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1 Introduction

Animals receive a vast amount of sensory information in their interactions
with the natural world. The brain’s limited processing resources permits only
a fraction of this information to be processed at any given moment in time.
Furthermore, this information is typically noisy and the animal’s knowledge
of its world is almost always incomplete. The fundamental challenge in such
an environment is to be able to select and process only those portions of the
sensory inputs that are relevant to the particular task at hand and to the
animal’s continued survival. Attention is nature’s answer to this challenge.

Attention is often classified as being either overt or covert. Overt visual atten-
tion typically involves making eye movements to shift gaze to “interesting” or
task-relevant parts of a scene. Covert attention, on the other hand, involves the
ability to preferentially process an object or location in a visual scene without
shifting gaze. A useful metaphor for understanding attention has been the no-
tion of a spotlight or “search light” that can be focused on specific portions of a
visual scene (see (Desimone and Duncan, 1995; Newsome, 1996) for reviews).
Numerous models have been proposed for simulating an attentional spotlight,
two prominent examples being saliency maps and hierarchical routing circuits
(Hinton, 1981; Koch and Ullman, 1985; Olshausen et al., 1993; Tsotsos et al.,
1995; Niebur and Koch, 1996; Itti and Koch, 2000).

In this review article, we describe models of attention formulated at two dif-
ferent levels of abstraction: the first model explains overt attention during
visual search in terms of saliency maps and iconic representations. The sec-
ond model, which is formulated closer to the neural implementation level,
provides an interpretation of covert shifts of attention without the use of an
explicit spotlight. The two models share a common foundation in that both
acknowledge the noisy and uncertain nature of the environment by utilizing
probabilistic principles for achieving their goals.

2 Probabilistic Control of Attention using Iconic Representations

Human vision relies extensively on the ability to make saccadic eye movements
to orient the high-acuity foveal region of the eye over targets of interest in a
visual scene. Many studies have shown that this overt form of attention is
controlled by the ongoing cognitive demands of the task at hand (see (Rao
et al., 2002) for references). A key problem in most visual tasks is saccadic
targeting: how are points of interest selected as targets for eye movements?

The targeting problem can be better understood within the context of a task
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such as visual search in which a subject executes eye movements to find a
memorized target in the current visual scene. Three important computational
problems need to be solved: (a) the target object and the visual scene need
to be represented using an efficient visual code, (b) the contents of the visual
scene need to compared with the memorized target object to find potential
matches, and (c) an eye movement needs to be executed to the location deemed
most likely to contain the target object. We discuss below a model proposed in
(Rao et al., 1996, 2002) that addresses these three problems using iconic rep-
resentations, saliency maps, and maximum likelihood estimation respectively.

2.1 Iconic Representation of Objects

The naive method of representing objects as grey-level images is clearly im-
practical, given the high dimensionality of such a representation and the lack
of invariance to transformations and view changes. A more efficient alterna-
tive is to encode objects iconically using a set of basis functions, or spatial
filters (Jones and Malik, 1992; Lades et al., 1993; Rao and Ballard, 1995;
Itti and Koch, 2000). Such a representation approximates the transformations
imposed by the receptive fields of neurons in the primary visual cortex. The
model proposed in (Rao and Ballard, 1995; Rao et al., 1996, 2002) utilizes a
set of oriented derivatives of Gaussians (Figure 1A, top panel) (Freeman and
Adelson, 1991):

G
θj

i , i = 1, 2, 3, θj = 0, . . . , mπ/(i + 1), m = 1, . . . , i (1)

where i denotes the order of the derivative and θj refers to the preferred
orientation of the filter. The response of an image patch I centered at (x0, y0)

to a particular basis filter G
θj

i can be obtained by convolving the image patch
with the filter:

ri,j(x0, y0) =
∫∫

G
θj

i (x0 − x, y0 − y)I(x, y)dx dy (2)

The iconic representation for the local image patch centered at (x0, y0) is
formed by combining into a high-dimensional vector the responses from all
basis filters above at different scales:

r(x0, y0) =[ri,j,s(x0, y0)] (3)

where i denotes the order of the filter, j denotes the orientation, and s =
smin, . . . , smax denotes the scale of the filter. For computational efficiency, a
Gaussian pyramid representation of the image was used to generate multi-scale
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responses from a set of basis filters at a fixed scale. As an example, Figure 1A
shows the filter-based responses at a given location in a cluttered scene for a
set of five filters at five spatial scales. It can be shown that the filter response
vector at an image location provides an almost unique representation of the
local image region surrounding that location when compared with response
vectors from other locations or images (Rao and Ballard, 1995).

