
Biometrika (2001), 88, 3, pp. 779–791

© 2001 Biometrika Trust

Printed in Great Britain

A directional model for the statistical analysis of movement
in three dimensions

B LOUIS-PAUL RIVEST

Department of Mathematics and Statistics, Université L aval, Ste-Foy, Québec,
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S

Movement of an object in three dimensions involves rotation and translation. The data
for analysis are the coordinates of landmarks on the object, recorded at several time
points. Statistical models for describing the rotational component of the movement of an
object are proposed in this work. Under the fixed-axis model, the object rotates around
an axis that does not change in time. The angular position of the object is then character-
ised by its rotation axis and an angle giving the extent of the rotation of the object with
respect to a reference point. More complicated models occur when the rotation axis varies
in time. Under the fixed-angle model the quaternions for the time-varying orientations of
the object are shown to lie in a two-dimensional great circle on the surface of the unit
sphere in four dimensions. Simple estimators are given of the common rotation axis and
of the angles characterising the time varying orientation of the object. A score statistic for
testing the fit of the fixed-axis model is constructed and methods for handling the auto-
correlation of the errors at neighbouring data points are provided. The analysis of data,
collected by an  camera system on a rotating forearm, illustrates the method-
ology presented in this paper.

Some key words: Directional data; Joint kinematics; Multivariate; Quaternion; Rotation.

1. I

Consider an object moving in three-dimensional space and suppose that the coordinates
of J landmarks, J>3, on the object are available at several time points. These landmarks
are assumed to be fixed so that the position of any one relative to the others does not
vary in time. This paper proposes a directional model for characterising the displacement
of the object using the landmark coordinates.

The movement of an object results in a rigid body motion of its landmarks, involving
a translation and a rotation; see for instance McCarthy (1990, Ch. 1). The rotation and
the translation components of the motion can each be parameterised by a three-dimen-
sional space. To study movement it is convenient to summarise the landmark data, at
each time point, by a vector a and a rotation matrix Rµ (3), where  (3) is the set of
all 3×3 rotations. If y

j
( j=1, . . . , J ) are the landmark coordinates reported by the camera

system, then a=y: is the average coordinate, and rotation R is defined by minimising the
sum, for the J landmarks on the object, of the squared distances between y

j
−y: and its

predicted value R(x
j
−x: ), where x

j
contains the true coordinates of the jth landmark in
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a reference position. The least squares estimator of R can be calculated by Procrustes
analysis (Dryden & Mardia, 1998, Ch. 5).

The dataset for studying movement is {(a
i
, R

i
) : i=1, . . . , n}, where n is the number of

time points, a
i
the 3×1 vector of the average landmark position at time i, and R

i
µ(3)

gives the orientation of the object. The movement is a pure translation if the R
i
’s are

constant, up to experimental errors. It is pure rotation when the object is rotating with
respect to a fixed point. This paper focuses on rotational movement since translations
involve linear variables that are amenable to standard statistical analyses.

The simplest nontrivial rotational movement involves rotation about an axis that does
not vary in time. Let R∞

j
denote the transpose of R

j
. If we neglect errors R

i
R∞
j
, the rotation

needed to go from the orientation at time j to that at time i, has, under the fixed-axis
model, a rotation axis m that is independent of i and j. The angle of R

i
R∞
j
depends on i

and j. In this paper we propose methods for estimating m and the angles {v
i
: i=1, . . . , n}

characterising the time varying position of the object. More complicated movements occur
when the rotation axis varies in time.

This research is motivated by the analysis of human movement, the moving object being
the limb of an experimental subject. The landmarks are on a marker that is attached to
the limb of the subject. Their positions are recorded at a given frequency by a camera
system. In some cases, see for instance Olshen et al. (1989), a marker consists of one
landmark and the camera system records its time-varying coordinates. The statistical
methods presented by Ramsay & Silverman (1997) are suitable for this type of data.
Markers having a rigid shape and several landmarks allow a better characterisation of
the body segment’s motion. For instance, the data analysed in Rancourt et al. (2000) were
recorded with cross-shaped markers with four landmarks, one at each extremity of the
cross. The coordinates of these four landmarks permitted the calculation, at each obser-
vation time, of the pair (a, R) defined above.

