
1Journal of Mechanism and Machine TheoryVol. 32 No. 7, October 1997DISTRIBUTED METHOD FOR INVERSE KINEMATICSOF ALL SERIAL MANIPULATORSS. REGNIER, F.B. OUEZDOU and P. BIDAUDLaboratoire de Robotique de ParisUniversit�e Paris 6 - Universit�e Versailles Saint-QuentinCNRS URA 177810-12 Avenue de l'Europe78140 V�elizyEmail: fregnier,fbo,bidaudg@robot.uvsq.frAbstract: This paper deals with a new numerical method to solvethe inverse kinematics of all serial, special or general, manipula-tors. This method uses new concept from Distributed Arti�cialIntelligence, multi-agent systems, which allows to distribute theresolution of this problem. This concept is used with a new formu-lation of the problem associated to each local frame. This iterativeand distributed algorithm is able to �nd all solutions of the in-verse kinematics for all kinds of manipulators (6R, 5R1P, 4R2P,3R3P). Moreover, we'll show that this method can be applied toredundant manipulators.1 INTRODUCTIONIn the last few years a new research paradigm has come into the international scienti�c area. The distributedarti�cial intelligence and multi-agent system has gained major importance as a paradigm for computer scientists.The word agent [1] is used to designate an intelligent entity, acting rationally and intentionally with respect to itsown goals and to the current state of its knowledge. We focused on distributed problem solving where tasks areinitially speci�ed and distributed among several agents. We will take advantages of the physical distribution ofthe manipulators to apply distributed problem solving for the inverse kinematic problem.This problem is to �nd a set of joint-variables values that will place the end e�ector into a given position and ori-entation. Our purpose is to �nd numerically all solutions of the inverse kinematics by a multi-agent method whichcould be applied to all serial manipulators. Our idea was to consider each body of the manipulator as an agentusefully cooperating towards the same collective purpose, which is reaching the position and the orientation of theend e�ector. Thanks to this dialogue between agents, the placing of the end e�ector is performed by successivestages. The main interest of this paper is a new numerical method to �nd all solutions for inverse kinematics ofall manipulators.The �rst part of this paper is devoted to the paradigm of distributed problem solving and after to a recalled of theproblem of the inverse kinematic. After we'll introduce a distributed method to �nd one solution of the inversekinematics. The fourth part concerns the generalization to �nd all solutions. Then, the results obtained by thisnew method are presented. In our conclusion, we have emphasized both the prospects and the limits of our method.2 DISTRIBUTEDPROBLEM SOLVINGANDMULTI-AGENT SYSTEMSUnlike the classical Arti�cial Intelligence (AI) which models the intelligent performances of one agent only, theDistributed Arti�cial Intelligence (DAI) is concerned with intelligent performances which are the product of thecooperative activity of several agents. The passage from individual performance to collective performance isconsidered not only as an extension but as an enrichment of (AI) as well.An agent is an autonomous entity which pursues an individual purpose, which can act on the environment of thesystem. It can interact with the other agents, has only an evolutive representation of the environment and canperceive the other agents ( communication, observation ). The agents have two tendencies: a social and individualtendency with mechanisms and data containing the rules of the agent internal working. Then, an agent can be