2.2 Targeting Eye Movements in Visual Search

We now summarize the model proposed in (Rao et al., 1996, 2002) for char-
acterizing human eye movements in visual search. Suppose that objects of in-
terest are represented by a set of memorized filter response vectors rm

s where
m denotes a particular target object in memory and s denotes the scale of the
filters. Given a new input image and a target object T , the model computes
a “saliency map” S(x, y) that stores, at each image location (x, y), the simi-
larity between the response vector for that location and the memorized target
response vector rT

s . Furthermore, the model assumes that the computation of
the saliency map proceeds in a coarse-to-fine fashion: responses from larger
spatial scale filters are compared before the smaller scale responses. Finally,
the most likely location of the target object is chosen probabilistically accord-
ing to the Boltzmann distribution computed from the similarity values in the
saliency map (see below; for those familiar with the Boltzmann distribution,
the “energy function” is assumed to be given by the saliency map outputs).
The entire targeting process can be summarized as follows:

(1) Set the initial scale of analysis k to the largest scale i.e. k = max. Set
S(x, y) = 0 for all (x, y).

(2) Compute the current saliency map across all locations (x, y) based on
filter responses from the current scale k up to the maximum scale:

S(x, y) =
max
∑

s=k

||rs(x, y) − rm
s ||

2 (4)

S(x, y) is the square of the Euclidean distance between the filter response
vector rs for image location (x, y) and the memorized target response
vector rm

s , summed over the scales s = k, . . . , max.
(3) The location for the next eye movement is given by a weighted average

determined from the following maximum likelihood scheme (cf. (Nowlan,
1990)):

(x̂, ŷ) =
∑

(x,y)

(x, y) ·
e−S(x,y)/λ(k)

∑

(x,y) e−S(x,y)/λ(k)
(5)

where λ(k) is a “temperature” parameter that is decreased with k. De-
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Fig. 1. Iconic Representations and Saliency Maps for Overt Attention. (A)
Iconic representation for characterizing local image patches. A set of five oriented
filters (repeated five times) is shown at the top. A cluttered image is shown on the
left at five different spatial scales (Gaussian “pyramid” representation). The iconic
representation for a given image location is the vector of 25 spatial filter responses
obtained at that location. This representation is depicted at the bottom as a his-
togram. Positive responses are represented as upward bars and negative responses as
downward bars. (B), (C), and (D) show the saliency map S(x, y) after the inclusion
of the largest, intermediate, and smallest scale filter responses respectively (only 3
scales were used in these simulations). The brightest points are the closest matches
to the target object (in this case, a fork and knife on a napkin). (E) shows three suc-
cessive eye movements as determined from maximum-likelihood weighted averaging
of the saliency maps in (B), (C), and (D) respectively. For comparison, saccades
from a human subject are depicted as dashed lines with arrows. (F) Comparison of
model and human eye movements to four different target locations averaged over
subjects and target objects (see text). The square box denotes a one degree region
centered around each target. The dashed line segments correspond to human data
while the solid line segments correspond to model data.
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creasing λ(k) allows the search to evolve from an initial state where all
target locations compete equally for an eye movement to a final state
where only a few most likely target locations remain.

(4) Repeat steps (2) and (3) for k = max-1, max-2, . . . until either the
target object has been foveated or the number of scales has been ex-
hausted. In the former case, a recognition process signals the termination
of the search. In the latter case, successive eye movements are made using
saliency maps computed from an increasing number of finer scales.