Statistical models for rotations have been introduced by Downs (1972); see also Jupp
& Mardia (1989) and Mardia & Jupp (2000). Prentice (1986) and Rancourt et al. (2000)
used quaternions to estimate the mean rotation in a sample. Quaternions are reviewed in
§ 2. Under the fixed-axis model, the modal values of the quaternions in the sample are
shown to lie on a great circle of S3, the unit sphere in R4. Each quaternion is assumed to
follow an appropriate bipolar Dimroth–Watson distribution (Mardia & Jupp, 2000,
p. 181). Section 2 suggests a simple least squares estimator, m@ , for the fixed rotation axis.
Section 3 highlights a local linear model underlying the fitting of the fixed-axis model.
This model enters into the construction of a score test for the fit of the model and into
the derivation in § 4 of an inference procedure that accounts for autocorrelation of the
errors at neighbouring time points. The motion of a rotating forearm is analysed in § 5.

2. D     

2·1. Rotations, quaternions and skew-symmetric matrices

Let R(h, m) denote a rotation of angle h, for hµ(−p, p], around the unit vector m in R3.
One has

R(h, m)=exp{W(hm)}=I+W (hm)+W (hm)2/2+ . . .

= (cos h)I+ (sin h)W (m)+ (1−cos h)mm∞,



781A directional model for movement

where W (m) is the skew symmetric matrix corresponding to m= (m1 , m2 , m3 )∞:

W (m)=A 0 −m
3

m
2

m
3

0 −m
1

−m
2

m
1

0 B . (1)

The operator W ( .) is associated with the exterior product; if m and y are vectors in R3,
then the exterior product of m by y is given by W (m)y=−W (y)m. Thus W (m)y is a vector
orthogonal to both m and y whose length is equal to the product of their lengths multiplied
by the sine of the angle between m and y. When m and y are orthogonal unit vectors,
W (m)y is the unit vector such that the 3×3 matrix [m; y; W(m)y] is a right-hand rule
rotation.

For statistical manipulations, it is convenient to represent rotation matrices as quatern-
ions. The quaternion associated with R(h, m) is a unit vector in R4 defined by q(h, m)=
(cos (h/2), sin(h/2)m∞)∞ (Hamilton, 1969). One has q(h, m)=−q(h+2p, m), so that q and−q
represent the same rotation. Thus, all the statistical techniques described in this paper
need to be invariant to sign changes in the sample quaternions.

Quaternions are endowed with a special product corresponding to rotation multipli-
cation. Let q1 and q2 be the quaternions for rotations R1 and R2 . As mentioned in
McCarthy (1990, p. 61), the quaternion for rotation R1R2 is the matrix product M(q2 )q1 ,
where M(q2 ) is a 4×4 rotation matrix defined by

M(q
2
)=Aq21 −q∞

22
q
22

q
21

I−W (q
22

)B , (2)

in which q21 is the first entry of q2 and q22 is the vector of its last three entries. Observe
that q*

2
=(q

21
,−q∞

22
)∞ is the quaternion corresponding to R∞

2
and that M(q*

2
)=M(q

2
)∞. By

construction, the function M(.) corresponding to the product R1R2 is equal to the product
of the M-matrices for R2 and R1 . In other words,

M{M(q
2
)q
1
}=M(q

2
)M(q

1
). (3)

This is used in § 2·2 to set up the deterministic part of the fixed-axis model.

2·2. T he geometry of the fixed-axis model

We assume that the rotations R
i
obey the fixed-axis model exactly, free of experimental

errors; that is R
i
=R(v

i
, m)R0 , for i=1, . . . , n, where m is the rotation axis, v

i
is the angle

giving the position of the object at the ith measurement, and R0 is related to the orientation
of the landmarks on the object. Without loss of generality we can assume that the mean
direction of the angles {v

i
: i=1, . . . , n} is 0; this means that

∑ sin v
i
=0, ∑ cos v

i
	0. (4)

Let q
i
be the quaternion corresponding to rotation R(v

i
, m)R0 , and let q0 be the quaternion

for R0 . The developments are based on the eigenvalue decomposition of the quaternion
cross-product matrix, W q

i
q∞
i
/n.

The quaternion associated with R
i
is q

i
=M(q0 )q0i , where M(.) is defined in (2) and

q0
i
=cos (v

i
/2)(1, 0, 0, 0)∞+sin (v

i
/2)(0, m∞)∞.
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The quaternion cross-product matrix is equal to

∑ q
i
q∞
i
/n=M(q

0
) AW cos2(v

i
/2)/n 0∞

0 {W sin2(v
i
/2)/n}mm∞BM(q

0
)∞. (5)

This result holds since, from (4), W cos (v
i
/2) sin(v

i
/2)=W sin (v

i
)/2=0. Since

∑ cos2(v
i
/2)−∑ sin2(v

i
/2)=∑ cos (v

i
)	0,

W q
i
q∞
i
/n has only two nonnull eigenvalues, l

i
=W cos2(v

i
/2)/n and l

2
=W sin2(v

i
/2)/n, with

corresponding eigenvectors

n
1
=M(q

0
)(1, 0, 0, 0)∞, n

2
=M(q

0
) (0, m∞)∞.