3 THE INVERSE KINEMATIC PROBLEM 2characterized by its role, speciality, aim, belief, capacities of decision, of communication and possibly of training.The term multi-agents system has been applied to any system composed of multiple interacting agents.Research in DAI has been mostly oriented towards multi-agent systems composed of sophisticated agents. Theseagents are categorized as cognitive agents, which are given the capabilities to reason about their environment, topredict future events and choose between possible actions, and exhibit goal-driven behavior. In the context ofproblem solving, this line of research is called Distributed Problem Solving (DPS).Specially, the development of the distributed problem solving framework involves the following subject:� problem decomposition: The transformation from a problem to a society of simple agents is de�ned by adecomposition scheme. Each agent is assigned to a task corresponding to a part of the problem.� behavior design: An agent's behavior corresponds to various actions and it performs to achieve its goal.� coordination: Group behavior of agents is characterized by the coordination mechanism society. For ourproblem-solving, we require for rapid convergence to improve problem-solving e�ciency� system: It follows the construction of a distributed problem solving. A society of agents are created accordingto speci�cation of the problem.So, solving complex problems is made by combining many simple solutions in an iterative manner instead ofattempting to construct a single global solution. We will take advantage of the physical distribution of themanipulators to apply distributed problem solving for the inverse kinematic problem.3 THE INVERSE KINEMATIC PROBLEMWe use classical Denavit-Hartenberg notations [17] to describe the structure of the manipulator. Each link isrepresented by the line along its joint axis and the common normal to the next joint axis. A coordinate systemis attached to each link for describing the relative arrangements of the various links. The 4 � 4 transformationmatrix relating jth coordinate system to (j � 1)th coordinate system is noted T jj�1.T jj�1 = 0BBB@ cos(�j) � cos(�j) sin(�j) sin(�j) sin(�j) aj cos(�j)sin(�j) cos(�j) cos(�j) � sin(�j) cos(�j) aj sin(�j)0 sin(�j) cos(�j) dj0 0 0 1 1CCCA =  Rjj�1 P jj�10 1 ! (1)The problem of the inverse kinematics correspond to computing the joint values �i or di (p = 1::n) where n is thenumber of joints (n <= 6) and T h the task matrix expressed in the referential frame such that:T 10T 21 � � �Tnn�1 = T h (2)The methods that calculate the solutions of this are either algebraic or numerical. The �rst algebraic completesolution has been given by Lee and Liang [2] for general 5R1P or 6R manipulators. They calculate the 16thdegree characteristic polynomial in the tangent of the half angle of one of joint variables. Raghavan and Roth [3]presented the �rst method that may be used to calculate the characteristic polynomial of all general geometry ma-nipulators using dyalitic elimination. Then, Manocha and Canny [4] and Cohley and Ovastic [5] involve symbolicpreprocessing matrix computations and a variety of numerical techniques in order to decrease the execution time ofresolution. Finally, Mavroidis and al. [6] present an e�cient algorithm that solves the inverse kinematics problemof all six degrees of freedom manipulators using symbolic computing. This 16th degree polynomial is prone tonumerical ill-conditioning when a root yielding is an angle of � [7]. However, using an another univariable, it ispossible to �nd an another characteristic polynomial. So, these algebraic methods are e�cient except if all jointvariables are equal to � or if the degree characteristic isn't minimum.Numerical iterative schema based on Newton-Raphson has been used to obtain some of the solutions of the inversekinematics [8]. However this method is known to have quadratic convergence in the neighborhood of a solution,but far from it either procedure can fail to converge. Angeles [9] proposed to apply small enough condition numberof the Jacobian and continuation method to over-step this failure. Optimization methods [10] are also used to



4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OF THE INVERSE KINEMATICS 3solve inverse kinematic problem. They used non-linear square approximation to an over determinated algebraicsystem of kinematic closure equations. But theses methods can't give all solutions. Tsai and Morgan [11] appliedcontinuation method to solve all distinct solutions for a general manipulator using six revolute joints. The contin-uation method requires a start system of equations that can readily be solved, a target system for which solutionare sought, and a path following strategy to move from the start system to the target system. This new approach[12] is reliable on problems twist angle if at least 0:1 degree.4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OFTHE INVERSE KINEMATICS4.1 Local associated equationsThe general form of inverse kinematics problem can be given in a local frame associated with the idth joint (on�g. 1): T idid�1Tnid = T hid�1 (3)with T hid�1 = (T id�10 )�1T h0 . 6= -U69 s?+x0 y0z0 yhxh zh RnR0 xn yn zn 6 3 6= -s?+ yhxh zh
zi yi RnRi xi xn yn znT ii�1 Tni

T hi�1qT 10T 21 � � �Tnn�1 = T h T idid�1Tnid = T hid�1Figure 1: Inverse kinematic problem and local associated transformationThis general form can be written in di�erent ways. If we consider that k joints between the idth and the nth jointare locked and constitute with the idth link only one link then equation (3) becomes:T idid�1T id+1id � � �T id+kid+k�1 = T hid�1T id+kn (4)So, we note: T sup = k�1Yp=0 T id+p+1id+p (5)The right term can be expressed as: T dr = T hid�1T id+kn (6)We have a general form of equation (4) depending on the class k (0 � k � n� 1) which can be written:T idid�1T sup = T dr (7)In the following section, the problem of measuring \closeness" between frames is discussed.



