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Abstract

P -values are the most commonly used tool to measure evidence against a hy-
pothesis or hypothesized model. Unfortunately, they are often incorrectly viewed
as an error probability for rejection of the hypothesis or, even worse, as the poste-
rior probability that the hypothesis is true. The fact that these interpretations can
be completely misleading when testing precise hypotheses is first reviewed, through
consideration of two revealing simulations. Then two calibrations of a p-value are de-
veloped, the first being interpretable as odds and the second as either a (conditional)
frequentist error probability or as the posterior probability of the hypothesis.
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1. Introduction

In statistical analysis of data X, one is frequently working, at a given moment, with an enter-
tained model or hypothesis H0 : X ∼ f(x), where f(x) is a continuous density. A statistic T (X)
is chosen to investigate compatibility of the model with the observed data xobs, with large values
of T indicating less compatibility. The p-value is then defined as

p = Pr(T (X) ≥ T (xobs)). (1.1)

In this paper, we assume that f(x) is completely specified, so that the probability computation
in (1.1) is under H0. The null hypothesis is thus a ‘precise’ hypothesis, as opposed to, say, the
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hypothesis that a treatment mean is less than zero. The results herein apply primarily to such
precise hypotheses; see Casella and Berger (1987) and Berger and Mortera (1999) for discussion
of the one-sided testing situation.

The density in H0 can contain nuisance parameters, in which case the choice of an appropriate
distribution for computation of (1.1) can be problematical; see Bayarri and Berger (1998, 1999)
for discussion and recommendation of a preferred p-value. The calibration discussed herein can
be directly applied to this preferred (and any other valid) p-value, so the restriction in this paper
to a simple null hypothesis is primarily pedagogical. Note, also, that alternative hypotheses,
H1, will be introduced as we proceed but alternatives play only a secondary role in the analysis
since, in a sense, we will ‘optimize’ over all reasonable alternatives.

The difficulty in interpretation of p-values has been highlighted in many papers, among
them Edwards, Lindman, and Savage (1963), Berger and Sellke (1987), Berger and Delampady
(1987), and Delampady and Berger (1990), the latter specifically considering the problem of
testing fit when T (X) is chosen to be the usual chi-squared statistic for fit. The focus of these
works is that p-values are commonly thought to imply considerably greater evidence against
H0 than is actually warranted. In Section 2, we present two simple examples demonstrating
this concern. The examples are presented as simulations that are easy to perform, even in
introductory statistics classes. Indeed, we suggest that such simulations should be mandatory
in any statistics course that presents p-values.

Because of the ubiquitous use of p-values, it seems desirable to provide a simple way to
understand their evidentiary import. In Section 3 we discuss a simple calibration of p to achieve
this. The calibration is easy to state: simply compute

B(p) = −e p log(p) , (1.2)

when p < 1/e, and interpret this as a lower bound on the odds (or Bayes factor) of H0 to H1.
In terms of a frequentist error probability α (in rejecting H0), the calibration is

α(p) = (1 + [−e p log(p)]−1)−1. (1.3)

Interestingly, this latter expression is exactly the same as the (default) posterior probability
of H0 that arises from use of the Bayes factor in (1.2) together with the assumption that H0

and H1 have equal prior probabilities of 1/2. Thus use of (1.3) has the additional pedagogical
advantage that one need not fear misinterpretation of an error probability as the probability
that the hypothesis is true; here, they coincide.

Table 1 presents various p-values and their associated calibrations. Thus p = 0.05 translates
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p .2 .1 .05 .01 .005 .001
B(p) .870 .625 .407 .125 .072 .0188
α(p) .465 .385 .289 .111 .067 .0184

Table 1: Calibration of p-values as odds (Bayes factors) and conditional error probabilities.

into odds B(0.05) = 0.407 (roughly 1 to 2.5) of H0 to H1, and frequentist error probability
α(0.05) = 0.289 in rejecting H0. (The default posterior probability of H0 would also be 0.289.)
Clearly p = 0.05 does not indicate particularly strong evidence against H0. Even p = 0.01
corresponds to only about 8 to 1 odds against H0. These calibrations will be formally motivated
in Section 3, from a variety of perspectives.

