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Cortical neurons of behaving animals generate irregular spike sequences.
Recently, there has been a heated discussion about the origin of this ir-
regularity. Softky and Koch (1993) pointed out the inability of standard
single-neuron models to reproduce the irregularity of the observed spike
sequences when the model parameters are chosen within a certain range
that they consider to be plausible. Shadlen and Newsome (1994), on the
other hand, demonstrated that a standard leaky integrate-and-fire model
can reproduce the irregularity if the inhibition is balanced with the exci-
tation. Motivated by this discussion, we attempted to determine whether
the Ornstein-Uhlenbeck process, which is naturally derived from the
leaky integration assumption, can in fact reproduce higher-order statis-
tics of biological data. For this purpose, we consider actual neuronal spike
sequences recorded from the monkey prefrontal cortex to calculate the
higher-order statistics of the interspike intervals. Consistency of the data
with the model is examined on the basis of the coefficient of variation
and the skewness coefficient, which are, respectively, a measure of the
spiking irregularity and a measure of the asymmetry of the interval dis-
tribution. It is found that the biological data are not consistent with the
model if the model time constant assumes a value within a certain range
believed to cover all reasonable values. This fact suggests that the leaky
integrate-and-fire model with the assumption of uncorrelated inputs is
not adequate to account for the spiking in at least some cortical neurons.

1 Introduction

There are a large number of single-neuron models designed to reproduce
aspects of spiking statistics, such as the probability density of interspike
intervals (ISIs). Although some models can reproduce the observed statis-
tics, the physiological meaning of model parameters has not yet been thor-
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oughly examined. For example, although Gerstein and Mandelbrot (1964)
presented a successful fitting of the first passage time distribution func-
tion of the Wiener process to the real ISI histograms of a neuron in the
cat cochlear nucleus, one cannot relate the parameters determined in this
fitting with the concrete membrane dynamics of a biological neuron. Alter-
natively, one can assume an accumulated Poisson excitation process as the
concrete spiking mechanism. By fitting the model ISI distribution with the
real ISI histograms, however, it is found that, assuming this model, a neuron
should generate a spike with only a few excitation inputs (see, for instance,
Tuckwell, 1988). This runs counter to our basic knowledge of the neuronal
spiking processes, outlined as follows.

A typical cortical neuron receives spiking signals from thousands of neu-
rons (Ishizuka, private communication, 1998; Ishizuka, Cowan, & Amarel,
1995; Abeles, 1991). The number of spikes arriving within an interval of
length equal to the membrane time constant is also large, and the fluctua-
tion in the accumulated potential is expected to be relatively small. Thus,
the membrane potential should increase regularly, and a neuron should
generate temporally regular spikes. Cortical neurons, however, do not ac-
tually generate regular spike sequences, although motoneurons do. This is
the point of the discussion by Softky and Koch (1993). They concluded that
some strong nonlinearity is necessary in single-neuron models to reproduce
the spiking irregularity.

In the discussion by Softky and Koch, it is assumed that the mean ex-
citation is greater than the mean inhibition. If the inhibition is comparable
to the excitation, however, the net input becomes small, and its fluctuation
is relatively large. The balanced inhibition thus causes the cell to possess a
membrane potential that behaves similarly to a random walk and a high
irregularity of the spike sequence. Even the simple leaky integrate-and-fire
model can reproduce the spiking irregularity. This is the point addressed
by Shadlen and Newsome (1994).

The Ornstein-Uhlenbeck process, which is naturally derived from the
leaky integration assumption, can in fact generate the irregular spike se-
quence by means of balanced inhibition. There are several studies concern-
ing the manner in which balanced inhibition is brought about naturally in
model networks (Tsodyks & Sejnowski, 1995; van Vreeswijk & Sompolinsky,
1996; Amit & Brunel, 1997). However, our knowledge of the physiological
parameters of biological neurons is not yet sufficient to specify the param-
eter range of a single-neuron model. It is not easy to control the inhibition
balance for a neuron whose spike rate is changing (Shinomoto & Sakai,
1998).