4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OF THE INVERSE KINEMATICS 44.2 Distance MetricsAssuming an inertial reference frame and length scale for physical space have been chosen, each frame can beassigned an element of the Euclidean group SE(3) ( also known as the homogeneous transformations ). Theproblem of precisely \closeness" between frames then reduces to the equivalent mathematical problem of de�ninga distance metrics in SE(3).Any number of arbitrary distance metrics can be de�ned [13] but certain features make the metrics more physicallymeaningfull. Since any distance metric in SE(3) combines position and orientation, one would like the metric to bescale-invariant: the distance between two frames should be invariant (up to constant scaling factor) with respectto choice of length scale for physical space. Park [14] suggests a particular left-invariant distance parameterizedby length scale that is useful for kinematic applications.In this paper, we base our measure on the Frobenius norm of a matrix kMk with a length scale L de�ned byWampler [15] such that: T1 =  R1 P10 1 ! T2 =  R2 P20 1 !d(T1; T2) = d((R1; P1); (R2; P2)) = kR1 � R2k2 + 1L2kP1 � P2k2 (8)= kRk2 + 1L2kPk2= Xij R2ij + 1L2 Xij P 2ijL = maxq kPn0 k (9)4.3 A distributed criterionIf we consider a distributed method, just one joint is able to move at each step of our approach. The general formgiven by equation (7) can be expressed by a di�erence between the two terms of the equation:Mid = M(qid; T sup; T dr; aid; �id) = T idid�1T sup � T dr (10)This matrix Mid depends on the value of the idth joint parameter (qid), all geometric parameters and the taskdata. If we consider that only the idth joint can move, we can express a value of the joint parameter that leadsmatrix Mid goes to null matrix. In this case, the left term of equation (7) tends to the right one.Using the Frobenius norm of Mid, we obtain:jjMidjj = 2�id(DEN� � sin(�id) +NUM� � cos(�id)) + (1� �id)(did � dm)2 + CST� (11)with �id = 1 if the joint is revolute and �id = 0 if the joint is prismatic and DEN�, NUM�, CST� and dm expressedin annex 2.We have to consider the minimization of this norm in order to approach our goal.@jjMidjj@qid = 2�id(�DEN� � cos(�id) +NUM� � sin(�id)) + 2(1� �id)(did � dm) (12)In this case the expression given by equation (12) leads to the extremum values of qid by writing @kMidk@qid = 0.qmid = �id�mid + (1� �id)dmid (13)with �mid = arctanNUM�DEN� (14)dmid = dm (15)It's obvious that these values give minimum value of jjMidjj due to the fact that for the revolute joint, tangentfunction is an increasing one and for a prismatic joint the coe�cient of (d) in equation (12) is equal to 1:0 (strictlypositive).



4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OF THE INVERSE KINEMATICS 54.4 Resolution algorithmWe consider each body of the manipulator as an agent. The multi-agent system models the manipulator in thisway.Each agent id possesses the following knowledge:� a local task matrix T hid�1 which represents its local goal matrix� its 4 � 4 transformation matrix T idid�1 relating the (id)th joint and the (id � 1)th joint which expresses itspotential action about the world� the 4 � 4 transformation matrix relating the (id � 1)th joint and the �rst joint T id�10 which represents itsposition in the absolute frame.
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AGENT ..

Figure 2: Manipulator and proposed modelisation by a multi-agent systemWe consider a distributed paradigm of communication where the agents could only communicate with the previousor next agent (on �g. 2). Each idth joint or agent must compute the value in order to minimize the norm of thematrix Mid. The elements of matrices T up et T dr depend on the others joints and task data.So, the iterative method follows this algorithm with � the accuracy of the distributed method given by the user.Loop until kT 10 T 21 � � �Tnn�1 � T hk � �For id = n � � �1 loopAgent id computes (T dr; Tup)Agent id computes qidEnd forEnd loopFigure 3: Distributed resolution algorithm4.5 The criterion classFor a serial manipulator, we show that di�erent classes of minimization criterion can be chosen. This choice ofthe class is important in the algorithm because the forms of the equation with T up and T dr are di�erent. Theclass criterion k (0 � k � n) �xes the number of joints beyond the id joint which are assumed to be locked.



