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Abstract

Passive sensing of human hand and limbmotion is important for a wide range of applications
from human-computer interaction to athletic performance measurement. High degree of
freedom articulated mechanisms like the human hand are di�cult to track because of their
large state space and complex image appearance. This article describes a model-based hand
tracking system, called DigitEyes, that can recover the state of a 27 DOF hand model from
gray scale images at speeds of up to 10 Hz. We employ kinematic and geometric hand
models, along with a high temporal sampling rate, to decompose global image patterns into
incremental, local motions of simple shapes. Hand pose and joint angles are estimated from
line and point features extracted from images of unmarked, unadorned hands, taken from
one or more viewpoints. We present some preliminary results on a 3D mouse interface based
on the DigitEyes sensor.
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1 Introduction

Sensing of human hand and limbmotion is important in applications from Human-Computer
Interaction (HCI) to athletic performance measurement. Current commercially available
solutions are invasive, and require the user to don gloves [19] or wear targets [10]. This paper
describes a noninvasive visual hand tracking system, calledDigitEyes. We have demonstrated
hand tracking at speeds of up to 10 Hz using line and point features extracted from gray
scale images of unadorned, unmarked hands.

Most previous real-time visual 3D tracking work has addressed objects with 6 or 7 spatial
degrees of freedom (DOF)[7, 9]. We present tracking results for branched kinematic chains
with as many as 27 DOF (in the case of a human hand model). We show that simple, useful
features can be extracted from natural images of the human hand. While di�cult problems
still remain in tracking through occlusions and across complicated backgrounds, these results
demonstrate the potential of vision-based human motion sensing.

This paper has two parts. First, we describe the 3D visual tracking problem for objects
with kinematic chains. Second, we show experimental results of tracking a 27 DOF hand
model using two cameras, and describe a simple 3D mouse interface using a single camera.

2 The Articulated Mechanism Tracking Problem

Visual tracking is a sequential estimation problem: given an image sequence, recover the
time-varying state of the world [7, 9, 18]. The solution has three basic components: state
model, feature measurement, and state estimation. The state model speci�es a mapping
from a state space, which characterizes all possible spatial con�gurations of the mechanism,
to a feature space. For the hand, the state space encodes the pose of the palm (seven states
for quaternion rotation and translation) and the joint angles of the �ngers (four states per
�nger, �ve for the thumb), and is mapped to a set of image lines and points by the state
model. A state estimate is calculated for each image by inverting the model to obtain the
state vector that best �ts the measured features. Features for the unmarked hand consist of
�nger link and tip occluding edges, which are extracted by local image operators.

Articulated mechanisms are more di�cult to track than a single rigid object for two
reasons: their state space is larger and their appearance is more complicated. First, the state
space must represent additional kinematic DOFs not present in the single-object case, and
the resulting estimation problem is more expensive computationally. In addition, kinematic
singularities are introduced that are not present in the six DOF case. Singularities arise
when a small change in a given state has no e�ect on the image features. They are currently
dealt with by stabilizing the estimation algorithm. Second, high DOF mechanisms produce
complex image patterns as their DOFs are exercised. This is illustrated in Fig. 1, where
changes in the pose of a model hand are shown to yield dramatic changes in its silhouette.
People exploit this observation in making shapes from shadows cast by their hands.

To reduce the complexity of the hand motion, we employ a high image acquisition rate
(10-15 Hz depending on the model) which limits the change in the hand state, and therefore
image feature location, between frames. As a result, state estimation and feature mea-
surement are local, rather than global, search problems. In the state space, we exploit this
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Figure 1: Changes in the hand state yield signi�cant changes in appearance, as these four
con�gurations of the model hand illustrate. Views (a) and (b) di�er only in the pose of the
hand, as do (c) and (d); while views (a) and (c) di�er only in the values of the �nger joint
angles. Finger links are modeled with cylinders, and �nger tips with hemispheres.

locality by linearizing the nonlinear state model around the previous estimate. The resulting
linear estimation problem produces state corrections which are integrated over time to yield
an estimated state trajectory. In the image, the projection of the previous estimate through
the state model yields coordinate frames for feature extraction. We currently assume that
the closest available feature is the correct match, which limits our system to scenes without
occlusions or complicated backgrounds.