Thus, we wish to determine the suitability of the Ornstein-Uhlenbeck
process by studying actual biological spiking data. In this way, we estimate
not only the coefficient of variation (CV), which is a measure of the spiking
irregularity, but also the skewness coefficient (SK), which is a measure of
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the asymmetry of the ISI distribution. The consistency of the spiking data
with the Ornstein-Uhlenbeck process will be examined using these two
coefficients. If a biological spike sequence consists of a very large number
of ISIs, then we can employ higher-order statistical coefficients in addition
to these two for the examination of data, or we can construct a detailed
ISI histogram for direct comparison with the model distribution function.
However, the number of ISIs included in each of our biological data sets is
on the order of 100, which is not large enough to justify the employment of
additional coefficients.

There have been several studies in which biological data were exam-
ined on the basis of certain statistical coefficients. The statistical coefficients
Lánský and Radil (1987) studied are not CV and SK, but SK and the coef-
ficient of excess, the latter of which contains the fourth-order moment. In
that study, a spike sequence is identified with a single point on the plane
defined by these two statistical coefficients. Spiking data recorded from neu-
rons in the cat mesencephalic reticular formation were found to be widely
distributed on this plane, and these authors were not able to use their re-
sults to select a particular model process from several that are typically used,
such as the Poisson process (which generates the exponential distribution
of ISIs), the accumulated Poisson excitation process (the gamma distribu-
tion), and the Wiener process (the inverse-gauss distribution). Inoue and
Sato (1993) performed numerical simulations of the Ornstein-Uhlenbeck
process with a variety of parameter sets and also plotted their results on
the plane determined by these two coefficients, SK and coefficient of excess.
Inoue, Sato, and Ricciardi (1995) attempted to fit the ISI distribution of the
Ornstein-Uhlenbeck process to ISI histograms taken from mesencephalic
neurons. To our knowledge, however, the consistency of biological data
with a single-neuron model has never been tested with statistical rigor.

If a spike sequence is generated by a specific single-neuron model, the
model parameters, which specify intraneuronal conditions and the statisti-
cal characteristics of incoming inputs, determine the shape of ISI distribution
and thus also the statistical coefficients, such as CV and SK. By sweeping
through values of the model parameters, we can specify the region of feasi-
ble (CV, SK) values for a specific single-neuron model. If the statistical co-
efficients (CV, SK) obtained from biological data deviate significantly from
the model-feasible region, taking into account possible deviation due to the
finite number of ISIs, then the single-neuron model should be rejected. We
will take up the spiking data recorded from the prefrontal cortex of rhe-
sus monkeys while performing a delay-response task (Funahashi, Hara, &
Inoue, 1999). By plotting the data and the feasible region of the Ornstein-
Uhlenbeck process onto the CV-SK plane, we have found that they are in-
consistent with each other.
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2 The Biological Data

In this section, we briefly summarize the delay response experiment by
Funahashi (1998), whose task paradigm is identical to one of the varieties in
Funahashi, Bruce, and Goldman-Rakic (1989) and Goldman-Rakic, Bruce,
and Funahashi (1990). We will also explain the methods we use in preparing
data for analysis here.

A monkey is trained to fixate its eyes on a central spot that appears in a
cathode ray tube. Eye position is monitored by a magnetic search coil. After
the monkey has maintained fixation for 0.75 sec, a cue spot is presented
for 0.5 sec at a position selected randomly from eight peripheral locations
(see Figure 1a). The monkey is required to maintain fixation on the central
spot when the cue spot appears in the peripheral region and throughout the
subsequent delay period of 3 sec in which the cue stimulus is absent. After
the delay period, which is signaled by the extinction of the fixation spot,
the monkey is expected to make a saccadic eye movement within 0.5 sec.
If the saccade falls within some diameter of the cue position, the monkey
is rewarded with a drop of water or juice. After a training period of a few
months, all monkeys became capable of performing the task with a success
rate of 90% or more. In this study, we are interested in the spiking data of
successful trials, and thus we ignore all unsuccessful trials.