2. The common misinterpretation of p-values

We present an extended example in this section, in order to emphasize that common interpre-
tations of p-values are inappropriate. The example is presented in terms of a simulation for two
reasons. First, it is then accessible to even beginning statistics students, and can be used in
introductory classes to convey the meaning of p-values. Second, the use of simulation emphasizes
the frequentist nature of these issues; we are not discussing a conflict between frequentist and
Bayesian reasoning, but are exhibiting a fundamental property of p-values that is apparent from
any perspective.

Consider the situation in which experimental drugs D1,D2,D3, . . . are to be tested. The
drugs can be for the same illness (say, AIDS, common cold, etc.) or different illnesses. Each
test will be thought of as completely independent; we simply have a series of tests so that we
can explore the frequentist properties of p-values. In each test, the following hypotheses are to
be tested:

H0 : Di has negligible effect versus H1 : Di has a non-negligible effect . (2.1)

Note that the null hypotheses, H0, have special plausibility in these tests; many experimental
drugs that are tested have ‘negligible effect,’ so that these null hypotheses could reasonably be
true. (This is related to the earlier comment that we are only concerned with the testing of
‘precise’ hypotheses. See Berger, Boukai, and Wang, 1997, for further discussion.)

Suppose that one of these tests results in a p-value ≈ 0.05 (or ≈ 0.01). The question we
consider is: How strong is the evidence that the drug in question has a non-negligible effect?

3



DRUG D1 D2 D3 D4 D5 D6
P-VALUE 0.41 0.04 0.32 0.94 0.01 0.28

DRUG D7 D8 D9 D10 D11 D12
P-VALUE 0.11 0.05 0.65 0.009 0.09 0.66

Table 2: P -values corresponding to testing whether drug Di has negligible effect.

To study this, we will simply collect all the p-values from a number of such tests, and record
how often the null hypothesis is true for p-values at various levels. For instance, Table 2 shows
hypothetical output from the first 12 tests. Suppose we focus on those tests, in a long series of
tests, for which p ≈ 0.05 (D2 and D8 in Table 2) or p ≈ 0.01 (D5 and D10 in Table 2), and ask:
What proportion of these tests have true H0, i.e., ineffective drugs?

We shortly discuss the simulation to answer this question, but here is the basic and surprising
conclusion, first established (theoretically) in Berger and Sellke (1987). Suppose it is known that,
a priori, about 50% of the drugs tested have a negligible effect. (This is actually quite a neutral
assumption; in some scenarios this percentage is likely to be much higher.) Then:

1. Of the Di for which the p-value ≈ 0.05, at least 23% (and typically close to 50%) will have
negligible effect.

2. Of the Di for which the p-value ≈ 0.01, at least 7% (and typically close to 15%) will have
negligible effect.

Similar results arise for other initial proportions of ineffective drugs. For instance, if the
initial proportion of true nulls is about 1/3 (2/3), then the proportion of true nulls among those
tests for which the p-value is ≈ 0.05, is at least 12% (35%). The basic point is that a p-value of
0.05 can never reduce the initial proportion of true null hypotheses by more than a very modest
factor.

The numbers above are based on the following simulation. Suppose that each test in (2.1)
is based on normal data (known variance), with θj being the treatment mean for Dj, so that
(2.1) is the test of H0 : θj = 0 versus H1 : θj �= 0. One must choose π0, the initial proportion
of null hypotheses that are true, and also the values of θj under the alternative hypotheses. For
each hypothesis, one then generates normal data with mean θj, and computes the corresponding
p-value, defined for the usual test statistic, T (X) = √

nj |Xj |/σj , as

p = 2 [1 − Φ(T (xobs))] ; (2.2)
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here nj, σj, and Xj are the sample size, standard deviation, and sample mean corresponding to
the test of Dj , and Φ is the standard normal c.d.f. After doing this for a large series of tests,
one looks at the subset of p-values which are near a specified value, such as 0.05. For instance,
one can look at those tests for which 0.04 ≤ p ≤ 0.05. One then simply notes the proportion
of such tests for which H0 is true. An S+ code for carrying out this simulation is given in the
Appendix, which also discusses some further details, such as choice of the alternatives θj.