4 DISTRIBUTED METHOD FOR COMPUTING ONE SOLUTION OF THE INVERSE KINEMATICS 6In order to understand that criteria are di�erent, we'll take a simple example with a planar manipulator formedby three revolute joints. We have three possible classes k (k � 3) of criteria for this manipulator.Criterion calculus Mid of the joint id1 M1 = T 10 � T hT 13 M2 = T 21 � T h1 T 23 M3 = T 32 � T h22 M1 = T 10T 21 � T hT 23 M2 = T 21T 32 � T h2 M3 = T 32 � T h23 M1 = T 10T 31 � T h M2 = T 21T 32 � T h2 M1 = T 32 � T h2Figure 4: calculus of Mid for the planar manipulatorFor one step of the method, we try these criteria with the �rst joint on �g. 5: The proposed results by the three� Initial State: �1 = 0o �2 = 20o �3 = 40o� Final State:Criterion 3: �1 =37:87o �2 = 20o �3 = 40oCriterion 2: �1 =34:45o �2 = 20o �3 = 40oCriterion 1: �1 =19:77o �2 = 20o �3 = 40o� Task matrix T h = 24 0:371 0:594 1:2790:590 0:911 �2:00:0 0:0 1:0 35
Two solutions

Initial state

Criterion 1

Criterion 2

Criterion 3Figure 5: Planar manipulator with three classes of criterioncriteria are di�erent. With a serial manipulator, we have n di�erent classes of criterion. So we'll propose to studythe choice of a criterion in the next paragraph.4.6 Choice of the criterion classIf some special conditions of the Denavit and Hartenberg parameters exist, then the manipulator is said tohave a special geometry. If, in addition, these special conditions cause a manipulator to have a lower degreecharecteristices polynomial than the general manipulator of the same type, we call this manipulator specialmanipulator otherwise the manipulator is called general manipulator [6].Type of manipulators 3R3P 4R2P 5R1P 6RDegree of polynomial characteristic 2 8 16 16Figure 6: Degree characteristic polynomial for all kind of manipulatorsWe speci�ed the inverse kinematic problem of a number of general and special manipulators to test the validityof our method. Neverless, we didn't �nd general manipulator 5R1P or 4R2P with 16 or 8 di�erent solutions.But we introduce some problems with special manipulators (pb no4; 5; 8; 9 in annex 3) in order to proof that ournumerical method is able to solve this class of problem.We chose (� = 10�4) for all these tests. We focus on the criteria in order to detect the best criterion available forall kind of manipulators. The main result is to show that there is one criterion (5) for which the method convergesmore quickly. So in the following, we use the class criterion (n� 1) and equation (7) and equation (10) could bewritten as: T idid�1Tnid = T hid�1 (16)



5 DISTRIBUTEDMETHOD FORDETERMINATION OF ALL SOLUTIONS OF THE INVERSE KINEMATICS7Type Number Manipulator Degree of the polynomial6R 1 Diestro Manipulator [16] 162 21 General Manipulators1of [12] 163 Arc Mate Manipulator [6] 164 Special Manipulator 125 Special Manipulator 85R1P 6 GP66 Manipulator [17] 167 SHA Manipulator [18] 128 Special Manipulator 84R2P 9 Special Manipulator 43R3P 2 10 3-Cylindric Manipulator [19] 2Table 1: Problem testsMid = T idid�1Tnid � T hid�1 (17)Choosing particular class needs some care in computing T up and T dr matrices for a given id joint. For a chosenClass of criterionNumber of problem 0 1 2 3 4 51 1255 1220 1230 1190 1180 11502 994 986 955 943 934 9123 1023 1025 1030 1007 987 9804 1034 1029 1020 1015 1016 9985 1345 1337 1312 1313 1297 12756 965 976 945 942 939 9217 1089 1085 1064 1062 1058 10328 967 962 945 943 934 9029 888 882 881 872 863 83410 1045 1040 1031 992 991 984Table 2: Number of steps for each �rst foundest solutionclass (k), the condition that id should satisfy is:id+ k � n id = 1 � � �n (18)If this condition is not satis�ed, we have to decrease the class. So, a simple algorithm (�g. 7) allows to choose theclass of criterion. The multi-agent method allows us to �nd one solution of the inverse kinematics for all testedmanipulator (Problem 1 � � �10) given by table 1. We are now going to explain a distributed method to solve allsolutions of the inverse kinematics for all serial manipulators.5 DISTRIBUTED METHOD FOR DETERMINATION OF ALL SOLU-TIONS OF THE INVERSE KINEMATICS5.1 Assumptions of resolutionIt seems that our multi-agent method gives the same solution when the set of joints belongs to a particulargeneralized joint-space (GS). It's very di�cult to get analytical form of this space representing the generalized