Previous work on tracking general articulated objects includes [18, 12, 11]. In [18],
Yamamoto and Koshikawa describe a system for human body tracking using kinematic and
geometric models. They give an example of tracking a single human arm and torso using
optical 
ow features. Pentland and Horowitz [12] give an example of tracking the motion
of a human �gure using optical 
ow and an articulated deformable model. In [6], Dorner
describes a system for interpreting American Sign Language from image sequences of a single
hand. Dorner's system uses the full set of the hand's DOFs, and employs a glove with colored
markers to simplify feature extraction. A much earlier system by O'Rourke and Badler [11]
analyzed human body motion using constraint propagation. In other hand-speci�c work,
Kang and Ikeuchi describe a range sensor-based approach to hand pose estimation [8], used
in their Assembly Plan from Observation system.

Two recent works [14, 4] have addressed pose estimation of articulated objects from a
single view. Dhome et. al. recover the pose of an industrial robot arm from a single image
and a CAD model [4]. They use a kinematic representation that decouples rotation and
translation to allow for more e�cient global search of the state space. In [14], Shakunaga
derives constraints on joint angles from point and line measurements and gives an algorithm
for pose recovery.

In addition to this work on articulated object tracking, several authors have applied gen-
eral motion techniques to human motion analysis. In contrast to DigitEyes, these approachs
analyze a subset of the total hand motion, such as a set of gestures [2] or the rigid motion of
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the palm [1]. Darrell and Pentland describe a system for learning and recognizing dynamic
hand gestures in [2]. Their approach avoids the problems of hand modeling, but doesn't
address 3D tracking. In [1], Blake et. al. describe a real-time contour tracking system that
can follow the silhouette of a rigid hand under an a�ne motion model.

None of these earlier approachs have demonstrated tracking results for the full state of a
complicated mechanism like the human hand, using natural image features. Although there
has been a signi�cant amount of gesture recognition work on unmarked hand images, these
approachs don't produce 3D motion estimates, and it would be di�cult to apply them to
problems like the 3D mouse interface described in Subsect. 6.1. See [16] for several other
examples of novel user interfaces based on a whole-hand sensor.

In order to apply the DigitEyes system to speci�c applications, such as HCI, two practical
requirements must be met. First, the kinematics and geometry of the target hand must be
known in advance, so that a state model can be constructed. Second, before local hand
tracking can begin, the initial con�guration of the hand must be known. We achieve this in
practice by requiring the subject to place their hand in a certain pose and location to initiate
tracking. A 3D mouse interface based on visual hand tracking is presented in Subsect. 6.1.

In the sections that follow, we describe the DigitEyes articulated object tracking system
in more detail, along with the speci�c modeling choices required for hand tracking.

3 State Model for Articulated Mechanisms

The state model encodes all possible mechanism con�gurations and their corresponding
image feature patterns as a two-part mapping between state and feature spaces. The �rst
part is a kinematic model which captures all possible spatial link positions, while the second
part is a feature model which describes the image appearance of each link shape.

3.1 Kinematic Model: Application to the Human Hand

We model kinematic chains, like the �nger, with the Denavit-Hartenburg (DH) representa-
tion, which is widely used in robotics [15]. In this representation, each �nger link has an
attached link coordinate frame, and the transformations between these frames model the
kinematics. Since feature models require geometric information not captured in the kine-
matics, the DH description of each link is augmented with an additional transform from the
link frame to a shape frame. A solid model in the shape frame generates features through
projection into the image.