A large number of variants of this simulation could be performed. Having normal data
is not crucial; the results would be qualitatively similar under most standard distributional
assumptions. (See Berger and Sellke, 1987, for some exceptions.) Likewise, the results would
not qualitatively change if the null hypotheses were replaced by small interval nulls of the form
H0 : |θj| < ε, providing ε < σj/(4

√
nj). This is important because hypotheses such as H0 : θj = 0

are unlikely to ever be true exactly. (Dj will probably have some effect, even if only θj = 10−8.)
Indeed, the hypothesis H0 : θj = 0 should really just be thought of as an approximation to a
small interval null, and Berger and Delampady (1987) show that it is a good approximation if
ε < σj/(4

√
nj). Thus, in practice, one must make the judgement that this condition will hold

before formulating the test as that of H0 : θj = 0. Note, also, that this condition will be violated
for large enough nj, so that a different analysis will be called for if the sample size is huge. This
fact is also the basis for resolution of the so-called Jeffreys Paradox (or Lindley’s Paradox).

Another point of interest is that the answers obtained from the simulation would be quite
different if one considered, say, the subset of all tests for which 0 < p < 0.05. Indeed, the
proportion of true nulls would then be in accordance with common intuition concerning p-values.
The point, however, is that, if a study yields p = 0.046, this is the actual information, not the
summary statement 0 < p < 0.05. The two statements are very different from an evidentiary
perspective, and replacing the former by the latter is simply an egregious mistake.

While the simulation visibly demonstrates that a p-value near 0.05 provides at best weak
evidence against H0, it does not indicate why this is so. The reason is basically that a p-value
near .05 is essentially as likely to arise from H1 as from H0. To explicitly see this, consider a
slightly different aspect of the above simulation. We will create a histogram that indicates where
the p-values in (2.2) fall that are generated from the null hypotheses, and also a histogram of
the p-values generated under the alternative hypotheses.

Under the null hypotheses, p-values are well known to be Uniform(0, 1); the histogram that
would result from such p-values is represented in Figure 1 by the unshaded columns. Thus the
probability that 0.1 < p < 0.2 is 0.1, the probability that 0.04 < p < 0.05 is 0.01, etc.

To make a histogram of the p-values in (2.2) under the alternative hypotheses, we must
choose the nj, σj , and θj. A variety of possible specifications are given in the Appendix; for
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Figure 1: Distribution of p-values under the null hypotheses (unshaded columns) and under the
alternative hypotheses (shaded columns).
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illustrative purposes, we choose (as in the simulation in the Appendix) nj = 20 and σj = 1
and let the θj be generated from a normal distribution with mean 0 and variance 2. (That this
distribution is symmetric about 0 has no bearing on matters; the same histogram would result
from generating the θj from the corresponding positive half-normal distribution.)

An easy computation shows that, for this choice of alternatives, the p-values will be dis-
tributed according to the c.d.f

2[1 − Φ(
1√
41

Φ−1(1 − 1
2
p))] . (2.3)

The corresponding histogram is given by the shaded columns in Figure 1. As expected, smaller
values of p are more likely under the alternatives than the nulls, but the degree to which this
is so is rather modest for p-values in common regions. For instance, a p-value in the interval
(0.04, 0.05) is essentially equally likely to occur under the nulls as under the alternatives. Thus
observing, say, p = 0.046 provides no evidence in favor of the null or the alternative. Even
a p-value in the interval (0.009, 0.010) is only about 4 times more likely to occur under the
alternatives than under the nulls.