5 DISTRIBUTEDMETHOD FORDETERMINATION OF ALL SOLUTIONS OF THE INVERSE KINEMATICS8For id = 1 to nIf (id+ k > n) thenk = k � 1end ifChoose the criterion classEnd forFigure 7: Choice of the criterion class kassociated space (GAS) of a solution.By de�nition, the generalized space associated (GAS) with a solution is:De�nition 1 it exists a generalized sub-space that if an generalized point belongs to this subspace then the dis-tributed method �nd always the same solution.So, the idea is to use a learning method which allows us to increase the GAS of a solution and to �nd step bystep all solutions and their GAS.We present the assumptions dealing with this method:1. The generalized joint-space is considered to be a discrete space.2. The accuracy of each idth joint space between two points is �qid.3. The joint-space of the idth joint is Qid including joint limits. So, the total number of discrete points is:N tp = IntegerPartOf nYid=1 Qid�qid! (19)4. We note: qs = fq1; � � � ; qng a sth solution of the inverse kinematic problemGASs = nYi=1 �qmini ; qmaxi � its associated generalized space5.2 Algorithm of resolutionWe present a numerical algorithm in four steps.� step 0: s = 0� step 1: Choice of initial point ( for example the zero point ) 3q = qinit� step 2: Apply the distributed method and �nd the sth solutionIf the sth solution is di�erent of all others solution thenqs 6= qp 8p 2 [1 � � �s� 1]The found solution is a new solutionBuild its GASs GASs = nYi=1 �qmini ; qmaxi �3This choice is not very important



5 DISTRIBUTEDMETHOD FORDETERMINATION OF ALL SOLUTIONS OF THE INVERSE KINEMATICS9s = s+ 1Else The found solution is the same that the jth solution9j 2 [1 � � �s� 1] qs = qj or 9j 2 [1 � � �s � 1] qs 2 GASjAssociated Generalized Joint-space is increasedGASj = GASj[GASsEnd if� step 3: Computing Np = sXi=1 IntegerPartOf nYid=1 qmaxid � qminid�qid !� step 4: Return step 1 until Np < N tp5.3 ResultsWe use this distributed method with all tests problems and �nd all solutions of the inverse kinematics for thesemanipulators either general or special. We present the results (solutions, GAS) in the form given on �gure 8 wherethe black rectangles represents the GAS for this solution. So for all the test problems, we obtain with an ADA
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Figure 8: One solution of the inverse kinematic problemprogram on PC Pentium at 75 Mhz with an accuracy � = 10�4 the results on �gure 3.The time of resolution is high but similar to the others numerical methods which solve only the inverse kinematicsof general manipulator. We start to work to decrease it with for example centralized paradigm of communication[20] or more learning. Neverless, this method can't �nd all solutions in real time ( similar to [4]). Its mainadvantages are simplicity and genericity. In fact, this method may also be applied to redundant manipulatorswith or without new constraints and manipulators with closed loops [21]. We'll work to analyse the articular spaceand singularities but it's important to understand that this distributed method is not a�ected by the singularities.