2.3 Comparison with Human Eye Movement Patterns

The model described above was tested in a series of eye tracking experiments
involving human subjects performing visual search in naturalistic scenes (Rao
et al., 1996; Zelinsky et al., 1997; Rao et al., 2002). Figure 1B, 1C, and 1D show
the saliency maps for one such scene (a dining table scene) after including one,
two, and three different spatial scales in the iconic representation. Figure 1E
shows the sequence of fixations generated by the model for this image, together
with those recorded from a human subject. The target (composed of the fork
and the knife) was the same in both cases. As can be seen, the locations
predicted by the model for successive eye movements are similar to those seen
in the fixation pattern that the human subject generated for this image.

A detailed comparison of the model to human data can be found in (Rao
et al., 2002). We briefly summarize the results here. The comparison was
based on 480 search trials pooled over four subjects. An average path to each
of six possible target locations was computed by averaging the fixations over
subjects and search scenes. The model data was averaged over the different
targets for each location. A comparison of the average paths generated by the
model and by human subjects is shown in Figure 1F. The box in each sub-
figure represents a one degree region centered on each target location. As is
evident, there is good agreement between the model and human data for each
location. The number of errors made by the model was found to be close to
the number of errors made by human subjects (Rao et al., 2002). The average
standard deviation for the subjects, averaged over all fixations, was 1.5 degrees
whereas the deviation between model and the average subject fixations was
0.7 degrees, indicating that the model’s behavior is within the profile expected
of an individual subject.

These results suggest that human eye movement patterns during visual search
can be understood in terms of a maximum likelihood procedure for computing
the most likely location of a target in a coarse-to-fine manner. This model can
be viewed as a systems-level model of overt attention in that it is formulated
in terms of higher-level abstractions such as saliency maps. In the next section,
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we describe a probabilistic model of attention that attempts to bridge the gap
between systems-level modeling and neural modeling.

3 Predictive Coding Model of Attention

The model in the previous section focused on overt attentional control using
spatial filter-based representations. The choice of the filters themselves was
arbitrary. One may be inclined to ask whether there exist methods to learn

appropriate representations of objects and natural scenes directly from their
images. This can be accomplished through the probabilistic notion of genera-
tive models of images. We show in this section that various forms of attention
may be regarded as emergent properties of predictive coding networks that
utilize generative models for representing images. Such networks also suggest
functional roles for feedback and feedforward connections in the dorsal and
ventral visual pathways in the mammalian brain.

3.1 Generative Models and Predictive Coding

Assume that an image, denoted by a vector I of n pixels, can be represented
as a linear combination of a set of k basis vectors U1, U2, . . . , Uk:

I=
k

∑

j=1

Ujrj + n (6)

= Ur + n (7)

where n is a zero-mean Gaussian white noise process, U is the n × k matrix
whose columns consist of the basis vectors Uj, and r is the k × 1 vector con-
sisting of coefficients rj. In a neurobiological setting, the values in the ith row
of U can be regarded as synaptic strength of the ith model neuron while the
coefficients rj denote the pre-synaptic activities received by these neurons.

Our goal is to estimate the coefficients r for any given image and on a longer
time scale, learn appropriate basis vectors in U directly from the input image
stream. Consider the following squared-error optimization function for mini-
mization:

E = (I − Ur)T S(I − Ur) (8)

where the superscript T denotes vector (or matrix) transpose and S is a di-
agonal weighting matrix. Given that n is Gaussian, it can be shown that
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minimizing E is equivalent to maximizing the log likelihood of the observed
data I with respect to model parameters U and r (see, for example, (Rao and
Ballard, 1997; Rao, 1999)). For the purposes of modeling attention, it is useful
to choose the diagonal entries in the matrix S as:

Si,i = min
{

1, c/(Ii − U ir)2
}

Here, Ii is the ith pixel of I, U i is the ith row of U , and c is a threshold
parameter. Note that S effectively clips the ith summand in E to a constant
saturation value c whenever the squared error (Ii − U ir)2 exceeds c. Thus,
statistical outliers (i.e. image regions containing distracting, irrelevant, or un-
known objects) are prevented from influencing the optimization process due
to the large errors that they produce (see below for an example).