We model the hand as a collection of 16 rigid bodies: 3 individual �nger links (called
phalanges) for each of the �ve digits, and a palm. From a kinematic viewpoint, the hand
consists of multi-branched kinematic chains attached to a six DOF base. We make several
simplifying assumptions in modeling the hand kinematics. First, we assume that each of
the four �ngers of the hand are planar mechanisms with four degrees of freedom (DOF).
The abduction DOF moves the plane of the �nger relative to the palm, while the remaining
3 DOF determine the �nger's con�guration within the plane. Fig. 2 illustrates the planar
�nger model. Each �nger has an anchor point, which is the position of its base joint center
in the frame of the palm, which is assumed to be rigid. The base joint is the one farthest
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Figure 2: Kinematic models, illustrated for fourth �nger and thumb. The arrows illustrate
the joint axes for each link in the chain.

(kinematically) from the �nger tip. We use a four parameter quaternion representation of the
palm pose, which eliminates rotational singularities at the cost of a redundant parameter.
The total hand pose is described by a 28 dimensional state vector.

The 3D shape of the hand is determined by the shape of its links and palm. These shapes
can be given by solid models, or a class of deformable models as in [12]. Shape models are
described with respect to the shape frame, which is positioned relative to the link coordinate
frame. In general, the DH transform between two links is series of four transforms

T i+1
i = Rotz;�iTransz;diTransx;ai

Rotx;�i
: (1)

In our framework, the shape frame is located after the �rst transform, and so the kinematic
to shape frame transform is just Rotz;�i .

The thumb is the most di�cult digit to model, due to its great dexterity and intricate
kinematics. We currently employ the thumb model used in Rijpkema and Girard's grasp
modeling system [13] (see Fig. 2). They were able to obtain realistic animations of human
grasps using a �ve DOF model. The DH parameters for the �rst author's right hand, used
in the experiments, can be found in Table 1.

Real �ngers deviate from our modeling assumptions in three ways. First, most �ngers
deviate slightly from planarity. This deviation could be modeled with additional kinematic
transforms, but we have found the planar approximation to be adequate in practice. Second,
the last two joints of the �nger, counting from the palm outwards, are driven by the same
tendon and are not capable of independent actuation. It is simpler to model the DOF
explicitly, however, than to model the complicated angular relationship between the two
joints. The third and most signi�cant modeling error is change in the anchor points during
motion. We have modeled the palm as a rigid body, but in reality it can 
ex. In gripping
a baseball, for example, the palm will conform to its surface, causing the anchor points to
deviate from their rest position by tens of millimeters. Fortunately, for free motions of the
hand in space, the deviation seems to be small enough to be tolerated by our system.

The modeling framework we employ is general. To track an arbitrary articulated struc-
ture, one simply needs its DH parameters and a set of shape models that describe its visual
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Frame Geometry � d a � shape (in mm) Next
0 Palm 0.0 0.0 0.0 0.0 x 56.0, y 86.0, z 15.0 1 8 15 22 29
1 �=2 0.0 38.0 ��=2 2
2 0.0 -31.0 0.0 �=2 3
3 q7 0.0 0.0 �=2 4
4 Finger 1 Link 0 q8 0.0 45.0 0.0 Rad 10.0 5
5 Finger 1 Link 1 q9 0.0 26.0 0.0 Rad 10.0 6
6 Finger 1 Link 2 q10 0.0 24.0 0.0 Rad 9.0 7
7 Finger 1 Tip 0.0 0.0 0.0 0.0 rad 9.0 {
...

...
...

...
...

...
...

...
29 ��=2 15.0 43.0 ��=2 30
30 �� 38.0 0.0 0.0 31
31 q23 0.0 0.0 �=2 32
32 Thumb Link 0 q24 0.0 46.0 ��=2 Rad 14.0 33
33 q25 0.0 0.0 �=2 34
34 Thumb Link 1 q25 0.0 34.0 0.0 Rad 10.0 35
35 Thumb Link 2 q26 0.0 25.0 0.0 Rad 10.0 36
36 Thumb Tip 0.0 0.0 0.0 0.0 Rad 8.0 {

Table 1: Kinematic and shape parameters for the �rst �nger and thumb of the �rst author's
right hand, which are used in the experiments. State variables are denoted qi, where q0-q3
contain the quaternion for palm rotation and q4-q6 contain palm translation. The \Next"
�eld gives the number of the next frame in the kinematic chain. The other three �ngers are
similar to the �rst.

appearance. Within the subproblem of hand tracking, this allows us to develop a suite of
hand models whose DOFs are tailored to speci�c applications.