From (2), q0=n1 , and all the quaternions q
i
belong to the great circle on S3 spanned by

n1 and n2=M(n1)(0, m∞)∞. Vector m corresponds to the second, third and fourth entries of
M(n1)∞n2 . This is recorded formally in the following proposition.

P 1. T he quaternions q
i

corresponding, for i=1, . . . , n, to rotations
R(v

i
, m)R0 belong to a great circle of S3. T he fixed rotation axis m is obtained from the

eigenvectors n1 and n2 associated with the nonnull eigenvalues l1	l2 of W q
i
q∞
i
/n:

m(n
1
, n
2
)=−n

12
n
21
+n

11
n
22
+W (n

12
)n
22

, (6)

where, for j=1, 2, n
j1

and n
j2

denote respectively the first and the last three entries of
eigenvector n

j
.

The function m, defined by (6), plays a central role in this paper. When the first entries
of the quaternions x1 and x2 are null, m(x1 , x2) is the exterior product. In terms of the
rotations R1 and R2 associated with x1 and x2 , m(x1 , x2 ) is equal to the axis of the rotation
R
2
R∞
1

times the sine of its half angle. The next proposition collects some properties of m.

P 2. T he function m defined by (6) maps a pair of vectors in R4 into R3; it
satisfies the following properties, where x1 , x2 , x3 and x4 are vectors in R4:

(i ) m(x1 , x2 )=−m(x2 , x1 ) and in particular m(x1 , x1 )=0;
(ii ) m is linear in its argument, with m(bx1+cx3 , x2)=bm(x1 , x2 )+cm(x3 , x2 ), where

b, cµR;
(iii) when x1 , x2 and x3 are orthogonal unit vectors, m(x1 , x2) and m(x1 , x3) are orthogonal

unit vectors in S2;
(iv) when x1 is a unit vector then m{M(x1)x2 , M(x1)x3}=m(x2 , x3).

The properties listed in Proposition 2 are proved without much difficulty; observe that
(iv) comes from (3). When n1 and n2 are orthogonal unit vectors, items (i) and (ii) of
Proposition 2 imply that

m(n
1
, n
2
)=m{(cos a)n

1
− (sin a)n

2
, (sin a)n

1
+(cos a)n

2
},

for any angle a in (0, 2p). This highlights that, in Proposition 1, the axis m is a function
of the two-dimensional vector space spanned by n1 and n2 , since it is invariant to changes
in the basis of that vector space.

Finally in this section, an orthogonal basis for R4 is constructed in terms of arbitrary
unit vectors, n1µS3 and mµS2, satisfying W (m)n12N0. Observe that m,

m
1
=

W (m)n
12

{1−n2
11
− (m∞n

12
)2}D

, m
2
=

n∞
12

mm−n
12

{1−n2
11
− (m∞n

12
)2}D

(7)
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are orthogonal unit vectors in R3 such that the 3×3 matrix (m, m1 , m2) is a rotation. Thus
the 4×4 block diagonal matrix of 1 and (m,m1 , m2) is a rotation in (4). Premultiplying
each column of the above diagonal matrix by M(n1), as defined in (2), gives the following
orthonormal basis for R4:

n
1
, n
2
=A −m∞n

12
n
11

m−W (n
12

)mB , n
3
=A 0

c(n, m)B , n
4
=A c(n, m)∞m
−W(m)c(n, m)B , (8)

where c(n, m)={n
11
W (n

12
)m−W (n

12
)2m}/{1−n2

11
− (m∞n

12
)2}D is a unit vector in R3. From

(iv) of Proposition 2, m(n1 , n2)=m.
Observe that the fixed axis m can be recovered from n3 and n4 : m(n1 , n2 )=m(n4 , n3). Since

four parameters, two for each of m and c, determine the vector space spanned by n3 and
n4 , a great circle in S3 is determined by four parameters.