One can minimize E with respect to r and U using gradient descent to obtain
the following differential equations:

ṙ=−
k1

2

∂E

∂r
= k1U

T G(t)(I − Ur) (9)

U̇ =−
c1

2

∂E

∂U
= c1G(t)(I − Ur)rT (10)

where ṙ and U̇ denote the temporal derivatives of r and U respectively, and k1

and c1 are positive time constants that determine the rate of descent towards
a minimum of E. For a given static image, U is typically kept fixed until r

converges to a stable value; this value of r is then used to update U as specified
in Equation 10. The matrix G(t) in the equations above is an n × n diagonal
matrix whose diagonal entries at time t are given by:

Gi,i(t) =











0 if (Ii(t) − U ir(t))2 > c(t)

1 otherwise
(11)

G can be regarded as the sensory residual gain or “gating” matrix. It deter-
mines the gain on the various components of the incoming sensory residual
error (I− Ur). By effectively excluding any high residual errors, G allows the
model to ignore the corresponding outliers (occluding objects or clutter) in
the input I, thereby enabling it to robustly estimate r. In fact, Equation 9 can
be interpreted as implementing an approximate form of the robust Kalman

filter (Rao, 1998).

Figure 2A depicts a recurrent network that implements Equation 9. The net-
work can be regarded as a “predictive coding” circuit wherein feedback con-
nections carry predictions (Ur) of lower level inputs (I) while feedforward
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connections carry filtered error signals ((I(x) − Ur)). Predictive coding has
previously been used to model visual cortical response properties such as con-
textual and non-classical receptive field effects (see (Rao and Ballard, 1999)).

3.2 Visual Attention without a Spotlight

We now illustrate how the predictive coding model discussed above can be
used to model attentional shifts. We assume a training phase in which objects
are shown to the recognition system without occlusions or background clutter
(e.g., Figure 2B). These objects are learned by alternating between Equations 9
and 10 during repeated exposures to the objects, until the basis matrix U
stabilizes.

Now consider the case where a familiar object from the training database
occurs with another occluding object or background clutter in an input image
(Figure 2C, leftmost image). When the object vector r is calculated using
Equation 9, the model predicts only the familiar object, causing relatively
large errors in the areas of the image that do not match the predictions. These
regions of the image are treated as outliers and the gating matrix G prevents
these regions from influencing the estimation of r. The system is thus able
to “focus attention” on a familiar object despite occlusions and background
clutter as shown in Figure 2C.

More interestingly, the outliers (shown in white) produce a crude segmentation

of the occluder and background clutter, which can subsequently be used to
focus “attention” on previously ignored objects and recover their identity. In
particular, an outlier mask m can be defined by taking the complement of the
diagonal of G (i.e., mi = 1 − Gi,i). By replacing the diagonal of G with m

in Equation 9 and repeating the estimation process, the network can “attend
to” the image region(s) that were previously ignored as outliers. As shown
in Figure 2D, the network first recognizes the “dominant” object, typically
the object occupying a larger area of the input image or possessing regions
with higher contrast. The outlier mask m is subsequently used for “switching
attention” and extracting the identity of the second object (Figure 2D, lower
arrow and rightmost image).

3.3 Object-Based versus Spatial Attention

The predictive coding model discussed above can be extended to account for
transformations of objects in an image using a generative model based on the
Taylor series expansion of a new image I(x) in terms of a canonical image I:
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Fig. 2. Attention in a Predictive Coding Model of Visual Processing. (A)
shows an implementation of the predictive coding model (Equation 9) in the form of
a recurrent neural network. The matrices U and U T are represented by the synaptic
weights of linear feedback and feedforward neurons respectively. The gating matrix
G is implemented by a set of threshold non-linear neurons with binary outputs. (B)
Example images used to train a predictive coding network. (C) Given a cluttered
image, the network treats occlusions and background objects as outliers (white
regions in the third image, depicting the diagonal of the gating matrix G). This
allows the network to “attend to” and recognize a training object (“duck”) despite
clutter, as indicated by the relatively accurate final reconstructed image (Ur) shown
in the middle. (D) In the more interesting case of the training objects occluding
each other, the network converges to one of the objects (the “dominant” one in the
image - in this case, the object in the foreground). Having recognized one object,
the second object is attended to and recognized by taking the complement of the
outliers (diagonal of G) and repeating the estimation process (third and fourth
images).
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I(x) = I +
∂I