6 CONCLUSION 10Pb. Number Time Accuracy �qi and joint set QiPb. N o1 85 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]Pb. N o2 226 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]Pb. N o3 165 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]Pb. N o4 89 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]Pb. N o5 97 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]Pb. N o6 177 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]�q3 = 0:005 Q3 = [0::2:0]Pb. N o7 101 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]�q3 = 0:005 Q3 = [0::3:0]Pb. N o8 112 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]�q2 = �q5 = 0:005 Q2 = Q5 = [0::3:0]Pb. N o9 74 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]�q2 = 0:005 Q2 = [0::3:0]Pb. N o10 65 s �q1 = � � � = �q6 = 1o Q1 = � � �= Q6 = [�180o; 180o]�q1 = �q3 = �q5 = 0:005 Q1 = Q3 = Q5 = [0::1:0]Table 3: Time of resolution and associated accuracy joint values and joint space for each problem

Figure 9: 16 solutions of the inverse kinematic of the problem no36 CONCLUSIONIn this paper we presented a new generic and simple numerical method to solve all solutions of the inversekinematics of all serial manipulators. This new method uses new concept multi-agent system from DistributedArti�cial Intelligence to solve this problem. The idea is to associate for each local joint a new system of equationswhere an only joint is able to move and to approach the goal matrix. The problem of the inverse kinematics isformulated as a non-linear distributed optimization problem, in which the kinematic parameters are computed to
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7 ANNEX 1 127 Annex 1To prove that the joint value qm leads to an accurate solution of the inverse kinematics problem, we have to considerthe f th step of iterative process and the joint number id. The matrix Ef represents the di�erence between theterm of equation 2 and kEfk the error between the actual position of the tool and the task goal.Ef = nYp=1T pp�1 � T h (20)We assume that for joint number id to n, the joint value is computed to the f th step (qfp ) and for the other joints(from 1 to id� 1), they have the last (f � 1)th step value (qf�1p ).Ef = 8<:id�1Yp=1 T pp�1(qf�1p ) T idid�1(qfid) kYp=id+k T pp�1(qfp ) nYp=k+1T pp�1(qf�1p )9=;� T h (21)Ef = id�1Yp=1 T pp�1(qf�1p )8<:T idid�1(qfid) kYp=id+k T pp�1(qfp ) nYp=k+1T pp�1(qf�1p ) � T h9=; (22)Ef = id�1Yp=1 T pp�1(qf�1p )8<:T idid�1(qfid) kYp=id+k T pp�1(qfp ) � T hid�1T id+k+1n 9=;Tnid+k+1 (23)If we note Aid = Qid�1p=1 T pp�1(qf�1p ) and Bid = Tnid+k+1 and use the de�nition of T sup et T dr matricef of equation(??)and (6), Ef can be written as: Ef = Aid nT idid�1(qfid) T sup � T droBid (24)The Frobenius norm of Ef is: kEfk = Aid nT idid�1(qfid) T sup � T droBid (25)This norm can have an overvalue: kEfk � kAidk T idid�1(qfid) T sup � T dr kBidk (26)We can deduce an overvalue of kAidk and kBidk:kAidk = id�1Yp=1 T idid�1(qfid)kAidk � id�1Yp=1 T idid�1(qfid) (27)It's obvious that: T pp�1(qp) = 4+ a2p + d2p = �p (28)So, we obtain overvalues for kAidk and kBidk:kAidk � id�1Yp=1 �p (29)kBidk � nYp=id+k+1 �p (30)So, kEfk � jKidj T idid�1(qfid) T sup � T dr kEfk � jKidj kMidk (31)



