vertical features (V), the second for horizontal features (H), and the third for the null (blank)
stimulus (N), when the input is a vertical bar £ashed at three di¡erent locations (dark inset images). The vertical feature-coding neuron’s ¢ring rate
remains high, invariant to bar position. (e) Information about the vertical bar’s current location is represented by the location-coding neurons, which
compute the posterior probability P(L|I¼I0).
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in a recurrently connected network is given by

�
dvi

dt
¼ �vi þ f

X
j

wijIj

0
@

1
Aþ g

X
j

uijvj

0
@

1
A; ð7Þ

where t is a time constant, f and g are dendritic filtering
functions, Ij is the firing rate of input neuron j, wij is the
strength of the synapse from input j to recurrent neuron i,
and uij is the recurrent synaptic strength from neuron j to
neuron i. Spikes can be generated by interpreting Equation
(7) as the dynamics of the membrane potential vi rather than
the firing rate and using [11]

Pðneuron i spikes at time tÞ ¼ k exp½ðviðtÞ � TÞ=c�; ð8Þ

where k and c are constants, and T is the membrane
threshold.

Bayesian inference in networks of neurons
Several models have been proposed for neural implementa-
tion of Bayesian inference (e.g. [12–18]). We extend the model
in [19] to implement the belief propagation equations above
in a neural circuit (Fig. 1b). Each V4 neuron is assumed to
encode a feature Fi as its preferred stimulus. A separate
group of neurons (e.g. in the parietal cortex) is assumed to
encode spatial locations (and potentially other spatiotemporal
transformations) irrespective of feature values. Lower level
neurons (e.g. in V2 and V1) are assumed to represent the
intermediate representations Ci. Note that the architecture in
Fig. 1b mimics the division of labor between the ventral object
processing (‘what’) stream and the dorsal spatial processing
(‘where’) stream in the visual cortex [20].

The initial firing rates of location and feature-coding
neurons represent prior probabilities P(L) and P(F), respec-
tively, assumed to be set by task-dependent feedback from
higher areas such as those in the prefrontal cortex. The input
likelihood P(I¼I0|C) is set to

P
j wij Ij, where the weights wij

represent the attributes of Ci (specific feature at a specific
location). For our simulations, we set each weight vector to a
spatially localized oriented Gabor filter. Equations (2) and
(3) are assumed to be computed by feedforward neurons in
the location-coding and feature-coding parts of the network,
with their synapses encoding P(C|L, F). Taking the loga-
rithm [19] of both sides of Equations (4)–(6), we obtain
equations that can be computed using leaky integrator
neurons as in Equation (7) (f and g are assumed to
approximate a logarithmic transformation). Recurrent con-
nections in Equation (7) are used to implement the
inhibitory component corresponding to the negative loga-
rithm of the normalization constants. Furthermore, as the
membrane potential vi(t) is now proportional to the log of
the posterior probability, i.e. vi(t)¼c log P(F|I¼I0) + T (and
similarly for L and C), using Equation (8) we obtain

Pðfeature-coding neuron i spikes at time tÞ

¼ k exp½ðviðtÞ � TÞ=c� ¼ k PðFjI ¼ I0Þ:
ð9Þ

This provides a new interpretation of the spiking probability
(or instantaneous firing rate) of a V4 neuron as representing
the posterior probability of a preferred feature in an image
region irrespective of spatial location.

Simulation details
To model the three primate experiments discussed above [3–
5], we used horizontal and vertical bars that could appear at

nine different locations in the input image (Fig. 1c). All
results were obtained using a network with a single set of
parameters. P(C|L, F) was chosen such that for any given
value of L and F, say location Lj and feature Fk, the value of C
closest to the combination (Lj, Fk) received the highest
probability, with decreasing probabilities for neighboring
locations (Fig. 1c).

Results
Invariant responses to changes in spatial position
As shown in Fig. 1d, the response of a model V4 neuron
(here, a vertical feature-coding neuron representing
P(F|I¼I0) for the vertical feature) remains unchanged
despite significant shifts in the location of a vertical bar
stimulus. This is due to the summation over locations in
Equation (3) which is used in Equation (6). Note that all
locations are assumed equally probable; that is, P(L) is
assumed to be uniform. Information about the current
location of the stimulus is not lost but is represented by
the activities of the location-coding neurons in the network
(Fig. 1e).

Multiplicative modulation of responses
We simulated the attentional task of McAdams and
Maunsell [3] by presenting a vertical bar and a horizontal
bar simultaneously in an input image. ‘Attention’ to a
location Li containing one of the bars was simulated by
setting a high value for P(Li), corresponding to a higher
firing rate for the neuron coding for that location.

