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Abstract: This paper deals with a new numerical method to solve
the inverse kinematics of all serial, special or general, manipula-
tors. This method uses new concept from Distributed Artificial
Intelligence, multi-agent systems, which allows to distribute the
resolution of this problem. This concept is used with a new formu-
lation of the problem associated to each local frame. This iterative
and distributed algorithm is able to find all solutions of the in-
verse kinematics for all kinds of manipulators (6R, 5R1P, 4R2P,
3R3P). Moreover, we’ll show that this method can be applied to
redundant manipulators.

1 INTRODUCTION

In the last few years a new research paradigm has come into the international scientific area. The distributed
artificial intelligence and multi-agent system has gained major importance as a paradigm for computer scientists.
The word agent [1] is used to designate an intelligent entity, acting rationally and intentionally with respect to its
own goals and to the current state of its knowledge. We focused on distributed problem solving where tasks are
initially specified and distributed among several agents. We will take advantages of the physical distribution of
the manipulators to apply distributed problem solving for the inverse kinematic problem.

This problem is to find a set of joint-variables values that will place the end effector into a given position and ori-
entation. Our purpose is to find numerically all solutions of the inverse kinematics by a multi-agent method which
could be applied to all serial manipulators. Our idea was to consider each body of the manipulator as an agent
usefully cooperating towards the same collective purpose, which is reaching the position and the orientation of the
end effector. Thanks to this dialogue between agents, the placing of the end effector is performed by successive
stages. The main interest of this paper is a new numerical method to find all solutions for inverse kinematics of
all manipulators.

The first part of this paper is devoted to the paradigm of distributed problem solving and after to a recalled of the
problem of the inverse kinematic. After we’ll introduce a distributed method to find one solution of the inverse
kinematics. The fourth part concerns the generalization to find all solutions. Then, the results obtained by this
new method are presented. In our conclusion, we have emphasized both the prospects and the limits of our method.

2 DISTRIBUTED PROBLEM SOLVING AND MULTI-AGENT SYSTEMS

Unlike the classical Artificial Intelligence (Al) which models the intelligent performances of one agent only, the
Distributed Artificial Intelligence (DAI) is concerned with intelligent performances which are the product of the
cooperative activity of several agents. The passage from individual performance to collective performance is
considered not only as an extension but as an enrichment of (Al) as well.

An agent is an autonomous entity which pursues an individual purpose, which can act on the environment of the
system. It can interact with the other agents, has only an evolutive representation of the environment and can
perceive the other agents ( communication, observation ). The agents have two tendencies: a social and individual
tendency with mechanisms and data containing the rules of the agent internal working. Then, an agent can be
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characterized by its role, speciality, aim, belief, capacities of decision, of communication and possibly of training.
The term multi-agents system has been applied to any system composed of multiple interacting agents.
Research in DAI has been mostly oriented towards multi-agent systems composed of sophisticated agents. These
agents are categorized as cognitive agents, which are given the capabilities to reason about their environment, to
predict future events and choose between possible actions, and exhibit goal-driven behavior. In the context of
problem solving, this line of research is called Distributed Problem Solving (DPS).

Specially, the development of the distributed problem solving framework involves the following subject:

e problem decomposition: The transformation from a problem to a society of simple agents is defined by a
decomposition scheme. Each agent is assigned to a task corresponding to a part of the problem.

o behavior design: An agent’s behavior corresponds to various actions and it performs to achieve its goal.

e coordination: Group behavior of agents is characterized by the coordination mechanism society. For our
problem-solving, we require for rapid convergence to improve problem-solving efficiency

o system: It follows the construction of a distributed problem solving. A society of agents are created according
to specification of the problem.

So, solving complex problems is made by combining many simple solutions in an iterative manner instead of
attempting to construct a single global solution. We will take advantage of the physical distribution of the
manipulators to apply distributed problem solving for the inverse kinematic problem.

3 THE INVERSE KINEMATIC PROBLEM

We use classical Denavit-Hartenberg notations [17] to describe the structure of the manipulator. Each link is
represented by the line along its joint axis and the common normal to the next joint axis. A coordinate system
is attached to each link for describing the relative arrangements of the various links. The 4 x 4 transformation
matrix relating j*" coordinate system to (j — 1) coordinate system is noted T;_l.