2·3. Properties of the quaternion cross-product matrix

Suppose now that the rotations R
i
(i=1, . . . , n) and their associated quaternions q

i
are

observed with error. The quaternion cross-product matrix is W q
i
q∞
i
/n; its eigenvalues are

l@1>l@2>l@3>l@4 , with corresponding eigenvectors p1 , p2 , p3 and p4 . Eigenvector p1 is the
quaternion corresponding to the mean rotation R9 , a measure of location for the sample
of rotations; see Prentice (1986) and Rancourt et al. (2000). The residual, for rotation i,
with respect to the mean rotation can be expressed as R

i
R9 ∞. The residual quaternion is

M(p1 )∞qi , where M(.) is defined in (2).
Let {cos (v

i
/2), sin (v

i
/2)w∞

i
}∞ denote the loadings of q

i
on p1 , p2 , p3 and p4 , where

w
i
= (w

i1
, w

i2
, w

i3
)∞ is a unit vector in R3. Note that sin (v

i
/2)w

i
=m( p1 , qi). One has

q
i
=cos (v

i
/2)p

1
+sin (v

i
/2)[p

2
p
3

p
4
]w
i
,

and the quaternion associated with the residual rotation matrix M(p1)∞qi is

M(p
1
)∞q
i
=A cos (v

i
/2)

sin(v
i
/2){w

i1
m( p

1
, p
2
)+w

i2
m( p

1
, p
3
)+w

i3
m( p

1
, p
3
)}B ,

where m is defined in (6). Thus the angle of the residual rotation is v
i
, while its axis is

w
i1

m( p
1
, p
2
)+w

i2
m( p

1
, p
3
)+w

i3
m( p

1
, p
3
). When l@3 and l@4 are small, w

i
j (1, 0, 0)∞ and the

axis of the residual rotation does not change much with i. In this case the fixed-axis model
fits well; one can estimate the fixed axis by m@=m( p1 , p2 ) or m@=m( p3 , p4). When only l@4
is small, the axis of the residual rotation belongs to the great circle of S2 spanned by
m( p1 , p2) and m( p1 , p3 ), which are two orthogonal unit vectors. Inferential procedures for
m@ under the fixed rotation model are derived in § 4·1.

3. T -     

3·1. Model construction

In this section {q
i
: i=1, . . . , n} is a sample of quaternions and n1 , n2 , n3 and n4 are

defined in (8). Under the fixed axis model, the modal value for q
i
is

u(v
i
)=n

1
cos (v

i
/2)+n

2
sin (v

i
/2),

where the unknown angles v
i
are assumed to satisfy (4). It is convenient to let h

i
=v

i
/2,

for i=1, . . . , n.
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Quaternion q
i
is assumed to be distributed according to a bipolar Dimroth–Watson

density, proportional to exp[k{q∞
i
u(v

i
)}2], with shape parameter k>0. Large-concen-

tration inferential procedures, valid when k goes to infinity, are proposed in this paper.
When k is large, q

i
takes its value in the tangent space to S3 at u(v

i
). This can be written

formally as

q
i
=u(v

i
)+e

0i
+o

p
(k−D) (i=1, . . . , n), (9)

where e
0i

is a 4×1 noise vector satisfying u(v
i
)∞e
0i
=0. From Mardia & Jupp (2000,

p. 236) this noise vector has a four-dimensional normal distribution with mean 0 and
covariance matrix {I−u(v

i
)u(v

i
)∞}/(2k), denoted by N4[0, {I−u(v

i
)u(v

i
)∞}/(2k)]. Large-

concentration inference is common for directional models; see Chang (1993).
The parameter space for the fixed-axis model has n+5 dimensions corresponding to

the n angles v
i
, the four degrees of freedom for the direction of the S3 great circle and

parameter k for error variance. Rivest (1999) investigates a similar model for 3×1 unit
vectors scattered about a circle on the surface of S2.

3·2. Estimation of the parameters of the fixed-axis model

The maximum likelihood estimators of the n+4 location parameters maximise the least
squares criterion

1

n
∑ qcos Avi

2 B q∞in1+sin Avi
2 B q∞in2r2.

For fixed n1 and n2 , the maximising v
i
’s are given by v@

i
=2h@

i
, where

h@
i
=arctan(n∞

2
q
i
, n∞
1
q
i
) (i=1, . . . , n), (10)

and arctan(x, y) is the angle h such that sin h=x/(x2+y2) and cos h=y/(x2+y2). Observe
that going from q

i
to −q

i
changes h@

i
to h@

i
+p. This property is used in § 4 to derive

regression tests for the fit of the fixed-axis model that are invariant to changes in the signs
of the sample quaternions.

The maximum likelihood estimators of the unit vectors n1 and n2 for the direction of
the great circle maximise

1

n
∑ {(q∞

i
n
1
)2+ (q∞

i
n
2
)2}.