3.2 Feature Model: Description of Hand Images

The output of the hand state model is a set of features consisting of lines and points generated
by the projection of the hand model into the image plane. Each �nger link, modeled by a
cylinder, generates a pair of lines in the image corresponding to its occlusion boundaries.
The bisector of these lines, which contains the projection of the cylinder central axis, is used
as the link feature. The link feature vector [a b �] gives the parameters of the line equation
ax+ by� � = 0. Using the central axis line as the link feature eliminates the need to model
the cylinder radius or the slope of the pair of lines relative to the central axis, which is often
signi�cant near the �nger tips. We use the entire line because the endpoints are di�cult to
measure in practice. Fig. 3 shows two link feature lines extracted from the �rst two links of
a �nger.

Each �nger tip, modeled by a hemisphere, generates a point feature by projection of the
center into the image. The �nger tip feature vector [x y] gives the tip position in image
coordinates, as illustrated in Fig. 3. The total hand appearance is described by a (3m+2n)-
dimensional vector, made up of link and tip features, where m and n are the number of
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Figure 3: Features used in hand tracking are illustrated for �nger links 1 and 2, and the tip.
Each in�nite line feature is the projection of the �nger link central axis.

�nger links and tips, respectively, in the model.
Other feature choices for hand tracking are possible, but the occlusion contours are the

most powerful cue. Hand albedo tends to be uniform, making it di�cult to use correlation
features. Shading is potentially valuable, but the complicated illuminance and self-shadowing
of the hand make it di�cult to use.

4 Feature Measurement: Detection of Finger Links

and Tips

Local image-based trackers are used to measure hand features. These trackers are the pro-
jections of the spatial hand geometry into the image plane, and they serve to localize and
simplify feature extraction. A �nger link tracker, drawn as a \T"-shape, is depicted along
with its measured line feature in Fig. 4. The stem of the \T" is the projection of the cylinder
center axis into the image. The image sampling rate ensures that the true feature location
is near the projected tracker.

Once the link tracker has been positioned, line features are extracted by sampling the
image in slices perpendicular to the central axis. For each slice, the derivative of the 1D
image pro�le is computed. Peaks in the derivative with the correct sign correspond to the
intersection of the slice with the �nger silhouette. The extracted intensity pro�le and peak
locations for a single slice are illustrated in Fig. 5. Line �tting to each set of two or more
detected intersections gives a measurement of the projected link axis. If only one silhouette
line is detected for a given link, the cylinder radius can be used to extrapolate the axis line
location. Currently, the length of the slices (search window) is �xed by hand. Finger tip
positions are measured through a similar procedure.

Using local trackers and sampling along lines in the image reduces the pixel processing
requirements of feature measurement, permitting fast tracking.
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5 State Estimation for Articulated Mechanisms

State estimation proceeds by making incremental state corrections between frames. One cy-
cle of the estimation algorithm goes as follows: The current state estimate is used to predict
feature locations in the next frame and position feature trackers. After image acquisition
and feature extraction, measured and predicted feature values are compared to produce a
state correction, which is added to the current estimate to obtain a new state estimate. The
di�erence between measured and predicted states is modeled by a residual vector, and the
state correction is obtained by minimizing its magnitude squared. A high image sampling
rate allows us to linearize the nonlinear mapping from state to features around an operat-
ing point, which is recomputed at each frame, to obtain a linear least squares problem in
the model Jacobian. The following subsections describe the residual model and estimation
algorithm in detail.