The natural question to ask is whether the qualitative nature of the phenomenon observed
in Figure 1 is due to the particular choice we made for the alternatives. The answer is - no;
this histogram is quite typical of what occurs. Indeed, it can be shown that, no matter how
one chooses the nj, σj and θj under the alternatives, at most 3.4% of the p-values will fall in
the interval (0.04, 0.05), so that a p-value near .05 provides at most 3.4 to 1 odds in favor of
H1. (This is actually just a restatement of the earlier observation that, if 50% of the nulls are
initially true, then at least 23% of those with a p-value near 0.05 will be true.) And reasonable
choices of the alternatives are much more likely to yield a histogram like Figure 1 than yield
such extreme bounds. The clear message is that knowing that the data are ‘rare’ under H0 is
of little use unless one determines whether or not they are also ‘rare’ under H1.

3. Calibration of p-values

In this section, the calibrations of a p-value, p, that were given in (1.2) and (1.3), are developed.
Motivations will be given in terms of nonparametric testing and parametric testing, from both
Bayesian and frequentist perspectives. Since our goal is to interpret the calibrated p-values as
lower bounds on Bayes factors or conditional frequentist error probabilities, we have to explicitly
consider alternatives to the null model.
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3.1. Justification via p-value testing

3.1.1. Bounds on the odds of H0 to H1 under Beta alternatives

In Section 2, we referred to the fact that, under the null hypothesis, the distribution of the
p-value, p(X), is Uniform[0, 1]. (We write p(X) to emphasize that p is now being treated
as a random function of the data.) Alternatives would typically be developed by considering
alternative models for X, as in Section 2, but the results then end up being quite problem
specific. An attractive approach is to, instead, directly consider alternative distributions for p

itself. Indeed, we shall suppose that, under H1, the density of p is f(p|ξ), where ξ is an unknown
parameter. Thus we will test:

H0 : p ∼ Uniform(0, 1) versus H1 : p ∼ f(p|ξ) .

Others have previously considered direct choice of alternatives for p(X); see, for instance, Hodges
(1992).

If the test statistic has been appropriately chosen so that large values of T (X) would be
evidence in favor of H1, then the density of p under H1 should be decreasing in p. An example
is that in Section 2; the density corresponding to (2.3) is

f(p) =
1√
41

exp{ 1
41

[
Φ−1(1 − p

2
)
]2

} ,

which is decreasing in p.
A class of alternatives for p that is very easy to work with is the class of Be(ξ, 1) distributions,

with 0 < ξ ≤ 1, so that the densities are nonincreasing:

f(p|ξ) = ξ pξ−1 . (3.1)

The uniform distribution (i.e., H0) arises from the choice ξ = 1.
The Bayes factor (or odds) of H0 to H1, for a given prior density π(ξ) on this alternative, is

Bπ(p) =
f(p|1)∫ 1

0 f(p|ξ)π(ξ) dξ
.

Calculus shows that

B = inf
all π

Bπ(p) =
f(p|1)

supξ ξ pξ−1
= −e p log p for p < e−1 , (3.2)
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and B = 1 otherwise, which is the proposed calibration in (1.2). Of particular note is that this
lower bound holds for any prior distribution on the alternative, and can hence be viewed as an
objective lower bound on the odds of H0 to H1.

3.1.2. Bounds on the odds of H0 to H1 under decreasing failure rate

The Beta alternatives in Subsection 3.1.1 are a rather restricted class, and it is of interest to
see if the bound in (3.2) holds more generally. Instead of working with p and its distribution
f(p|ξ), it is more convenient to consider Y = − log p and its distributions under the null and
alternative hypotheses. It can easily be checked that, if p has the Be(ξ, 1) distribution given in
(3.1), then

Pr{Y > y} = Pr{p < e−y} = e−ξy ,

so that Y has an Exponential(ξ) distribution (and, of course, the null hypothesis again obtains
for ξ = 1).