This is a standard maximisation problem (Rao, 1973, Ch. 1). The maximum value is
l@1+l@2 . Any pair of orthogonal unit vectors that spans the same vector space as the two
eigenvectors, p1 and p2 , of W q

i
q∞
i
/n associated with eigenvalues l@1 and l@2 is a possible

solution. Define n@1 and n@2 as the pair for which the estimated angles v@
i
defined in (10)

satisfy (4). It is convenient to let n@
j
( j=1, . . . , 4) be the estimators of the vectors in (8)

obtained with n@1 and n@2 .
It is also possible to characterise the vector space spanned by n@1 and n@2 through its

orthogonal complement which is spanned by orthogonal unit vectors n3 and n4 minimising

1

n
∑ {(q∞

i
n
3
)2+ (q∞

i
n
4
)2}. (11)

The unit vectors n@3 and n@4 defined above are a solution to this problem. The minimum
value is l@3+l@4 . Finally note that the maximum likelihood estimator for k, derived by
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solving an equation similar to (10.3.31) of Mardia & Jupp (2000), is 3/{2(l@3+l@4 )}. The
large number of nuisance parameters makes this estimator heavily biased, and a better
one is derived after Proposition 3.

3·3. Fitting the model when the axis of rotation is known

Let m0 denote the known axis of rotation. From (8), fitting the fixed-axis model involves
estimating the unit vector c. We have

n
3
=A0IB c=A

1
c, n

4
=A m∞

0
−W(m

0
)B c=A

2
c.

The optimal c minimises W{(q∞
i
A
1
c)2+ (q∞

i
A
2
c)2}/n. The minimising vector is the eigen-

vector corresponding to the smallest eigenvalue of W (A∞
1
q
i
q∞
i
A
1
+A∞

2
q
i
q∞
i
A
2
)/n, while the

smallest eigenvalue, l@0
3

say, is the minimal value for (11) when m=m0 .

4. S    - 

4·1. T he sampling distribution of the estimator of the rotation axis

The statistical analysis is concerned with the estimation of the two-dimensional subspace
of R4 spanned by the unit vectors n3 and n4 . Its least squares estimator, obtained by
minimising (11), should be a subspace in the neighbourhood of the true value. An ortho-
gonal basis for the subspace spanned by the unit vectors minimising (11) is

nA3=n
3
+b@

1
n
1
+b@

2
n
2
+o

p
(k−D), nA4=n

4
+b@

3
n
1
+b@

4
n
2
+o

p
(k−D ), (12)

where the O
p
(k−D ) vector b@= (b@

1
, b@

2
, b@

3
, b@

4
)∞ determines the position of the fitted subspace

with respect to that spanned by n3 and n4 . Observe that nA3Nn@3 and nA4Nn@4 ; for instance,
from (8), the first entry of n@3 is null while that of nA3 is possibly nonnull. Indeed nA3 and nA4
are not estimable individually. They are a convenient mathematical representation for
the basis of the vector space spanned by n@3 and n@4 since they are linear in n1 and n2 . By
contrast, n@3 and n@4 parameterise the fitted vector space using two S2 unit vectors, m and
c. This nonlinear parameterisation, used in a previous version of this work, resulted in
laborious derivations.

The aim of this section is to determine the first-order contributions of the errors to the
vector b@ . From (11) and (9), b@ is given by the values that minimise

1

n
∑
n

i=1
[{n∞

3
e
0i
+ (cos h

i
)b
1
+(sin h

i
)b
2
}2+{n∞

4
e
0i
+(cos h

i
)b
3
+ (sin h

i
)b
4
}2]+o

p
(k−1).

Finding the vector that minimises the leading, O
p
(k−1), term of this expression gives the

first-order contribution of the errors to b@ . This term can be expressed as (e−Xb)∞(e−Xb),
where e is the 2n×1 vector of the errors. The two error components for the ith data point
are e

2i−1
=n∞

3
e
0i

and e
2i
=n∞

4
e
0i

, where e
0i

is defined in (9). The design matrix X is given
by

X=−Acos h
1

sin h
1

0 0

0 0 cos h
1

sin h
1

cos h
2

sin h
2

0 0

e e e e
cos h

n
sin h

n
0 0

0 0 cos h
n

sin h
n

B . (13)
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This yields an approximation for b@ ,

b@=(X∞X)−1X∞e+o
p
(k−D),

and for the sum of the squared residuals,

n(l@
3
+l@

4
)=e∞{I−X(X∞X)−1X∞}e+o

p
(k−1).

The following proposition applies standard results on linear models to the fixed-axis
model.

P 3. When the errors have independent Dimroth–Watson distributions, as the
shape parameter k goes to 2,

(i) (2k)De converges in distribution to a N
2n

(0, I ) distribution;
(ii ) 2nk(l@3+l@4) converges to a chi-squared distribution with 2n−4 degrees of freedom;

(iii) (2k)Db@ converges to a N4{0, (X∞X)−1} distribution;
(iv) (l@3+l@4) and b@ are asymptotically independent.