5.1 Residual Model: Link and Tip Image Alignment

The tip residual measures the Euclidean distance in the image between predicted (ci) and
measured (ti) tip positions. The residual for the ith tip feature is a vector in the image
plane de�ned by

vi(q) = ci(q)� ti ; (2)

where ci is the projection of the tip center into the image as a function of the hand state.
The link residual is a scalar that measures the deviation of the projected cylinder axis

from the measured feature line. It is illustrated for a single �nger link in Fig. 4. The
residual at a point along the axis equals the perpendicular distance to the feature line. We
incorporate the orthographic camera model into the residual equation by settingm = [a b 0]t

and writing

li(q) = mtpi(q)� � ; (3)

where pi(q) is the 3D position of a point on the cylinder link in camera coordinates, and
[a b �] are the line feature parameters. The total link residual consists of one or more point
residuals along the cylinder axis (at the base and tip), each given by (3). Note that both
residuals are linear in the model point positions.

The feature residuals for each link and tip in the model are concatenated into a single
residual vector, R(q). If the magnitude of the residual vector is zero, the hand model is
perfectly aligned with the image data.

5.2 Estimation Algorithm: Nonlinear Least Squares

The state correction is obtained from the residual vector by minimizing

H(q) =
1

2
kR(q)k2 : (4)

We employ a modi�ed Gauss-Newton (GN) algorithm to solve this nonlinear least squares
problem [3]. The source of nonlinearity in the state model for articulated mechanisms is
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Figure 4: Image trackers, detected features, and residuals for a link and a tip are shown
using the image from Fig. 3. Slashed lines denote the link residual error between the T-
shaped tracker and its extracted line measurement. Similarly, the tip tracker (carat shape)
is connected to its point feature (cross) by a residual vector.

trigonometric terms in the forward kinematic model. The other source of nonlinearity,
inverse depth coe�cients in the perspective camera model, is absent in our orthographic
formulation.

Let R(qj) be the residual vector for image j. The GN state update equation is given by

qj+1 = qj � [JtjJj + S]�1JtjRj ; (5)

where Jj is the Jacobian matrix for the residual Rj, both of which are evaluated at qj. S
is a constant diagonal conditioning matrix used to stabilize the least squares solution. Jj
is formed from the link and tip residual Jacobians. The same basic approach was used by
Lowe in his rigid body tracking system [9].

Other tracking work has employed Kalman Filtering to incorporate dynamic constraints
into state estimation [1, 7, 17, 5]. The update rule in (5) can be viewed as the limiting case
of this �lter, in which the estimate is a function of the measurements alone. The complicated
dynamics of the hand and its ability to accelerate rapidly weaken the e�ectiveness of dynamic
constraints (compared, for example, to satellite tracking problems). Time smoothing may
be useful in some applications, but the kinematic hand model provides a much stronger
constraint on feature locations and potential matchs.

In the remainder of this section, we derive the link and tip Jacobians and discuss their
computation. To calculate the link Jacobian we di�erentiate (3) with respect to the state
vector, obtaining

@li(q)

@q
= mt@pi(q)

@q
: (6)

The above gradient vector for link i is one row of the total Jacobian matrix. Geometrically,
it is formed by projecting the kinematic Jacobian for points on the link, @pi(q)=@q, in the
direction of the feature edge normal. Similarly, the tip Jacobian is obtained as

@vi(q)

@q
=

@pi(q)

@q
: (7)
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Figure 5: A single link tracker is shown along with its detected boundary points. One slice
through the �nger image of a �nger is also depicted. Peaks in the derivative give the edge
locations.

The kinematic Jacobians in (6) and (7) are composed of terms of the form @pi=@qj, which
arise frequently in robot control. As a result, these Jacobian entries can be obtained directly
from the model kinematics by means of some standard formulas (see [15], Chapter 5). There
are three types of Jacobians, corresponding to joint rotation, spatial translation, and spatial
rotation DOFs. All points must be expressed in the frame of the camera producing the
measurements. For a revolute (rotational) DOF joint qj we have

@pi

@qj

= wj � (pi � dj
c) ; (8)

where wj is the rotation axis for joint j expressed in the camera frame, and dj
c is the position

of the joint j frame in camera coords. There will be a similar calculation for each camera
being used to produce measurements.