Figure 2a depicts the orientation-tuning curves of the
vertical feature-coding model V4 neuron in the presence
and absence of attention (squares and circles, respectively).
The plotted points represent the neuron’s firing rate,
encoding the posterior probability P(F|I¼I0), F being the
vertical feature. Attention in the model approximately
multiplies the ‘unattended’ responses by a constant factor,
similar to V4 neurons (Fig. 2b). This is due to the change in
the prior P(L) for locations between the attended and
unattended modes, which affects Equations (3) and (6)
multiplicatively.

Effects of attention on responses in the presence of
distractors
To simulate the experiments of Reynolds et al. [4], a single
vertical bar (‘reference’) was presented in the input image
and the responses of the vertical feature-coding model
neuron were recorded over time. As seen in Fig. 2c (upper
panel, dotted line), the neuron’s firing rate reflects a
posterior probability close to 1 for the vertical stimulus.
When a horizontal bar (‘probe’) alone is presented at a
different location, the neuron’s response drops dramatically
(solid line) as its preferred stimulus is a vertical bar, not a
horizontal bar. When the horizontal and vertical bars are
simultaneously presented (‘pair’), the firing rate drops to
almost half the value elicited for the vertical bar alone
(dashed line). Signaling increased uncertainty about the
stimulus compared with the reference-only case. When
‘attention’ is turned on by increasing P(L) for the vertical bar
location (Fig. 2c, lower panel), the firing rate is restored to its
original value and a posterior probability close to 1 is
signaled (dot-dashed line). Thus, attention acts to reduce
uncertainty about the stimulus, given a location of interest.
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Such behavior closely mimics the effect of spatial attention
in areas V2 and V4 [4] (Fig. 2d).

Effects of attention on neighboring spatial locations
We simulated the experiments of Connor et al. [5] using an
input image containing four fixed horizontal bars at four

different locations (see Fig. 3a). A vertical bar was flashed at
one of five different locations in the center (Fig. 3a, 1–5).
Each bar plot in Fig. 3b shows the responses of the vertical
feature-coding model V4 neuron as a function of vertical bar
location (bar positions 1 through 5) when attention is
focused on one of the horizontal bars (left, right, upper or
lower). Attention was again simulated by assigning a high
prior probability for the location of interest.

As seen in Fig. 3b, there is a pronounced effect of
proximity to the locus of attention: the unattended stimulus
(vertical bar) produces higher responses when it is closer to
the attended location than further away (see, e.g., ‘attend
left’). This is due to the spatial spread in the conditional
probability P(C|L, F) (see Fig. 1c), and its effect on Equations
(3) and (6). The larger responses near the attended location
reflect a reduction in uncertainty at locations closer to the
focus of attention compared with locations further away. For
comparison, the responses from a V4 neuron are shown in
Fig. 3c (from [5]).

Discussion
The model we have proposed makes several predictions.
First, as feedback connections from higher cortical areas are
assumed to convey prior probabilities [P(L) and P(F)], the
model predicts that stimulation of these feedback axons
should mimic the effects of attention, producing, for
example, a multiplicative modulation of orientation-tuning
curves as in Fig. 2a. A second prediction is that the
relationship between a neuron’s membrane potential and
the instantaneous firing rate is exponential. Emerging
evidence shows such a transformation in certain visual
neurons [21,22]. Finally, the model predicts that attention to
a particular feature (e.g. a vertical bar) should also influence
the processing of similar ‘neighboring’ features (e.g. a bar at
801) due to uncertainty in feature space, similar to the
uncertainty in locations as in Fig. 1c.

Our model bears some similarities to a recent Bayesian
model of attention proposed by Yu and Dayan [23] (see also
[24,25]). They use a five-layer neural architecture and a
logarithmic probability encoding scheme [19] to model
reaction time effects and multiplicative response modula-
tion (Fig. 2a). Their model, however, does not use an
intermediate representation to factor input images into
separate feature and location attributes (Fig. 1a). It therefore
cannot explain effects such as the influence of attention on
neighboring unattended locations [5].

Conclusion
Our results suggest that attentional modulation in the
primate visual cortex may arise as a consequence of
Bayesian inference in hierarchical cortical networks. Our
study provides a new interpretation of attention as a cortical
mechanism for reducing uncertainty during the perception
of complex scenes.

References
1. James W. The principles of psychology. New York: Holt; 1890.

2. Itti L, Rees G, Tsotsos J, editors. Neurobiology of attention. New York:

Academic Press; 2005.

3. McAdams CJ, Maunsell JHR. Effects of attention on orientation–tuning

functions of single neurons in macaque cortical area V4. J Neurosci 1999;

19:431–441.