C?S((gj)) — co(s(oa;) sirzé@;) Sil‘l(?j))sm(o(je) ) a; C?S((gj)) Ri pi
Ti . = 0 ’ Siil(aj) ] COS](%’) C d; ] B ( 0_1 1_1 ) W
0 0 0 1

The problem of the inverse kinematics correspond to computing the joint values 6; or d; (p = 1..n) where n is the
number of joints (n <= 6) and T" the task matrix expressed in the referential frame such that:

o1y -1 =1" (2)

The methods that calculate the solutions of this are either algebraic or numerical. The first algebraic complete
solution has been given by Lee and Liang [2] for general 5R1P or 6R manipulators. They calculate the 16%*
degree characteristic polynomial in the tangent of the half angle of one of joint variables. Raghavan and Roth [3]
presented the first method that may be used to calculate the characteristic polynomial of all general geometry ma-
nipulators using dyalitic elimination. Then, Manocha and Canny [4] and Cohley and Ovastic [5] involve symbolic
preprocessing matrix computations and a variety of numerical techniques in order to decrease the execution time of
resolution. Finally, Mavroidis and al. [6] present an efficient algorithm that solves the inverse kinematics problem
of all six degrees of freedom manipulators using symbolic computing. This 16" degree polynomial is prone to
numerical ill-conditioning when a root yielding is an angle of = [7]. However, using an another univariable, it is
possible to find an another characteristic polynomial. So, these algebraic methods are efficient except if all joint
variables are equal to 7 or if the degree characteristic isn’t minimum.

Numerical iterative schema based on Newton-Raphson has been used to obtain some of the solutions of the inverse
kinematics [8]. However this method is known to have quadratic convergence in the neighborhood of a solution,
but far from it either procedure can fail to converge. Angeles [9] proposed to apply small enough condition number
of the Jacobian and continuation method to over-step this failure. Optimization methods [10] are also used to
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solve inverse kinematic problem. They used non-linear square approximation to an over determinated algebraic
system of kinematic closure equations. But theses methods can’t give all solutions. Tsai and Morgan [11] applied
continuation method to solve all distinct solutions for a general manipulator using six revolute joints. The contin-
uation method requires a start system of equations that can readily be solved, a target system for which solution
are sought, and a path following strategy to move from the start system to the target system. This new approach
[12] is reliable on problems twist angle if at least 0.1 degree.

4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OF
THE INVERSE KINEMATICS

4.1 Local associated equations

The general form of inverse kinematics problem can be given in a local frame associated with the id™ joint (on
fig. 1):
Tff_lTﬁl = /‘TiIZl—l (3)

with Tfy_, = (13477

T,1e--- 1, =1" T T =Ty,
Figure 1: Inverse kinematic problem and local associated transformation

This general form can be written in different ways. If we consider that & joints between the 7d*" and the n'" joint
are locked and constitute with the ¢d"* link only one link then equation (3) becomes:

T Tigth - Ty = T T, (4)
So, we note:
k=1
rer = [ gt (5
p=0
The right term can be expressed as:
T =T T, (6)

We have a general form of equation (4) depending on the class k£ (0 < k < n — 1) which can be written:
13 e = 7 )

In the following section, the problem of measuring “closeness” between frames is discussed.
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4.2 Distance Metrics

Assuming an inertial reference frame and length scale for physical space have been chosen, each frame can be
assigned an element of the Euclidean group SFE(3) ( also known as the homogeneous transformations ). The
problem of precisely “closeness” between frames then reduces to the equivalent mathematical problem of defining
a distance metrics in SE(3).

Any number of arbitrary distance metrics can be defined [13] but certain features make the metrics more physically
meaningfull. Since any distance metric in S F/(3) combines position and orientation, one would like the metric to be
scale-invariant: the distance between two frames should be invariant (up to constant scaling factor) with respect
to choice of length scale for physical space. Park [14] suggests a particular left-invariant distance parameterized
by length scale that is useful for kinematic applications.