A natural requirement is that the distribution of Y have a decreasing (non-increasing) failure
rate. This is equivalent to requiring that the distribution of Y−y | Y > y be stochastically
increasing with y. In terms of p = e−y, the requirement of decreasing failure rate for Y means
that the distribution of p

p0
| p < p0 is stochastically decreasing with p. In particular, this implies

that, for any fixed p0, the probability Pr{p < 1
2 |p < p0} increases as p0 goes to 0; this is a

natural condition implying that the mass under the alternative is appropriately concentrated
near zero.

Assume, accordingly, that the failure rate function

h1(y) =
f1(y)∫ ∞

y f1(z)dz
,

for the density, f1, of Y under H1, has a decreasing failure rate. Then

f1(y) = h1(y) exp{−
∫ y

0
h1(z)dz} ≤ h1(y) exp{−yh1(y)} ,

from which it follows that the Bayes factor of H0 to H1 satisfies

B =
e−y

f1(y)
≥ e−y

h1(y) exp{−yh1(y)} ≥ e y e−y for y ≥ 1 ,

and B = 1 otherwise, the inequalities being sharp. Since this lower bound holds for any density
in the (now nonparametric) class of alternatives, it will also hold for any Bayes factor with
respect to a prior over that class. Transforming back to p yields exactly the same bound as in
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(3.2). This lower bound is thus valid over a very large class of nonparametric alternatives and
priors.

In the remainder of this section, we present a simple method for checking that Y has de-
creasing failure rate, given only the original densities of the test statistic T (X) under H0 and
H1, which will be denoted by f0(t) and m(t), respectively. Usually, the density m(t) will arise
as the Bayesian marginal or predictive density

m(t) =
∫

f(t|θ)π(θ) dθ

corresponding to the alternative H1 : f(t|θ), under the prior π(θ). Let F and M denote the
c.d.f.’s corresponding to f and m, respectively.

If p is defined as in (1.1), then it is straightforward to show that the survival function of
Y = − log(p(X)), under the alternative, is given by

Pr{Y > y} = Pr{p < e−y} = 1 − M [F−1(1 − e−y)], (3.3)

so that its density is given by

f1(y) =
m[F−1(1 − e−y)]
eyf [F−1(1 − e−y)]

. (3.4)

The hazard rate function of Y is given by the ratio of (3.4) and (3.3), and can easily be seen to
be nonincreasing if and only if

m(t)
1 − M(t)

/
f(t)

1 − F (t)
(3.5)

is nonincreasing. Thus the applicability of the bound in (3.2) can be assured by verification that
(3.5) is nonincreasing.

Example 3.1 Consider the situation of Section 2, with i.i.d. Normal(θ, σ2) data, H0 : θ = 0,
H1 : θ �= 0, and T (X) =

√
n|X̄|/σ. Suppose that the prior for θ under H1 is Normal(0, v2).

Then an easy computation shows that the ratio in (3.5) is given by

R(t)/[c R(
t

c
)], (3.6)

where c = (1 + nv2/σ2)1/2 and R(t) is Mill’s ratio, or the inverse of the hazard rate function
of the standard normal. Figure 1 graphs the function in (3.6) for various values of c, and all
appear to be decreasing to their limiting value 1/c2.

�
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Figure 2: Plots of the ratio of Mill’s ratios in (3.6).

3.1.3. Bounds on conditional frequentist error probabilities

The proposed calibration can also be seen to arise from a conditional frequentist perspective.
The idea behind this approach, formalized in Kiefer (1977) and developed in Berger, Brown,
and Wolpert (1994) and Berger, Boukai, and Wang (1997), is to find a conditioning statistic
that measures the strength of evidence in the data (for or against the null hypothesis), and then
to report error probabilities conditional on this statistic. The result is true frequentist error
probabilities that are as data-dependent as p-values. In this section we show that a lower bound
on the conditional error probability of Type I is given by (1.3) which thus becomes the suggested
calibration for p-values in terms of frequentist error probabilities.