The first part of Proposition 3 is an easy consequence of (9). Part (ii) suggests estimating
k by k@= (n−2)/{n(l@3+l@4)}. The normality of the error vector e is the key result of
Proposition 3. It can be ascertained by applying regression diagnostics to the residuals
defined in § 4·2.

Consider the problem of testing whether or not the rotation axis is equal to a known
unit vector m0 . The null hypothesis is H0 : m=m0 . An F-test is easily constructed by compar-
ing the two values of (11) under the null and the alternative hypotheses, giving

Fobs=
(l@0
3
−l@

3
−l@

4
)/2

(l@
3
+l@

4
)/(2n−4)

,

where l@0
3

is defined in § 3·3. If the assumptions of Proposition 3 are met, the asymptotic
distribution of this statistic is, under the null hypothesis, that of F(2, 2n−4). This result
holds true since one can show that the column space of the 2n×2 design matrix for the
local linear model for a known axis is spanned by the column space of the matrix X.

The estimated rotation axis is m@=m(nA4 , nA3). In view of (12) and of the linearity of m,
repeated application of part (ii) in Proposition 2 yields, if we neglect o

p
(k−D) terms,

m(nA4 , nA3)j m(n
4
, n
3
)+m(nA4−n4 , n

3
)+m(n

4
, nA3−n

3
)

j m(n
4
, n
3
)+b@

1
m(n

4
, n
1
)+b@

2
m(n

4
, n
2
)+b@

3
m(n

1
, n
3
)+b@

4
m(n

2
, n
3
)

j m(n
4
, n
3
)+(b@

2
+b@

3
)m
1
+(b@

4
−b@

1
)m
2
, (14)

where m1 and m2 are defined in (7). Under constraints (4) on the v
i
’s, (X∞X)−1 is a diagonal

matrix with diagonal entries given by 1/W (cos h
i
)2, 1/W (sin h

i
)2, 1/W (cos h

i
)2 and

1/W (sin h
i
)2. Thus b@2+b@3 and b@4−b@ 1 are, for large k’s, independent normally distributed

with variance n/{(2k)Wcos (v
i
/2)2W sin(v

i
/2)2}. From (5) and Proposition 3, an estimator

of this variance is given by (l@3+l@4)/{(2n−4)l@1l@2}. Therefore, an estimator of the covari-
ance matrix of m@ is given by

n(m@ )=
l@
3
+l@

4
(2n−4)l@

1
l@
2
(I−m@m@ ∞).
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4·2. Investigating the fit of the model

In many instances the hypotheses of Proposition 3 are not fulfilled. The rotation axis
varies and the errors may exhibit autocorrelation. The linear model of § 4·1 is a convenient
tool for investigating these questions.

The entries of the X-matrix can be estimated as the sines and the cosines of the angles
h@
i
defined in (10); let XC denote the estimated design matrix. Since the difference between

XC and X is O(k−D), replacing X by XC in the calculations does not change the first-order
properties of the estimators. The residuals for this linear model can be defined as a 2n×1
vector r whose components for the ith data point are given by r

2i−1
=n@∞

3
q
i

and
r
2i
=n@∞

4
q
i
. Observe that replacing the quaternion q

i
for the ith data point by −q

i
changes

the signs of the two residuals and of the two rows of XC for that data point.
To derive a score test for the fit of the model, suppose that the rotation axis varies with

the rotation angle and that, at time i, it is equal to

m+b
5
(cos h*

i
)m
1
+b

6
(sin h*

i
)m
1
+b

7
(cos h*

i
)m
2
+b

8
(sin h*

i
)m
2
+O(k−1 ), (15)

where h*
i
=h

i
modulo p and h*

i
belongs to (−p/2, p/2), m1 and m2 are defined in (7) and

b5 , b6 , b7 and b8 are O(k−D) unknown parameters. Adding to (15) terms in sines and
cosines of 2h*

i
, 3h*

i
, . . . would permit us to model complex relationships between the

rotation axis and the rotation angle. When the rotation axis changes according to (15),
the modal value for q

i
becomes

u(v
i
)+n

3
(sin h

i
)(b

5
cos h*

i
+b

6
sin h*

i
)+n

4
(sin h

i
)(b

7
cos h*

i
+b

8
sin h*

i
)+O(k−1 ).