In this paper, we base our measure on the Frobenius norm of a matrix [|M|| with a length scale L defined by

Wampler [15] such that:
_ (B P _ [ R | 5
ﬂ_(o 1) E_(o 1)

1

AT ) = d(R, P, (R P2) = Ry~ Rl + 517~ P (8)
1
17+ 2Pl
1
= LR+
i i
L= max||Pp| (9)

4.3 A distributed criterion

If we consider a distributed method, just one joint is able to move at each step of our approach. The general form
given by equation (7) can be expressed by a difference between the two terms of the equation:

M;q = M(f]m Tevr, Tdr7 Q;q, aid) = ﬂij_lTsuP - (10)

This matrix M,,; depends on the value of the id"" joint parameter (g;4), all geometric parameters and the task
data. If we consider that only the id"* joint can move, we can express a value of the joint parameter that leads
matrix M;4 goes to null matrix. In this case, the left term of equation (7) tends to the right one.

Using the Frobenius norm of M,,, we obtain:

||Mzd|| = QO'Z'd(DENg * S’Ln(eld) + NUM9 * COS(OZ'd)) + (1 — Uid) (dzd — dm)2 + CST9 (11)

with 0,4 = 1if the joint is revolute and o;4 = 0 if the joint is prismatic and DFE Ny, NUM,, C'STy and d,,, expressed
in annex 2.
We have to consider the minimization of this norm in order to approach our goal.

d|| M4l|

p) = QO'Z'd(—DENg * COS(OZ'd) + NUM9 * Sln(@d)) + 2(1 — Uid) (dzd — dm) (12)
Gid
In this case the expression given by equation (12) leads to the extremum values of ¢;4 by writing %ﬂ = 0.
with
NUM,
g7, = arctan DgN: (14)
a7l = dn (15)

It’s obvious that these values give minimum value of ||M;4|| due to the fact that for the revolute joint, tangent
function is an increasing one and for a prismatic joint the coeflicient of (d) in equation (12) is equal to 1.0 (strictly
positive).
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4.4 Resolution algorithm

We consider each body of the manipulator as an agent. The multi-agent system models the manipulator in this
way.
Each agent id possesses the following knowledge:

e a local task matrix T7,_, which represents its local goal matrix

e its 4 X 4 transformation matrix 77¢ | relating the (id)"" joint and the (id — 1) joint which expresses its
potential action about the world

e the 4 x 4 transformation matrix relating the (id — 1)** joint and the first joint Ta?=! which represents its
position in the absolute frame.

Figure 2: Manipulator and proposed modelisation by a multi-agent system

We consider a distributed paradigm of communication where the agents could only communicate with the previous
or next agent (on fig. 2). Each ¢d"" joint or agent must compute the value in order to minimize the norm of the
matrix M;4. The elements of matrices T%? et T% depend on the others joints and task data.

So, the iterative method follows this algorithm with € the accuracy of the distributed method given by the user.

Loop until || TgT2---T" | —T"|| <€
Forid=mn---1 loop
Agent id computes (T4 Tv?)
Agent ¢d computes ¢,y
End for
End loop

Figure 37 Distributed resolution algoritim

4.5 The criterion class

For a serial manipulator, we show that different classes of minimization criterion can be chosen. This choice of
the class is important in the algorithm because the forms of the equation with 7% and T'% are different. The
class criterion k& (0 < k < n) fixes the number of joints beyond the id joint which are assumed to be locked.
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In order to understand that criteria are different, we’ll take a simple example with a planar manipulator formed
by three revolute joints. We have three possible classes k (k < 3) of criteria for this manipulator.

Criterion calculus M;, of the joint id
1 M, =T =TT} | Mo=T2 ~T!MTZ | Ms=T3 —Th
2 M, =TT —T'"TZ | My =TT —Th | My="T3 - T}
3 M, =TT =T" | My =TT3 -T) | My =T3 —Th

Figure 4: calculus of M,y for the planar manipulator

For one step of the method, we try these criteria with the first joint on fig. 5: The proposed results by the three

Initial state e Initial State: 91 =0° 92 = 20° 93 = 40°

/ e Final State:

Criterion 3: 61 =37.87° 65 = 20° 03 = 40°
Criterion 2: 61 =34.45° 65 = 20° 03 = 40°
Criterion 1: #; =19.77° 65 = 20° 03 = 40°

-~

Criterion 1 0.371 0.594 1.279

T Criterion 2 e Task matrix 7" = | 0.590 0.911 —2.0

Two solutions 1 0.0 0.0 1.0
Criterion 3

Figure 5: Planar manipulator with three classes of criterion

criteria are different. With a serial manipulator, we have n different classes of criterion. So we’ll propose to study
the choice of a criterion in the next paragraph.