The analysis here follows the development of conditional frequentist testing in Berger, Brown,
and Wolpert (1994). To test H0 : p ∼ Uniform(0, 1) versus H1 : p ∼ Beta(ξ, 1), for a fixed ξ,
0 < ξ < 1, the Bayes factor is easily seen to be

B(p) = ξ−1p1−ξ ,

an increasing function of p. The distribution functions of B under the hypotheses are needed
next. Clearly

Pr(B ≤ b) = Pr
[
p ≤ (b ξ)

1
1−ξ

]
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so that, under H0 (where p has c.d.f. F (s) = s), the c.d.f. of B is

F0(b) = (b ξ)
1

1−ξ

and, under H1 (where p has c.d.f. F (s) = sξ), the c.d.f. of B is

F1(b) = (b ξ)
ξ

1−ξ .

It can be numerically shown that F0(1) ≤ 1 − F1(1), in which case the final needed quantity is
given in Berger, Brown, and Wolpert (1994) as

a = F−1
0 [1 − F1(1)] =

1
ξ

[
1 − ξ

ξ
1−ξ

]1−ξ

.

Letting CEP denote conditional error probability, the conditional frequentist test is then given
as follows:

• If B(p) ≤ 1, reject H0 and report CEP αξ(B) = B
1+B .

• If 1 < B(p) < a, take no decision.

• If B(p) ≥ a, accept H0 and report CEP βξ(B) = 1
1+B .

Next, we compute infξ αξ(B). Since

αξ(B) =
B

1 + B
=

1
1 + B−1

is an increasing function of B, it is clear that the minimum over ξ of αξ(B) is given by replacing
B by its minimum over ξ, which is given in (3.2), resulting in the bound in (1.3).

Frequentists may well not agree with use of the minimum α, it being far more common to
report the maximum in situations of nonconstant Type I error probability. Indeed, we would
not disagree with this judgement, and would, instead, urge use of default conditional frequentist
tests as proposed in Berger, Boukai, and Wang (1997), Dass and Berger (1998), and Dass (1998).
However, recall that the purpose here was to calibrate a p-value, by at least putting it on an
error probability ‘scale,’ and the given calibration achieves that goal. Another way of saying
this is that reporting (1.3), while debatable from a frequentist perspective is, at least, far better
than reporting the p-value itself.

For the conditional Type II error probability, βξ(B) = 1/(1 + B), it is clear that the lower
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bound on B from (3.2) becomes the upper bound

βξ(B) ≥ 1
1 − e p log(p)

.

Note, however, that one needs to also consider a when dealing with Type II error. That this is
rarely a problem in practice is indicated by the fact that, for small values of p, it can be shown
that a ≈ log(log(1/p)), so that the no-decision region remains rather small.

Similar arguments can be made for the more general alternatives discussed in Subsection
3.1.2. Indeed, if the distribution of Y = − log(p) has nonincreasing failure rate, the arguments
therein can be directly modified to obtain the same bounds as above on the conditional Type
I and Type II error probabilities. The only real complication is that a is then no longer easily
specified, but we suspect that the no-decision region would remain of negligible import and, in
any case, it only affects Type II error under acceptance of the null.

3.2. Justification via parametric testing

It is natural to ask whether the bound B ≥ −ep log p is also reasonable in parametric testing
scenarios. Consider first the standard normal example.

Example 3.2 Consider the normal testing scenario in Example 3.1. Berger and Sellke (1987)
provide lower bounds for the Bayes factor of H0 to H1 when π(θ) belongs to the following
possible classes of priors:

ΓNormal = {π : π(θ) = Normal(0, v2), v > 0}
ΓUS = {π : π(θ) is unimodal and symmetrical about 0}

ΓSym = {π : π(θ) is symmetrical about 0} .