8 ANNEX 2 13with jKidj = Qid�1p=1 �p Qnp=id+k+1 �p.The relation given by equation 10 can be written for each joint. So, we have an overvalue of the error kEfk notedMgf : kEfk �Mgf (32)with M fg = nXp=1 jKpj kM fp kOr, each qfid is computed in order to minimize kMidk. So, we can say that:kMid(qfid)k � kMid(qf�1id )kjKidj kMid(qfid)k � jKidj kMid(qf�1id )k (33)So, for one step: nXp=1 jKpj kM fp k � nXp=1 jKpj kM f�1p k (34)which implies that: kEfk �M fg �M f�1g (35)So at each step, the overvalue Mgs of the error kEsk is decreasing and goes to zero which implies that the errorit-self tends to zero. This a proof of convergence of the process to one solution of the inverse kinematics.8 Annex 2NUM1 = �2Tnid1;1T hid�11;1 � 2Tnid1;4T hid�11;4 � 2Tnid1;3T hid�11;3 � 2Tnid1;2T hid�11;2�2 aT hid�11;4 + 2 sin(�id)Tnid3;3T hid�12;3 � 2 cos(�id)Tnid2;4T hid�12;4+2 sin(�id)Tnid3;4T hid�12;4 + 2 sin(�id)Tnid3;1T hid�12;1 � 2 cos(�id)Tnid2;2T hid�12;2�2 cos(�id)Tnid2;1T hid�12;1 � 2 cos(�id)Tnid2;3T hid�12;3 + 2 sin(�id)Tnid3;2T hid�12;2DEN1 = �2 aT hid�12;4 � 2 sin(�id)Tnid3;4T hid�11;4 + 2 cos(�id)Tnid2;4T hid�11;4 � 2Tnid1;3T hid�12;3�2Tnid1;4T hid�12;4 � 2Tnid1;1T hid�12;1 + 2 cos(�id)Tnid2;3T hid�11;3 � 2 sin(�id)Tnid3;3T hid�11;3�2Tnid1;2T hid�12;2 � 2 sin(�id)Tnid3;1T hid�11;1 + 2 cos(�id)Tnid2;2T hid�11;2+2 cos(�id)Tnid2;1T hid�11;1 � 2 sin(�id)Tnid3;2T hid�11;2�1 = Tnid2;1 + Tnid3;1 + Tnid2;2 + Tnid3;2 + Tnid2;3 + Tnid3;3 + Tnid2;4+Tnid1;3 + a2 + Tnid1;4 + Tnid1;2 + Tnid1;1 + 2Tnid1;4adrmid = � sin(�id)Tnid2;4 � cos(�id)Tnid3;4 + T hid�13;49 Annex 3



9 ANNEX 3 14�i ai di1 20o 0:8 0:22 0o 0.8 0.23 45o 0.8 0.24 30o 0.8 0.25 0o 0.8 0.26 100o 0.8 0.2 T h = 2664 0:1994 0:7433 �0:6384 3:3051�0:9531 0:2984 0:0496 �0:60830:2274 0:5980 0:7680 4:62350 0 0 1 3775�1 �2 �3 �4 �5 �620o 30o 40o 60o 30o 70o19:296o �1:698o 72:432o 58:576o 24:085o 77:248oTable 4: Problem no4�i ai di1 20o 0:8 0:22 30o 1 0.73 45o 0 14 20o 0 05 30o 0.5 0.86 100o 2.2 0.6 T h = 2664 0:5634 0:6934 �0:4491 4:3863�0:8226 0:4208 �0:3823 �1:5279�0:0761 0:5848 0:8075 2:34740 0 0 1 3775�1 �2 �3 �4 �5 �620o 30o 40o 60o 30o 70o20o 30o 91:572o �60o 147:920o 70oTable 5: Problem no5�i ai �i di1 60o 0:7 0:82 90o 0.5 30o3 0o 0.7 0.74 60o 0.4 0.95 50o 0.3 0.46 40o 0.8 0.9 T h = 2664 0:649 0:744 0:155 3:861�0:462 0:550 �0:693 �2:3690:602 0:378 0:703 0:8860 0 0 1 3775�1 d2 �3 �4 �5 �610o 0:6 70o 30o 40o 50o10o 1:915 �70o 170o 40o 50o2:045o 0:503 39:266o 57:405o 37:523o 57:162o2:045o 1:389 �39:266o 135:938o 37:523o 57:162o39:560o 1:745 134:065o 44:585o �39:767o 99:071o39:560o 2:751 �134:065o �47:283o �39:767o 99:071oTable 6: Problem no8



9 ANNEX 3 15�i ai �i di1 45o 1 0:42 60o 0:5 45o3 0o 0:8 0:34 80o 0:7 0:55 30o 0:6 45o6 70o 0:5 0:7 T h = 2664 0:9151 0:0537 0:3996 3:2785�0:0247 0:9967 �0:0775 1:5085�0:4021 0:0611 0:9134 2:58060 0 0 1 3775�1 d2 �3 �4 d5 �620o 0:1 50o 10o 0:6 70o30o 0:124 44:154o 15:845o 0:29 70oTable 7: Problem no9