Throughout the repetition of the delay-response task, the spiking of a
neuron was recorded from the principal sulcus in the prefrontal cortex. The
neuronal spike rate generally changes in response to changes in experi-
mental conditions. Within the delay period, neurons appear to exhibit a
sustained spike rate. In some neurons, the level of the sustained spike rate
depends largely on the choice of cue stimuli (see Figure 1b). This suggests
that the cue information (short-term memory) is preserved in the form of
activity patterns of neuronal assembly in a region somewhere about the pre-
frontal cortex during the 3 sec delay period. It is interesting to note that the
recorded spike sequences display a large CV value (∼ 1), which is nearly in-
dependent of the mean spike rate. Shinomoto and Sakai (1998) pointed out
the inability of the leaky integrate-and-fire model to preserve the spiking
irregularity, but we do not address this problem here.

We considered only the middle 2 sec in the delay period of 3 sec in order
to avoid the possible initial and final transient changes. The number of
spikes contained in this 2 sec is typically fewer than 20, which is too small
to obtain a reliable estimate of the statistical coefficients. In order to obtain
a long spike sequence, we linked spike sequences of different trials with the
same cue stimulus, assuming that for each trial corresponding to a given
cue stimulus, each neuron is subject to the same conditions. If a linked spike
sequence contains more than 100 spikes, we cut off a sequence of 100 ISIs
to calculate the statistical coefficients CV and SK.

We tested two methods of linkage. In the first method (LINKAGE1, L1),
we simply linked the 2 sec records to make up a long time series. In this
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Figure 1: (a) Schematic representation of the delay-response task. (b) Spiking
sequences of one principal sulcus neuron, classified according to the cue stim-
ulus. F, C, D, and R represent the fixation period, cue period, delay period, and
response period, respectively. The cue stimulus is chosen randomly from the
eight directions, and for this reason the number of trials varies with direction.
The plot in the center is the delay period spike rate (radial) as a function of cue
position (angle).



940 Shigeru Shinomoto, Yutaka Sakai, and Shintaro Funahashi

method, the period of time τ1 after the final spike in one 2 sec record and
the period of time τ2 before the first spike of the succeeding 2 sec record
are combined to form a single interval of length τ1 + τ2. In another method
(LINKAGE2, L2), we linked interspike intervals included in 2 sec records
by ignoring the first and the last fragmentary intervals. In the latter method,
any 2 sec record that contains fewer than two spikes is ignored entirely, and
long intervals are removed. Thus, L2 has a tendency to shorten the mean
spike interval, while L1 preserves it.

We examined spiking data recorded from 233 neurons. The total number
of successful trials recorded with respect to each neuron was about 70. We
divided the data according to the eight types of cue stimuli and made up
233× 8 = 1864 linked spike sequences for each method of linkage. Among
these 1864 linked spike sequences prepared by means of L1, 666 (35.7%) con-
tained more than 100 spikes. Among these prepared using L2, 611 (32.8%)
contained more than 100 spikes. Figure 2 summarizes the sets of 100 ISIs
prepared with the above described methods in the plane defined by the
statistical coefficients CV and SK, whose precise definitions are given in the
succeeding section.

3 Statistical Coefficients of a Spike Sequence

Data are examined in this article on the basis of two dimensionless statistical
coefficients: the coefficient of variation CV, and the skewness coefficient SK.
The CV is a measure of variability of ISIs, defined as the ratio of the standard
deviation to the mean,

CV = (T − T)2
1/2

T
,

where T is the interspike interval, and · · · represents an averaging operation:
x = 1

n

∑n
i=1 xi. For the sake of producing an unbiased estimation of the

mean squared deviation, we must revise (T − T)2 from 1
n

∑n
i=1(Ti − T)2 to

1
n−1

∑n
i=1(Ti − T)2.

The SK is a measure of the asymmetry of the interval distribution, defined
as

SK = (T − T) 3

(T − T)2
3/2 .

It should be stressed that any definite distribution function whose mo-
ments Tµ are finite uniquely determines the coefficients CV and SK, but the
two coefficients CV and SK alone do not uniquely determine the shape of a
distribution.

It is easy to calculate (CV, SK) for a distribution function given in a
closed form. For instance, a simple Poisson process in which spikes are
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Figure 2: Dots represent the estimated (CV, SK) values of the spike sequences
of 100 ISIs. Plots (a) and (b) respectively represent the data prepared according
to the methods L1 and L2.

generated randomly in time with some fixed mean rate yields an exponential
distribution of intervals,

p(T) = a exp(−aT).