4.6 Choice of the criterion class

If some special conditions of the Denavit and Hartenberg parameters exist, then the manipulator is said to
have a special geometry. If, in addition, these special conditions cause a manipulator to have a lower degree
charecteristices polynomial than the general manipulator of the same type, we call this manipulator special
manipulator otherwise the manipulator is called general manipulator [6].

Type of manipulators 3R3P | 4R2P | 5R1P | 6R
Degree of polynomial characteristic 2 8 16 16

Figure 6: Degree characteristic polynomial for all kind of manipulators

We specified the inverse kinematic problem of a number of general and special manipulators to test the validity
of our method. Neverless, we didn’t find general manipulator 5R1P or 4R2P with 16 or 8 different solutions.
But we introduce some problems with special manipulators (pb n°4,5,8,9 in annex 3) in order to proof that our
numerical method is able to solve this class of problem.

We chose (e = 107*) for all these tests. We focus on the criteria in order to detect the best criterion available for
all kind of manipulators. The main result is to show that there is one criterion (5) for which the method converges
more quickly. So in the following, we use the class criterion (n — 1) and equation (7) and equation (10) could be
written as:

Tff_leé = /‘TiIZl—l (16)
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Type | Number Manipulator Degree of the polynomial
6R 1 Diestro Manipulator [16] 16
2 21 General Manipulators'of [12] 16
3 Arc Mate Manipulator [6] 16
4 Special Manipulator 12
5 Special Manipulator 8
5R1P 6 GP66 Manipulator [17] 16
7 SHA Manipulator [18] 12
8 Special Manipulator 8
4R2P 9 Special Manipulator 4
3R3P 2 10 3-Cylindric Manipulator [19] 2

Table 1: Problem tests

Mg = Eijqﬂz - TiIZl—l (17)

Choosing particular class needs some care in computing 7"7 and T9 matrices for a given id joint. For a chosen

Class of criterion
Number of problem 0 1 2 3 4 5
1 1255 | 1220 | 1230 | 1190 | 1180 | 1150
2 994 | 986 | 955 | 943 | 934 | 912
3 1023 | 1025 | 1030 | 1007 | 987 | 980
4 1034 | 1029 | 1020 | 1015 | 1016 | 998
5 1345 | 1337 | 1312 | 1313 | 1297 | 1275
6 965 | 976 | 945 | 942 | 939 | 921
7 1089 | 1085 | 1064 | 1062 | 1058 | 1032
8 967 | 962 | 945 | 943 | 934 | 902
9 888 | 882 | 881 | 872 | 863 | 834
10 1045 | 1040 | 1031 | 992 | 991 | 984

Table 2: Number of steps for each first foundest solution
class (k), the condition that id should satisfy is:
id+k<n id=1---n (18)

If this condition is not satisfied, we have to decrease the class. So, a simple algorithm (fig. 7) allows to choose the
class of criterion. The multi-agent method allows us to find one solution of the inverse kinematics for all tested
manipulator (Problem 1---10) given by table 1. We are now going to explain a distributed method to solve all
solutions of the inverse kinematics for all serial manipulators.

5 DISTRIBUTED METHOD FOR DETERMINATION OF ALL SOLU-
TIONS OF THE INVERSE KINEMATICS

5.1 Assumptions of resolution

It seems that our multi-agent method gives the same solution when the set of joints belongs to a particular
generalized joint-space (GS). It’s very difficult to get analytical form of this space representing the generalized
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Forid=1ton
If (¢id+ k > n) then
k=k-1
end if
Choose the criterion class

End for

Figure 7: Choice of the criterion class k

associated space (GAS) of a solution.
By definition, the generalized space associated (GAS) with a solution is:

Definition 1 it exists a generalized sub-space that if an generalized point belongs to this subspace then the dis-
tributed method find always the same solution.