Table 3 displays these lower bounds for various p-values, along with the calibration −ep log p.

p 0.1 0.05 0.01 0.001
−ep log p 0.6259 0.4072 0.1252 0.01878
ΓNormal 0.7007 0.4727 0.1534 0.02407

ΓUS 0.6393 0.4084 0.1223 0.01833
ΓSym 0.5151 0.2937 0.0730 0.00887

Table 3: Infimum of Bayes factors, p-values and their calibrations.

A striking feature of Table 3 is the close agreement between the lower bounds on the Bayes
factors for the class ΓUS and the proposed calibration, −ep log p. This class of priors is often
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argued to contain all objective and sensible priors, so that the close agreement lends strong
support to the appropriateness of the calibration. Incidentally, the close agreement also indicates
that the hazard rate function for the alternatives at which the infimum is attained must be nearly
constant, and this can indeed be shown numerically. The class ΓSym clearly falls outside the
conditions under which the calibration bound is valid, but this is arguably a much too large
class of priors.

�

The next example considers the multivariate normal situation. Comparisons between p-
values and Bayes factors can be difficult in higher dimensions, so this example is of considerable
interest in indicating whether or not the proposed calibration is also reasonable in higher di-
mensions (although note that the nonparametric arguments of Subsection 3.1 would equally well
apply to higher dimensional situations).

Example 3.3 Assume that the null model for the data X = (X1, . . . ,Xk) is Nk(0, I) and that
the alternative is Nk(θ, I), where I is the k × k identity matrix. (Without loss of generality,
we assume that there is only the single vector observation.) The prior distribution under the
alternative is assumed to belong to the following class of scale mixtures of normals:

θ|v2 ∼ Nk(0, v2I)
π(v2) is a nondecreasing density on(0,∞). (3.7)

The reason we do not consider the conjugate class of Nk(0, v2I) priors here is that such priors
concentrate most of their mass very near the surface of the ball of radius v

√
k in higher dimen-

sions, which does not seem appropriate. In contrast, the priors in (3.7) can assign considerable
mass elsewhere.

It is easy to see that finding the lower bound on the Bayes factor over the class in (3.7) is
equivalent to finding the lower bound over the smaller class in which π(v2) is Uniform(0, r),
r > 0. The Bayes factor of H0 to H1, corresponding to this prior, is (for k > 2)

Br =
r ba e−b

Γ(a) [G(b|a, 1) − G( b
1+r |a, 1)]

, (3.8)

where a = k/2−1, b = ||x||2/2, and G(·|a, b) is the Gamma distribution function with parameters
a and 1. The infimum, B, of Br over r is then easy to compute numerically. Table 4 gives
the values of B for various p-values, p, and various dimensions, k. The calibration seems to
maintain a very close similarity to the lower bounds on the Bayes factors for any dimension,
lending considerable additional credibility to its use.

�
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p 0.1 0.05 0.01 0.001
−ep log p 0.6259 0.4072 0.1252 0.01878

k = 3 0.6419 0.4281 0.1371 0.02101
k = 6 0.6062 0.3989 0.1253 0.01894
k = 15 0.5750 0.3748 0.1165 0.01748
k = 30 0.5603 0.3643 0.1129 0.01695

Table 4: B, p-values and their calibrations for various dimensions k.

4. Conclusions

The most important conclusion is that, for testing ‘precise’ hypotheses, p- values should not be
used directly, because they are too easily misinterpreted. The standard approach in teaching,
of stressing the formal definition of a p-value while warning against its misinterpretation, has
simply been an abysmal failure. In this regard, the calibrations proposed in (1.2) and (1.3) are
an immediately useful tool, putting p-values on scales that can be more easily interpreted.

While the proposed calibrations ameliorate the worst features of p-values, they can them-
selves be criticized for being biased against the null hypothesis; recall that the calibrations arose
from bounds on Bayes factors or conditional Type I error probabilities that were least favorable
to the null hypothesis. That such bounds are still much larger than p-values indicates the severe
nature of the bias against a precise null incurred through common interpretations of p-values.