This exponential distribution gives (CV, SK) = (1, 2).
In the accumulated Poisson excitation process, a neuron generates a spike

when the number of incoming excitation inputs following the preceding
spiking event reaches a certain fixed value. This accumulated Poisson exci-
tation process leads to a gamma distribution,

p(T) = abTb−1 exp(−aT)/0(b),

where b is the number of excitation inputs needed for a neuron to emit a
spike, and 0(b) is the gamma function. For the gamma distribution, the
points (CV, SK) lie on the line SK = 2CV.

In the Wiener process, the neuronal membrane potential is characterized
by a one-dimensional random walk with a constant drift force. A neuron
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generates a spike if the potential exceeds some threshold level, and then the
potential is reset to some lower level. The first passage time of the Wiener
process is known to obey the inverse gaussian distribution,

p(T) =
(

b
2πT3

)1/2

exp
(
−b(T − a)2

2a2T

)
.

The points (CV, SK) for the inverse-gaussian distribution lie on the line
SK = 3CV.

Points and lines derived from these typical distributions are depicted
in Figure 3a. We can easily observe from the comparison of Figure 3a and
Figure 2 that these simple models do not account for the biological data,
which are widely distributed in the plane. We are thus motivated to consider
a more realistic model.

4 Leaky Integrate-and-Fire Model and the Ornstein-Uhlenbeck Process

A neuron is most simply modeled as an integrator of incoming spike sig-
nals. A spike signal arriving at a synaptic junction adds an increment or
a decrement to the membrane potential of a neuron. If the cell membrane
potential exceeds a certain threshold value, a neuron fires and emits a spike,
and then the potential quickly returns to a near-resting level. Another im-
portant characteristic of the electrical process is that the membrane potential
of a neuron tends to decay toward the resting level in a certain time scale
(see, for instance, Nicholls, Martin, & Wallace, 1992).

There are many mathematical models for the membrane dynamics (see,
for instance, Tuckwell, 1988). The leaky integrate-and-fire model is the sim-
plest one of these that captures the essential ingredients of the membrane
dynamics. This model can be written as

du
dt
= −u

τ
+ (inputs),

if u > u1, then u→ u0,

where u represents the membrane potential of the cell body measured from
its resting level, and τ is the membrane time constant. The original inputs are
delta functions of time, which represent (positive) excitatory postsynaptic
potentials (EPSPs) and (negative) inhibitory postsynaptic potentials (IPSPs).
If the individual inputs are sufficiently small in magnitude compared to the
height of the threshold value, and if the events are temporally independent,
then the inputs can be treated as constituting the delta-correlated stationary
stochastic process,

(inputs) = (mean)+ (fluctuation).

In addition, if the “fluctuation” term represents gaussian white noise,
then the dynamics are identical to the Ornstein-Uhlenbeck process (OUP),
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Figure 3: (a) Points and lines in the CV-SK plane derived from several typi-
cal model processes. Accumulated Poisson processes for which the number of
excitation inputs are b = 1 (the Poisson process) and b = 2, 3, 4, · · · lie on the
line SK = 2CV. The Wiener process can produce a range of CV and SK values.
The corresponding points (CV, SK) lie on the line SK = 3CV. (b) The OUP fea-
sible region is represented by the shaded areas. We neglect the lightly shaded
area, however, because it corresponds to the obviously unacceptable situation
T/τ < 1. The dashed lines represent the envelope of 1% contours of distribution
of (CV, SK) points, each estimated from 100 ISIs obtained in OUP simulations
with various parameter choices within the constraint of T/τ ≥ 1.

and the ISI corresponds to the first passage time starting from u0 and reach-
ing u1. Using a suitable transformation, one can reduce the original model
to a “normalized” OUP,

dx
dt
= −x+ ξ(t),

if x > ω, then x→ α,

where ξ is gaussian white noise with ensemble average characteristics 〈ξ(t)〉
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= 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). This normalized OUP has two independent
parameters, α and ω.

There have been a number of studies on the first passage time of the OUP.
Although the first passage time density is not known in a closed form, all
moments of the first passage time are known in the form of several kinds
of series expansions. We summed the first 100 terms of a series expansion
formula due to Ricciardi and Sato (1988). We also summed the first 10 terms
of an asymptotic expansion formula due to Keilson and Ross (1975). In
the appendix, we summarize these two expansion formulas, and show our
method of connecting these functions, for the practical estimate of moments.