So, the idea is to use a learning method which allows us to increase the GAS of a solution and to find step by
step all solutions and their GAS.
We present the assumptions dealing with this method:

1. The generalized joint-space is considered to be a discrete space.
2. The accuracy of each id!* joint space between two points is Agy.

3. The joint-space of the id™* joint is ;4 including joint limits. So, the total number of discrete points is:

- " Qu
N, = IntegerPartOf (igl A(]id) (19)
4. We note:
¢ ={q, -, q.}a s solution of the inverse kinematic problem

n

GAS, = H [¢7'", q"*"] its associated generalized space
i=1

5.2 Algorithm of resolution
We present a numerical algorithm in four steps.
o step 0: s =10
e step 1: Choice of initial point ( for example the zero point ) *
4 = Ginit

e step 2: Apply the distributed method and find the s'* solution
If the s solution is different of all others solution then

¢ #q Vpe[l---s—1]

The found solution is a new solution

Build its GAS,

n

GAS, =[] la"". 4]

i=1

®This choice is not very important
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s=s+1
Llse
The found solution is the same that the j'* solution
dje[l--s—1] ¢ =¢ or djefl---s—1] ¢ € GAS;
Associated Generalized Joint-space is increased
GAS; = GAS; U GAS;,
End if

e step 3: Computing

N, = Z IntegerPartOf (H %)

i=1 id=1

e step 4: Return step 1 until N, < N]

5.3 Results

We use this distributed method with all tests problems and find all solutions of the inverse kinematics for these
manipulators either general or special. We present the results (solutions, GAS) in the form given on figure 8 where
the black rectangles represents the GAS for this solution. So for all the test problems, we obtain with an ADA

Q=
\
\»
q ;nin />
Qmin
6

d; 9, d3 44 95 Yg

Figure 8: One solution of the inverse kinematic problem

program on PC Pentium at 75 Mhz with an accuracy € = 10~* the results on figure 3.

The time of resolution is high but similar to the others numerical methods which solve only the inverse kinematics
of general manipulator. We start to work to decrease it with for example centralized paradigm of communication
[20] or more learning. Neverless, this method can’t find all solutions in real time ( similar to [4]). Its main
advantages are simplicity and genericity. In fact, this method may also be applied to redundant manipulators
with or without new constraints and manipulators with closed loops [21]. We’ll work to analyse the articular space
and singularities but it’s important to understand that this distributed method is not affected by the singularities.
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Pb. Number | Time Accuracy Ag; and joint set (0;

Pb. N°1 s | Agg=---=Ags=1° Qi =---=0Qs=[—180°,1807]

Pb. N°2 2268 | Aqp=---=Agg = 1° Qi =---=0Qs=[—180°,1807]

Pb. N°3 165s | Agp =+ -=Ags = 1° Qi =---=0Qs=[—180°,1807]

Pb. N°4 89s | Agp=---=Ags=1° Qi =---=0Qs=[—180°,1807]

Pb. N°5 97s | Aqgu=---=Ags=1° Qi =---=0Qs=[—180°,1807]

Pb. N°6 177s | Agp=---=Ags = 1° Q=---=0Qs=[—180°,1807]
Ags = 0.005 Q3 [ ..2.0]

Pb. N°7 101s | Agp=---=Ags = 1° Qi =---=0Qs=[—180°,1807]
Agz = 0.005 Q3 = [0..3.0]

Pb. N°8 112s | Agg=---=Ags = 1° Q=---=0Qs=[—180°,1807]

Agy = Ags = 0.005 Q2 = Q5 = [0..3.0]

Pb. N°9 T4s | Agg=---=Ags=1° Qi =---=0Qs=[—180°,1807]
Ags = 0.005 @5 = [0 .3.0]

Pb. N°10 65s | Agp=---=Ags=1° Q=---=0Qs=[—180°,1807]

Aq = Agz = Ags = 0.005 Q1 = Q3 = Q5 = [0..1.0]

Table 3: Time of resolution and associated accuracy joint values and joint space for each problem