The Jacobian calculation for the palm DOFs must re
ect the fact that palm motion
takes place with respect to the world coordinate frame, but must be expressed in the camera
frame. We obtain the translation component as

@pi

@v
= Rw

c ; (9)

where v is the palm velocity with respect to the world frame and Rw
c is the camera to world

rotation. Similarly, if qj is a component of the quaternion specifying palm rotation, we
obtain

@pi

@qj

= [Rw
c Jw]j � pi ; (10)

where Jw is a Jacobian mapping quaternion velocity to angular velocity, and [�]j denotes the
jth column of a matrix.

The details of the derivation are contained in Appendix A.

5.3 Tracking with Multiple Cameras

The tracking framework presented above generalizes easily to more than one camera. When
multiple cameras are used, the residual vectors from each camera are concatenated to form
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a single global residual vector. This formulation can exploit partial observations. If a
�nger link is visible in one view but not in the another due to occlusion, the single view
measurement is still incorporated into the residual, and therefore the estimate.

6 Experimental Results

To test the articulated tracking framework described above, we developed two hand tracking
systems based on reduced and full-state hand models, using one and two cameras. The
reduced hand model was used with a single camera to provide input to a 3D cursor interface.
The full hand model was tracked using two image sequences. In both cases we provide
recorded state trajectory estimates along with graphical output.

6.1 3D Graphical Mouse Using a Single Camera

For the �rst tracking experiment, we applied the DigitEyes system to a 3D mouse interface
problem. Figure 6 shows an example of a simple 3D graphical environment, consisting of
a ground plane, a 3D cursor (drawn as a pole, with the cursor at the top), and a spherical
object (for manipulation.) Shadows generate additional depth cues. The interface problem
is to provide the user with control of the cursor's three DOFs, and thereby the means to
manipulate objects in the environment. In the standard \mouse pole" solution, the 3D cursor
position is controlled by clever use of a standard 2D physical mouse. Normal mouse motion
controls the pole base position in the plane, while depressing one of the mouse buttons
switchs reference planes, causing mouse motion in one direction to control the pole (cursor)
height. By switching between planes, the user can place the cursor arbitrarily. Commanding
continuous motion with this interface is awkward, however, and tracing an arbitrary, smooth
space curve is nearly impossible.

In the DigitEyes solution to the 3D mouse problem, the 3 input DOFs are derived from
a partial hand model, which consists of the �rst and fourth �ngers of the hand, along with
the thumb. The palm is constrained to lie in the plane of the table used in the interface, and
thus has 3 DOF. The �rst �nger has 3 articulated DOFs, while the fourth �nger and thumb
each have a single DOF allowing them to rotate in the plan of the table (abduct). The hand
model is illustrated in Fig. 7. A single camera oriented at approximately 45 degrees to the
table top acquires the images used in tracking. The palm position in the plane controls the
base position of the pole, while the height of the index �nger above the table controls the
height of the cursor. This particular mapping has the important advantage of decoupling
the controled DOFs, while making it possible to operate them simultaneously. For example,
the user can change the pole height while leaving the base position constant. The fourth
�nger and thumb have abduction DOFs in the plane, and are used as \buttons".