∂x
x + n (12)

=Ur + DIdx + n (13)

where D is a matrix of differential operators to be learned from data and Id is
a diagonal matrix containing the appropriate number of copies of the image
I = Ur along the diagonal (Rao and Ballard, 1998).

The generative model in Equation 13 can be used to derive equations similar
to Equations 9 and 10 for estimating both r and x, and for learning U and
D (see (Rao and Ballard, 1998) for details). Figure 3A shows an implementa-
tion of this model using two parallel but cooperating networks, one estimating
object identity r (“what”) and the other estimating object transformation x

(“where”). This functional dichotomy between object recognition and transfor-
mation estimation is reminiscent of the well-known division of labor between
the ventral and dorsal streams in the primate visual cortex (Felleman and Van
Essen, 1991).

Given an input image, the pair of networks in Figure 3A simultaneously es-
timate an object and its transformation by jointly optimizing the generative
model in Equation 13. Therefore, fixing a particular spatial location x in the
transformation network should cause the object network to converge to the
identity r of the object in that spatial location (a form of spatial attention). On
the other hand, fixing an object’s identity in the object network should cause
the transformation network to converge to its most likely spatial location in
the image (a form of object-based attention).

Figures 3B and 3C illustrate an example of spatial attention using an input
image containing two training objects simultaneously, one in Location 1 and
the other in Location 2. The networks were trained on images containing
only one object in the center of an image. As shown in Figure 3C, when the
transformation vector x is set to Location 1 (left panels, “Attending Location
1”), the object vector r converges to the canonical representation of the object
in Location 1: the image predicted by the object network is that of object 1
in its central (canonical) position. Setting x to Location 2 causes the object
network to converge to object 2 (right panels, “Attending Location 2”). In both
cases, pixels containing the second object are treated as outliers (shown here
in grayscale rather than in binary form). Thus, spatial attention emerges as
a consequence of a top-down signal (for example, from short-term or working
memory) that constrains the activity of the transformation network to be a
memorized value. Likewise, object-based attention emerges in the network as
a consequence of constraining the activity of the object network (not shown).
These results suggest an interpretation of spatial and object-based attention
in terms of specific constraints being placed on activities in the dorsal or
ventral visual pathway by memory-related neurons in prefrontal cortex and
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Fig. 3. “What-Where” Networks and Spatial Attention. (A) shows a pair
of predictive coding networks: the one at the top computes the identity of objects
through object features r (“What”) while the one at the bottom computes the
transformation x (“Where”) (see (Rao and Ballard, 1998) for more details). The
gating matrix G is not shown. Fixing x in the “Where” network causes the “What”
network to converge to the identity of the object in that spatial location (a form of
spatial attention), while fixing r in the “What” network causes the “Where” network
to converge to the object’s most likely spatial location (a form of object-based
attention). (B) A test image containing two training objects in Locations 1 and 2
respectively. The network was trained on images containing only one object in the
center of an image. (C) Fixing the spatial position vector x to Location 1 causes the
object network to converge to the “duck” object (left panels, “Attending Location
1”). The pixels containing the “dinosaur” object are treated as outliers. On the
other hand, fixing x to Location 2 “focuses attention” on the object in Location 2,
i.e., the dinosaur object (right panels, “Attending Location 2”).
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other areas implicated in working memory.