While the calibrations are a considerable improvement over p-values, this issue of bias against
the null leads us to instead recommend objective Bayesian or conditional frequentist procedures,
for situations when the alternative hypothesis is specified. References to the development of such
procedures include, on the Bayesian side, Jeffreys (1961), Kass and Raftery (1995), O’Hagan
(1995), and Berger and Pericchi (1996, 1998); and, on the conditional frequentist side, Berger,
Brown, and Wolpert (1994), Berger, Boukai, and Wang (1997), Dass and Berger(1998), and
Dass(1998).

One scenario in which we would definitely recommend use of the calibrations is when inves-
tigating fit to the null model, with no explicit alternative in mind. The lack of an alternative
precludes use of the objective Bayesian or conditional frequentist procedures mentioned above.
See Bayarri and Berger (1998, 1999) for further discussion of this issue.
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Appendix

In this Appendix, we provide the S+ code to simulate the proportion of times that the null
hypothesis is true when p ≈ 0.05 or p ≈ 0.01. Specifically, L values of the usual normal T

statistic, T (X) =
√

n |X |/σ, are generated, the known standard deviation, sigma, and sample
size, n, being inputs. (The values sigma = 1 and n = 20 are chosen below, but the specific
choices are irrelevant and could vary from test to test; all that really matters is the choice of the
ηj = √

nj θj/σj .) Features that must be specified are pi0, the initial proportion of true nulls,
and the theta1, the means under the alternatives. The simulation could be conducted with any
desired sequence of alternative means, but the program below accommodates three interesting
options: (i) all alternative theta1 are fixed at the value a; (ii) the alternative theta1 are
randomly generated from a normal distribution with mean 0 and standard deviation a; (iii) the
alternative theta1 are randomly generated from a uniform distribution on the interval (-a, a).
These three options are accessed by setting dis equal to 1, 2, and 3, respectively. pro returns
the proportion of T -values in (1.96, 2] (that is, with p ≈ 0.05), and in (2.576, 2.616] (that is,
with p ≈ 0.01) for which the null hypothesis is true.

sigma <- 1 # standard deviation
n<-20 # sample size

pro <- function(pi0, L, a, dis)
{
L0 <- round(L*pi0/100) # number of simulations from H0
L1 <- L - L0 # number of simulations from H1
x0 <- rnorm(L0, 0, sigma/sqrt(n)) # sample means from H0
switch(dis,

x1<-rnorm(L1, a, sigma/sqrt(n)), #one point
{theta1 <- rnorm(L1, 0, a);
x1 <- rnorm(theta1, sigma/sqrt(n))}, #normal

{theta1 <- runif(L1, -a, a);
x1 <- rnorm(theta1, sigma/sqrt(n))} ) #uniform

t0 <- abs(x0) * sqrt(n)/sigma #t’s with H0 true
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t1 <- abs(x1) * sqrt(n)/sigma #t’s with H1 true
pr1<- 1/(1 + length(t1[1.96<t1 & t1<= 2])/length(t0[1.96<t0 & t0<= 2]))
pr2<- 1/(1+length(t1[2.576<t1 & t1<=2.616])/length(t0[2.5766<t0 & t0<=2.616]))
return (pr1*100, pr2*100)
}

When p ≈ 0.05, it is interesting to note that the proportion of true nulls will usually exceed
the initial proportion pi0, unless a is chosen carefully. Indeed, finding the value of a that
minimizes the proportion of true nulls is an interesting exercise. For the three cases considered
in the simulation and if the initial percentage of true nulls is 50%, the corresponding minimum
percentages are (i) 23%; (ii) 32%; and (iii) 29%. These arise for values of a that are roughly
2 sample standard deviations from the null mean. Note that case (i) is the absolute minimum
over all possible sequences of theta1.
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