N

=
.
\L.
B

SOLUTION 1 SOLUTION 2 SOLUTION 3 SOLUTION 4
g
-

SOLUTION & SOLUTION B SOLUTION 7 SOLUTION &

\ -t

| [ | il /

SOLUTION 9 SOLUTION 10 SOLUTION 11 SOLUTION 12
-

- -
SOLUTION 13 SOLUTION 14 SOLUTION 15 SOLUTION 16

-

e

=
==

Figure 9: 16 solutions of the inverse kinematic of the problem n°3

6 CONCLUSION

In this paper we presented a new generic and simple numerical method to solve all solutions of the inverse
kinematics of all serial manipulators. This new method uses new concept multi-agent system from Distributed
Artificial Intelligence to solve this problem. The idea is to associate for each local joint a new system of equations
where an only joint is able to move and to approach the goal matrix. The problem of the inverse kinematics is
formulated as a non-linear distributed optimization problem, in which the kinematic parameters are computed to
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minimize the local distance between the end-effector frame and the goal frame. This new concept is applied to

solve inverse kinematics of serial manipulators and can be used to solved inverse kinematics of manipulators with

closed loops [21] or forward kinematics of parallel manipulators. Morover, this distributed method can be applied

with classical Denavit-Hartenberg or modified formalism and we obtain some new results to solve the kinematic
design from task specification.
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7 Annex 1

To prove that the joint value ¢, leads to an accurate solution of the inverse kinematics problem, we have to consider
the f" step of iterative process and the joint number id. The matrix E; represents the difference between the
term of equation 2 and ||£;|| the error between the actual position of the tool and the task goal.

By =1[1¢,-T" (20)

We assume that for joint number id to n, the joint value is computed to the f* step (qg) and for the other joints
(from 1 to id — 1), they have the last (f —1)*" step value (¢/™").

id—1 k
£y = {HTp (67" Titial) TT T H (g~ } ™ (21)

p=idtk p=k+1
id—1 k n
Ly = HT” {Tff (gl I Toied) 11 T-ilef™) —Th} (22)
p=idtk p=k+1
id—1 k
E;, = HTp {Tzlj 1(‘]“1) H Té’_l(qf;) _EZ—lTridMH}ﬂZMH (23)
p=idtk

If we note 4, = H“l LTr 1(¢/7") and Big = T, 44, and use the definition of 77 et T matricef of equation(??)
and (6), ¢ can be ertten as:

Ef = Aia {ﬂij—l(q{d) r=r — TdT} B4 (24)

The Frobenius norm of £ is:

1B = [[Asa {0l T = 7%} B (25)
This norm can have an overvalue:
1B < NAsall | T ol T2 =T | |[Bal (26)
We can deduce an overvalue of || 4;4|| and || B;4l|:
id-1
JAwll = | T Tiii(al)
p=1
id-1
Al < TT |7 el (27)
p=1
It’s obvious that:
171 (a)ll =4+ 0y + d =, (28)
So, we obtain overvalues for ||A;4]| and || B;4]|:
id—1
Il < IT 0 (29)
p:
1Bl < I 4 (30)

So,

VEfl < VKl | T (gl 77 = T

| Esl] < | Kial || Miall (31)
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with |I(id| = Hid_l

p=1

n
51? Hp:id+k+1 51?'

The relation given by equation 10 can be written for each joint. So, we have an overvalue of the error ||I;|| noted

Mg/

with

12| < Mg

M=) || || M|

p=1

Or, cach ¢/, is computed in order to minimize || M;4]|. So, we can say that:

So, for one step:

which implies that:

| Mia(aly )|
K al | Mia(gly )l

| Mia(qly)|

<
| Kial |1 Miagla)]| - <

DM < D] 1M
p=1 p=1

/ f-1
HEfH < Mg < Mg

(32)

(34)

(35)

So at each step, the overvalue Mg® of the error ||¥|| is decreasing and goes to zero which implies that the error

it-self tends to zero. This a proof of convergence of the process to one solution of the inverse kinematics.