Thus, the errors e
2i−1

and e
2i

have systematic components respectively given by

b
5
sin h

i
cos h*

i
+b

6
sin h

i
sin h*

i
, b

7
sin h

i
cos h*

i
+b

8
sin h

i
sin h*

i
,

and therefore the model with a varying rotation axis is related to a local linear model
with a 2n×8 design matrix given by [X; X

c
], where

X
c
=−Asin h

1
cos h*

1
sin h

1
sin h*

1
0 0

0 0 sin h
1
cos h*

1
sin h

1
sin h*

1
sin h

2
cos h*

2
sin h

2
sin h*

2
0 0

e e e e
sin h

n
cos h*

n
sin h

n
sin h*

n
0 0

0 0 sin h
n
cos h*

n
sin h

n
sin h*

n

B .
When the fixed-axis model fits a dataset well, the hypothesis H0 : b5=b6=b7=b8=0
should be accepted. Let nl@

c
be the sum of the squared residuals for the regression of r on

[XC ; XC
c
], where XC

c
is an estimate for X

c
. Note that nl@

c
is also the sum of the squared

residuals of the regression of the unobserved e on [XC ; XC
c
] since the vector e−r is in the

vector space spanned by the columns of XC . The F-test with 4 and 2n−8 degrees of freedom
rejects H0 at level a if

(l@
3
+l@

4
−l@

c
)/4

l@
c
/(2n−8)

>F
4,2n−8,a

.

Note also that this test is invariant to changes of any quaternion from q
i
to −q

i
.

When movement is studied, the data points are ordered in time and autocorrelation is
likely. This feature can be brought to the model by assuming that the odd and even entries
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of the error vector e are two independent realisations of an  (1) process with autocorrel-
ation r and stationary variance 1/(2k). An estimator of the first-order residual autocorrel-
ation is given by

r@=
Wn−1
i=1

(r
2i+1

r
2i−1
+r

2i+2
r
2i

) sgn{cos (h@
i
−h@

i+1
)}

Wn
i=1

(r2
2i−1
+r2

2i
)

.

This statistic fulfils the variance condition since changing q
i
into −q

i
changes the signs

of r
2i

and r
2i−1

and transforms h@
i
into h@

i
+p. In many instances the quaternions do not

change much in time and one can define the sign of q
i
, for given q

i−1
, such that

q∞
i
q
i−1
	0. In such situations, one can omit sgn{cos(h@

i
−h@

i+1
)} from the definition of r@ .

Estimators and tests with the Cochrane & Orcutt (1949) correction for autocorelation
are easily implemented. To obtain an estimator for m and its covariance matrix when
autocorrelation is present it suffices to regress r

a
=r

(−1)
−r@r

(−n)
on X

a
=X

(−1)
−r@X

(−n)
,

where the subscript (−i ) means that the two rows for data point i have been deleted. Let
b@
1a

, b@
2a

, b@
3a

and b@
4a

be the least squares estimators of the regression parameters. An
estimator for m adjusted for autocorrelation is easily derived from (14):

m@ a=
m@+m@

1
(b@
2a
+b@

3a
)+m@

2
(b@
4a
−b@

1a
)

{1+ (b@
2a
+b@

3a
)2+ (b@

4a
−b@

1a
)2}D

,

where m@1 and m@2 are the least squares estimators for (7). A covariance estimator corrected
for autocorrelation is given by

v(m@
a
)=s@2

a
[m@
1
; m@

2
] A0 −1

1 0

1 0

0 1 B∞ (X∞aXa
)−1 A0 −1

1 0

1 0

0 1 B [m@
1
; m@

2
]∞,

where s@2a is an estimator of the residual variance. The score test for a fixed rotation axis
can also be corrected along the lines of Cochrane & Orcutt (1949).

The residual vector r and the estimated design matrices XC and XC
c
can be entered into

any standard package for mixed linear models to fine-tune the analysis. An alternative to
the Cochrane–Orcutt analysis is to regress r on XC and XC

c
in a mixed linear model package

such as SAS proc mixed or S-Plus lme, and to model the odd and even entries of r as
repeated measures, with an  (1) covariance matrix. Estimators of m and of its covariance
matrix can then be derived from (14); tests on the parameters for XC

c
investigate the fit of

the model.

5. D 

5·1. T he experimental set-up

To illustrate the methodology presented in this paper, a simple experiment was conduc-
ted in the laboratory of Brad McFadyen of the Rehabilitation Research Center at
Université Laval. While standing with his right elbow resting on a stool and his upper
arm still, a subject extended his right forearm while holding a planar marker, with six
landmarks, in his right hand. The movement recorded should therefore correspond to a
rotation of the forearm at the elbow joint. Since the subject was standing, with his upper
arm in a vertical position, the total extension of the forearm, from the vertical upper arm
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to the horizontal stool, is less than 90°. The X–Y–Z coordinates, in metres, of the six
landmarks were recorded by a  camera system during one second at a fre-
quency of 100 hertz. This led to n=99 records for each marker. The dataset for analysis
is {(a

i
, R

i
) : i=1, . . . , 99}, where a

i
and R

i
are respectively the average landmark position

and the orientation at time i.