Figures 8 { 10 give experimental results from a 500 frame motion sequence in which the
estimated hand state was used to drive the 3D mouse interface (Implementation details are
given in Sec. 7.) Figures 8 and 9 show the estimated hand state for each frame in the image
sequence. Frames were acquired at 100 ms sampling intervals. The pole height and base
position derived from the hand state by the 3D mouse interface are also depicted in Fig. 9.
The motion sequence has four phases. In the �rst phase (frame 0 to 150), the user's �nger
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Figure 6: A sample graphical environment for a 3D mouse. The 3D cursor is at the tip of
the \mouse pole", which sits atop the ground plane (in the foreground, at the right). The
sphere is an example of an object to be manipulated, and the line drawn from the mouse to
the sphere indicates its selection for manipulation.

is raised and lowered twice, producing two peaks in the pole height, with a small variation
in the estimated pole position. Second, around frame 150 the �nger is raised again and kept
elevated, while the thumb is actuated, as for a \button event". The actuation period is
from frame 150 to frame 200, and results in some change in the pole height, but negligible
change in pole position. Third, from 200 to 350, the pole height is held constant while the
pole position is varied. Finally, from 350 to the end of the sequence all states are varied
simultaneously. Sample mouse pole positions throughout the sequence are illustrated in
Fig. 10 (at the end of the report.) This is the same scene as in Fig. 6, except that the mouse
pole height and position change as a function of the estimated hand state. A hand image
from the middle of the sequence (frame 200) is shown in Fig. 7 along with the estimated
hand model state.

These results demonstrate fairly good decoupling between the desired states and a useful
dynamic range of motion. The largest coupling error occurs around frame 150 when the pole
height drops as the thumb is actuated. This coupling could be compensated for by storing
a list of estimated pole heights and restoring the height to its previous value when the onset
of thumb actuation is detected. In this experiment, the mouse state is generated from the
hand state by a simple scaling and coordinate change. An unfortunate side-e�ect of scaling
is to amplify the noise in the estimator. More sophisticated schemes based on smoothing
the state prior to its use would likely improve the output quality.

This example illustrates an important advantage of hand tracking with kinematicmodels:
absolute 3D distances (such as �nger height above a table) can be measured from a single
camera image. The ability to recover 3D spatial quantities from hand motion is one of the
advantages our system has over approachs based on gesture recognition.
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Figure 7: The hand model used in the 3D mouse application is illustrated for frame 200 in
the motion sequence from Fig. 9. The vertical line shows the height of the tip above the
ground plane. The input hand image (frame 200) demonstrates the �nger motion used in
extending the cursor height.

6.2 Whole Hand Tracking With Two Cameras

In the second tracking experiment, the DigitEyes system was used to track a full 27 DOF
hand model, using two camera image sequences. Because the hand motion must avoid
occlusions for successful tracking, the available range of travel is not large. It is su�cient,
however, to demonstrate recovery of articulated DOFs in conjunction with palm motion.
Figure 11 shows sample images, trackers, and features from both cameras at three points
along a 200 frame sequence. The two cameras were set up about a foot and a half apart
with optical centers verging near the middle of the tracking area, intersecting the table
surface at approximately 45 degrees. Fig. 12 shows the estimated model con�gurations
corresponding to the sample points. In the left column, the estimated model is rendered
from the viewpoint of the �rst camera. In the right column, it is shown from an arbitrary
viewpoint, demonstrating the 3D nature of our tracking result. A subset of the estimated
state trajectories for the motion sequence are given in Figs. 13 and 14.

Direct measurement of tracker accuracy is di�cult due to the lack of ground truth data.
We plan to use a Polhemus sensor to measure the accuracy of the 6 DOF palm state estimate.
Obtaining ground truth measurements for joint angles is much more di�cult. One possible
solution is to wear an invasive sensor, like the DataGlove, to obtain a baseline measurement.
By �tting the DataGlove inside a larger unmarked glove, the e�ect of the external �nger
sensors on the feature extraction can be minimized.
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Figure 8: Palm rotation and �nger joint angles for mouse pole hand model depicted in
Fig. 7. Joint angles for thumb and fourth �nger, shown on right, are used as buttons. Note
the \button event" signaled by the thumb motion around frame 175.
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Figure 9: Translation states for mouse pole hand model are given on the left. The Y axis
motion is constrained to zero due to tabletop. On the right are the mouse pole states,
derived from the hand states through scaling and a coordinate change. The sequence events
goes: 0-150 �nger raise/lower, 150-200 thumb actuation only, 200-350 base translation only,
350-500 combined 3 DOF motion.
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7 Implementation Details

The DigitEyes system is built around a special board for real-time image processing, called
IC40. Each IC40 board contains a 68040 CPU, 5 MB of dual-ported RAM, a digitizer, and
a video generator. The key feature of this board is its ability to deliver digitized images to
processor memory at video rate with no computational overhead. This removes an important
bottleneck in most workstation-based tracking systems. Ordinary C code can be compiled
and down-loaded to the board for execution.