8 Annex 2

NUM, =

DEN, =

9 Annex 3

n h n h n h n h
_2Tz’d1,1Tz’d—1171 - 2Tz’d1,4Tz'd—1L4 - 2Tz’d1,3Tz’d—113 - 27T T

td1,2"id—11 2
-2 aT’ifél—llA + 2 Sin(aid)ﬂrzlS,Sﬂlzl—lzyg -2 COS(O&Z'd)ETzleEZ_le

+2 Sin(aid)TiTZlSATifél—le +2 Sin(aid)ﬂrzls@]%—u’l -2 COS(O‘id)ETzlz,zﬂfél—uz
—2 COS(O‘id)ETZlmEZ—lM -2 COS(aid)ﬂrzlz,sﬂfél—uﬁ +2 Sin(aid)ﬂrzls,zﬂfél—uz

h . n h n h n h
—2al —2 Sln(aid)TidSATid—llA +2 COS(Ofid)EdzAﬂd—uA -2 Tid1,3Tz’d—123

td—19 4
n h n h n h : n h
-2 Ed1,4ﬂd—1274 -2 /‘Tidl,lj—vid—lzyl +2 Cos(aid)/‘ridZ,STVid—llyg -2 Sln(aid)j—vidS,B]vid—llyg

_21%1,21%—1272 -2 Sin(aid)T{le,lTZZ_m +2 COS(O‘id)ETzlz,zﬂfél—uz
+2 COS(O‘id)ETZlmEZ—lM -2 Sin(aid)ﬂrzls,zﬂfél—ug

Tigon + Tigsn + o o + Tiagg o + Tian s+ Tias s+ Tigoa

‘|‘T£l1,3 +a”+ Tﬁu,z} + /‘TZZUJ + Tz’ﬁlm + 2T£l1,4ad

—sin(@a) Tigy 4 — c08(ia) Tigs 4 + Tia_1y
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(071 a; dz
1] 20° [08]02
5 000 82 82 0.1994 0.7433 —-0.6384 3.3051
31 450 0.8 0'2 Th — —0.9531 0.2984 0.0496 —0.6083
- - B 0.2274 0.5980 0.7680 4.6235
41 30° [ 0.8 0.2 0 0 0 1
5 0° 0.8 0.2
6 | 100° | 0.8 | 0.2
91 92 93 94 95 96
20° 30° 40° 60° 30° 70°
19.296° | —1.698° | 72.432° | 58.576° | 24.085° | 77.248°
Table 4: Problem n°4
a; a; | d;
; 380 018 83 0.5634 0.6934 —-0.4491 4.3863
3 450 0 1 Th — —0.8226 0.4208 —0.3823 —1.5279
| =0.0761 0.5848 0.8075 2.3474
41 20° 0 0 0 0 1
51 30° | 0.5 1]0.8
6 | 100° | 2.2 | 0.6
6, 05 03 N Os B¢
20° | 30° 40° 60° 30° 70°
20° | 30° | 91.572° | —60° | 147.920° | 70°
Table 5: Problem n°5
(071 a; 92 dz
; 880 8; 30° 0.8 0.649 0.744 0.155 3.861
31 0° 0'7 07 Th — —0.462 0.550 —-0.693 —2.369
- - o 0.602 0.378 0.703 0.886
41 60° | 0.4 0.9 0 0 0 1
51 50° 0.3 0.4
6 | 40° | 0.8 0.9
6, do 03 N Os B¢
10° 0.6 70° 30° 40° 50°
10° 1.915 —70° 170° 40° 50°

2.045° | 0.503 39.266° 57.405° 37.523° | 57.162°
2.045° | 1.389 | —39.266° | 135.938° | 37.523% | 57.162°
39.560° | 1.745 | 134.065° 44.585° | —39.767° | 99.071°
39.560° | 2.751 | —134.065° | —47.283° | —39.767° | 99.071°

Table 6: Problem n°8
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0.3996
—0.0775 1.5085
0.9134

a; | oag f; d;
T145° | 1 0.4
sT60° To5 [ 152 0.9151  0.0537
- \ —0.0247 0.9967
3] 0° 108 03 | T =1 _44021 0.0611
480° 07 0.5 0 0
5130° | 0.6 45°
6 70° |05 0.7
0, ds 05 04 ds g
20° | 0.1 50° 10° 0.6 | 70°
30° | 0.124 | 44.154° | 15.845° | 0.29 | 70°

Table 7: Problem n°9