5·2. T he fixed-axis model

The eigenvalues for the quaternion cross-product matrix are l@1=0·970282, l@2=
0·029591, l@3=0·000119 and l@4=0·000008. Since the first eigenvalue is related to the mean
rotation, the proportion of variability explained by the fixed-axis model is l@2/(l

@
2+l@3+l@4 ).

This is equal to 99·57%, suggesting that the fixed-axis model fits well. The estimate of the
rotation axis is given by m@= (0·858,−0·146,−0·492)∞.

The score test for changing rotation axis, introduced in § 4·2, allow us to evaluate the
fit of the fixed-axis model. The autocorrelation of the residuals of the regression of r on
[XC ; XC

c
] is r@=0·88, and a Cochrane–Orcutt corrected F-statistic for H0 : b5=b6=b7=

b8=0 is 33·12 on 4 and 188 degrees of freedom. The test therefore suggests that the
rotation axis does vary in time. Significant results were also obtained using the 
procedure of , using either the  or the restricted maximum likelihood estimator
for the  (1) variance covariance matrix for the odd and even residuals.

To investigate whether or not the rotation axis varies on a great circle, one can compare
the fit of the eight-dimensional model with that of a six-dimensional model with the axis
on the great circle spanned by m@ and m( p1 , p3 ). Under this model, the space of axes spanned
by (15) is two-dimensional; its design matrix involves X and two linear combinations of
the columns of X

c
. The F-statistic for comparing these two models is 2·94 on 2 and 188

degrees of freedom giving a p-value of 5·5%, which suggests that the axis varies on a
great circle.

To investigate variations in the rotation axis, the residual rotations R
i
R9 ∞ are available,

where R9 is the mean rotation as defined in § 2·3. The quaternion for R
i
R9 ∞ is M(p1)∞qi . The

rotation axis of R
i
R9 ∞ is proportional to t

i
=m( p1 , qi ). To avoid difficulties caused by

rotations through small angles, the axis of R
i
R9 ∞ can be estimated by the eigenvector

corresponding to the largest eigenvalue of W+6
i=−6

t
i+j

t∞
i+j

. The projection of these unit
vectors in the plane spanned by m( p1 , p3 ) and m( p1 , p4) is given in Fig. 1, where the p

j
’s

are the quaternion cross-product matrix eigenvectors. Sequential identification numbers
in Fig. 1 show that the largest deviations in the rotation axis occur for data points 45 to
60, corresponding to residual rotations of angles less than 0·1 radians, that is 6°. If we
omit these points, the variations in the rotation axis are of the order of±6° in the direction
of the third eigenvector. This agrees with the findings in the orthopaedic literature (An
et al., 1984) who reported changes of a similar magnitude in the carrying angle during
flexion extensions at the elbow joint. Note also that the small changes in the direction of
the fourth principal component in Fig. 1 confirm that the rotation axis varies on a great
circle.

5·3. T he kinematics of the elbow joint

Since the fixed-axis model does not fit well, are the angles v@
i

representative of the
movement? Can they be used to calculate the speed and the acceleration of the upper arm
during a flexion of the elbow joint? The answer to these questions is a tentative ‘yes’. The
fixed-axis model forces the R

i
R9 ∞ rotation axis to be m@ . This should have little impact on
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Fig. 1. Variations (radians) of the rotation axis, with identifi-
cation numbers provided for nine data points.

its angle since, as shown in Rivest (1989), the angle and the axis of a rotation are locally
orthogonal. To investigate this numerically one can compare the fitted rotation angle
between time i and i+1, v@

i
−v@

i+1
, with its empirical counterpart 2 arccos(q∞

i+1
q
i
). The

correlation between fitted and empirical angles is 0·984, indicating close agreement.
To investigate the kinematics of the elbow joint we can fit the 99 v@

i
values with 16

order-4 B-spline functions with equally spaced knots using S-Plus functions available with
Ramsey & Silverman (1997). Figure 2 gives a time plot of the fitted v

i
’s and of the

acceleration. The largest accelerations are at the beginning and end of the movement.
Noteworthy are the eight acceleration peaks in the graph; this figure agrees with Ramsay’s
(2000) acceleration pattern of 8 peaks per second.
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Fig. 2. (a) Angular position (radians) and (b) acceleration (radians/sec2 ), of the
rotating forearm.
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