In the multicamera implementation, there is an IC40 board for each camera. The total
computation is divided into two parts: feature extraction and state estimation. Feature
extraction is done in parallel by each board, then the extracted features are passed over the
VME bus to a Sun workstation, which combines them and solves the resulting least squares
problem to obtain a state estimate. Estimated states are passed over the Ethernet to a
Silicon Graphics Indigo 2 workstation for model rendering and display. The overall system
organization is shown in Fig. 15. Our experimental testbed for hand tracking is depicted in
Fig. 16.

The generality of our tracking framework is re
ected in the software organization of the
DigitEyes system. Di�erent trackers can be generated simply by changing the kinematic
description of the mechanism. Feature tracking code for the IC40 boards is generated au-
tomatically from the kinematic description. This makes it possible to experiment with a
variety of kinematic models, tailored to speci�c hand tracking applications.

8 Conclusion

We have presented a visual tracking framework for high DOF articulated mechanisms, and
its implementation in a tracking system called DigitEyes. We have demonstrated real-time
hand tracking of a 27 DOF hand model using two cameras. We will extend this basic
work in two ways. First, we will modify our feature extraction process to handle occlusions
and complicated backgrounds. Second, we will analyze the observability requirements of
articulated object tracking and address the question of camera placement.
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9 Appendix A: Spatial Transform Jacobian

Given the camera and hand position in world coordinates, we outline the derivation of the
Jacobian for a point expressed in the camera frame under rotation and translation of the
palm. We start with the basic result

_pi = Rw
c v+Rw

c ! � pi; (11)

where v; ! give the velocity of the base frame in world coordinates. Eqn 9 follows immedi-
ately. Substituting the additional relation

! = J! _q; (12)

where q is the quaternion parameterization of rotation and J! is a four by three Jacobian
matrix, and di�erentiating with respect to qi yields Eqn 10.

To obtain Eqn 12, we start with the relation

_R(q) = S(!)R(q);

and solve it for S(!), a skew symmetric matrix in the angular velocity. The other side is
then a matrix of linear equations in the _qi. Eqn 12 results from equating the individual
components of ! with their linear representations in _q.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: The mouse pole cursor at six positions during the motion sequence of Fig. 8.
The pole is the vertical line with a horizontal shadow, and is the only thing moving in the
sequence. Samples were taken at frames 0, 30, 75, 260, 300, and 370 (chosen to illustrate
the range of motion).
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Camera 0 View Camera 1 View

Figure 11: Three pairs of hand images from the continuous motion estimate plotted in
Figs. 13 and 14. Each stereo pair was obtained automatically during tracking by storing
every �ftieth image set to disk. The samples correspond to frames 49, 99, and 149.
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Camera 0 View Bottom View

Figure 12: Estimated hand state for the image samples in Fig. 11, rendered from the Camera
0 viewpoint (left) and a viewpoint underneath the hand (right).
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Figure 13: Estimated palm rotation and translation for motion sequence of entire hand.
Qw-Qz are the quaternion components of rotation, while Tx-Tz are the translation. The
sequence lasted 20 seconds.
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Figure 14: Estimated joint angles for the �rst �nger and thumb. The other three �ngers are
similar to the �rst. Refer to Fig. 2 for variable de�nitions.
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Figure 15: The hardware architecture for our current hand tracking system.

Figure 16: Experimental test bed for the DigitEyes system.
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