4 Summary and Conclusions

In this article, we reviewed two models of attention, both based on proba-
bilistic principles but formulated at two different levels of abstraction. The
first model relies on iconic representations and the concept of saliency maps
to predict eye movements during visual search in naturalistic scenes. Saliency
maps have played an important role in models of attention, especially those
focusing on extracting “interesting” locations in a scene based on bottom-up
sensory information (Koch and Ullman, 1985; Niebur and Koch, 1996; Itti
and Koch, 2000). The model discussed in this article combines both bottom-
up scene representations and a top-down target representation to generate
a saliency map. The model further assumes that the saliency map is com-
puted in a coarse-to-fine manner such that larger scale filter responses are
compared first. Motivation for coarse-to-fine computation of saliency maps
comes from several studies that show that lower spatial frequencies influence
visual perception earlier than higher spatial frequencies (e.g., (Navon, 1977;
Schyns and Oliva, 1994)). For a given saliency map, the model computes the
most likely target location as the weighted average of all locations, the weight
being determined by the location’s saliency. This procedure is motivated by
previous work in probabilistic reasoning and learning based on the Boltzmann
and related distributions (Hinton and Sejnowski, 1986; Nowlan, 1990). The
saliency map and the weighted averaging scheme in the model may have cor-
relates in the posterior parietal cortex and the superior colliculus respectively
(Desimone and Duncan, 1995; McIlwain, 1991). The model explains experi-
mental results showing that humans make successive eye-movements to the
“center-of-gravity” of clusters of objects before landing on a most-likely ob-
ject location (Zelinsky et al., 1997). The model assumes that the oculomotor
system is ready to move before all the scales can be matched, and thus the
eyes move to the current best target position, thereby increasing the chances
of an early match. These results suggest that the human visual system utilizes
a probabilistic method based on maximum likelihood (or more generally, max-
imum a posteriori) estimation to shift gaze to points of interest in a natural
scene.

The second model is based on the probabilistic notion of generative models. By
hypothesizing a mathematical model for how images are synthesized using a set
of basis functions, a network can be derived for learning these basis functions
and estimating their coefficients. This network implements a form of predictive
coding in which top-down feedback is used to predict a lower-level signal (e.g.,
an image) while the feedforward signals convey the prediction errors. The
network computes an “optimal” set of coefficients that serve to represent the
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contents of an image in a compact and efficient manner. Such predictive coding
networks have proved useful in modeling visual cortical response properties
(Rao and Ballard, 1999). We discussed how attention emerges in such networks
as a consequence of selective filtering of predictive error signals. This allows
the network to “focus attention” on a single object or “switch attention” to
another object without using an explicit “spotlight of attention.”

The predictive coding model can be extended to account for transformations of
objects in images, resulting in “what-where” networks that can simultaneously
recognize an object and estimate its pose. We discussed how object-based at-
tention and spatial attention are emergent properties of such networks, caused
by placing constraints on the “what” or “where” network respectively. The
model thus provides a unifying explanation for well-known spatial attention
results as well as more recent results on object-based attention showing that
subjects can reliably track an object superimposed with a distractor object
occupying the same spatial location (Kanwisher and Wojciulik, 2000).

The functional dichotomy in the predictive coding model between the “what”
and the “where” networks resembles the well-known division of labor between
the cortical networks in the ventral and dorsal visual pathway. This observa-
tion leads to several potentially testable predictions. Substantial connections
exist between the dorsal and ventral visual pathways (Felleman and Van Es-
sen, 1991), but their function is unknown. These connections form an integral
part of the joint optimization process in the model (see Figure 3A and (Rao
and Ballard, 1998)). The model predicts that damage to dorsal areas should
produce noticeable effects in object-based attentional tasks, while damage to
ventral areas should produce significant deficits in spatial attention tasks. This
is interesting, given that dorsal and ventral areas are traditionally associated
only with spatial and object-related perception respectively. Similarly, damage
to frontal cortex areas, the presumed source of top-down constraints on the
“what” and “where” networks, should adversely affect both spatial as well as
object-based attention tasks.

The predictive coding model thus emphasizes the global nature of attention:
the different forms of visual attention are interpreted as emerging from the
constrained optimization of a generative model thought to be encoded jointly
within the dorsal and ventral visual cortical pathways.
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