1 2 3 4 5

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Bar position (spacing=1.9°)

R
es

po
ns

e 
ra

te
 (

sp
ik

es
/s

)

1 2 3 4 5

1 2 3 4 5
0

0.1

0.2

0.3

0.4

(a)

(b)

(c)

N
or

m
al

iz
ed

 fi
ri

ng
 r

at
e

Attend upper

Attend right

Attend lower

Bar position

Attend left

1 2 3 4 5

90

60

30

0
1 2 3 4 5

1 2 3 4 5

90

60

30

0
1 2 3 4 5

90

60

30

0
1 2 3 4 5

Fig. 3 In£uence of attention on neighboring spatial locations. (a) Exam-
ple trialbased onConnor etal.’s experiments [5] showing ¢ve images, each
containing four horizontal bars and one vertical bar. Attention was
focused on a horizontalbar (e.g. upper bar, circled)while theverticalbar’s
position was varied. (b) Responses of the vertical feature-coding model
neuron. Each plot shows ¢ve responses, one for each location of the
vertical bar, as attention was focused on the upper, lower, left, or right
horizontal bar. (c) Responses from a V4 neuron (reproduced from [5],
copyright1997 by the Society for Neuroscience).

Vol 16 No 16 7 November 2005 18 4 7

BAYESIAN INFERENCE ANDATTENTION NEUROREPORT

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



4. Reynolds JH, Chelazzi L, Desimone R. Competitive mechanisms subserve

attention in macaque areas V2 and V4. J Neurosci 1999; 19:1736–1753.

5. Connor CE, Preddie DC, Gallant JL, Van Essen DC. Spatial attention

effects in macaque area V4. J Neurosci 1997; 17:3201–3214.

6. Knill DC, Richards W. Perception as Bayesian inference. Cambridge, UK:

Cambridge University Press; 1996.

7. Rao RPN, Olshausen BA, Lewicki MS. Probabilistic models of the brain:
perception and neural function. Cambridge, Massachusetts: MIT Press; 2002.

8. Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural

coding and computation. Trends Neurosci 2004; 27:712–719.

9. Van Essen DC. Functional organization of primate visual cortex. In:

Peters A, Jones EG, editors. Cerebral cortex. Vol. 3. New York: Plenum;

1985. pp. 259–329.

10. Pearl P. Probabilistic reasoning in intelligent systems: networks of plausible
inference. San Mateo, California: Morgan Kaufmann; 1988.

11. Gerstner W. Population dynamics of spiking neurons: fast transients,

asynchronous states, and locking. Neural Comput 2000; 12:43–89.

12. Simoncelli EP. Distributed representation and analysis of visual motion. PhD

Thesis, Department of Electrical Engineering and Computer Science, MIT;

1993.

13. Anderson CH, Van Essen DC. Neurobiological computational systems.

In: Zurada JM, Marks RJ 2nd, Robinson CJ, editors. Computational
intelligence: imitating life. New York: IEEE Press; 1994. pp. 213–222.

14. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional

interpretation of some extra-classical receptive field effects. Nat Neurosci

1999; 2:79–87.

15. Gold JI, Shadlen MN. Neural computations that underlie decisions about

sensory stimuli. Trends Cogn Sci 2001; 5:10–16.

16. Lee TS, Mumford D. Hierarchical Bayesian inference in the visual cortex.

J Opt Soc Am A 2003; 20:1434–1448.

17. Deneve S. Bayesian inference in spiking neurons. In: Saul LK,

Weiss Y, Bottou L, editors. Advances in neural information processing
systems. Vol. 17. Cambridge, Massachusetts: MIT Press; 2005. pp.

353–360.

18. Zemel RS, Huys QJM, Natarajan R, Dayan P. Probabilistic computation in

spiking populations. In: Saul LK, Weiss Y, Bottou L, editors. Advances in

neural information processing systems. Vol. 17. Cambridge, Massachusetts:

MIT Press; 2005. pp. 1609–1616.

19. Rao RPN. Bayesian computation in recurrent neural circuits. Neural
Comput 2004; 16:1–38.

20. Mishkin M, Ungerleider LG, Macko KA. Object vision and spatial vision:

two cortical pathways. Trends Neurosci 1983; 6:414–417.

21. Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G.

Multiplication and stimulus invariance in a looming-sensitive neuron.

J Physiol Paris 2004; 98:19–34.

22. Priebe N, Ferster D. The origin of cross-orientation suppression in

primary visual cortex, Presentation at Computational and Systems
Neuroscience (CoSyNe) Conference; 2005.

23. Yu A, Dayan P. Inference, attention, and decision in a Bayesian neural

architecture. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural
information processing systems. Vol. 17. Cambridge, Massachusetts: MIT

Press; 2005. pp. 1577–1584.

24. Dayan P, Zemel RS. Statistical models and sensory attention. In:

Willshaw D, Murray A, editors. Proceedings of the International
Conference on Artificial Neural Networks (ICANN). London: IEE Press;

1999. pp. 1017–1022.

25. Rao RPN. Hierarchical Bayesian inference in networks of spiking

neurons. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural
information processing systems. Vol. 17. Cambridge, Massachusetts: MIT

Press; 2005. pp. 1113–1120.

18 4 8 Vol 16 No 16 7 November 2005

NEUROREPORT RAO

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.