5 Statistical Examination of the Points (CV, SK)

The OUP exhibits a range of both CV values and SK values. The model, how-
ever, does not cover the whole CV-SK plane, even when sweeping through
all the possible parameter values. The feasible region in the CV-SK plane
is found to be rather localized, as depicted in Figure 3b (shaded region). If
we were able to obtain a spike sequence of infinite length and if the cor-
responding (CV, SK) points were found to lie outside this feasible region,
then we could reject the OUP.

Practical experiment, however, does not provide us with spike sequences
of infinite length, and we must draw conclusions from data with a finite
number of ISIs. We studied spike sequences consisting of 100 ISIs prepared
according to methods L1 and L2, and estimated (CV, SK) values for every
such set of ISIs. In order to examine these biological data properly, we must
estimate the degree of possible deviation due to finiteness of the number of
ISIs. We did this using numerical simulations.

For instance, Figure 4 shows the contour map of the distribution of
(CV, SK), each of which is estimated from 100 ISIs generated by the Poisson
process. If we assume the spiking process to be a Poisson process, then we
should directly compare the physiological data, Figure 2, with this distribu-
tion, Figure 4. We can see that the biological data are obviously inconsistent
with the Poisson process. In fact, the fraction of the number of biological
data lying outside this 10% contour is 63.2% in L1 and 61.4% in L2, the frac-
tion outside the 1% contour is 41.0% in L1 and 35.2% in L2, and the fraction
outside the 0.1% contour is 26.7% in L1 and 21.0% in L2.

Because we do not know the correct value of biological neuronal parame-
ters, we must consider all model parameter values in the data examination,
excluding obviously unacceptable values. We have excluded the model pa-
rameter values that lead to T/τ < 1 for the following reason. Among the
experimental spike sequences, the mean interspike interval, which corre-
sponds to T, is at least 30 msec and typically greater than 100 msec. In other
words, the average spike rate is fewer than 10 spikes per second. On the other
hand, the membrane time constant, which corresponds to τ , is considered
to range from 1 to 20 msec (see, for instance, Nicholls, Martin, & Wallace,
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Figure 4: Contour map of the distribution of (CV, SK) values, each estimated
from 100 ISIs generated by the Poisson process.

1992; Thomson & Deuchars, 1997). The ratio of the mean spike interval and
the membrane time scale T/τ should thus be much greater than unity. The
constraint of excluding model parameter values that give T/τ < 1 is thus
quite reasonable and sufficiently mild. The feasible region so determined
(T/τ ≥ 1) is also depicted in Figure 3b (the heavily shaded region).

For a given parameter set that satisfies the constraint (T/τ ≥ 1), we nu-
merically obtained a contour map of the probability distribution of (CV, SK)
values, each estimated from 100 ISIs generated from Langevin simulations
of the OUP. We then moved to a different parameter set to obtain another
contour map of the probability distribution, centered at a different position.
By repeating this within the region of model parameter values bounded by
the above-mentioned constraint, we are able to determine the envelope of
1% contours for the set of all such OUP simulations. This is also depicted in
Figure 3b (dashed lines).

The number of experimental data lying outside this envelope of 1% con-
tours is expected to be (much) less than 1% of the total if the OUP (within
the reasonable parameter range) is to be considered a good model of neu-
ronal spiking. In Figure 5, we compare this 1% envelope with the biological
data obtained using L1 and L2. The number of data lying outside the 1%
envelope, however, turned out to be 48 in the case of L1, which represents
7.2% of the 666 spike sequences, and 29 in the case of L2, which represents
4.7% of the 611 spike sequences. Thus, we can reject the pure OUP as a good
model of the spiking process based on the results for both methods L1 and
L2.

Up to this point we have adopted T/τ ≥ 1 as a basic constraint for the
data examination. This constraint is reasonable in this situation, because
the membrane time constant τ is considered to be at most 20 msec, and the
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Figure 5: Comparison of the biological data with the envelope of 1% contours
obtained in OUP simulations with various parameter choices (dashed line).
Plots (a) and (b) represent the data corresponding to L1 and L2, respectively.
The fraction of the data lying outside the envelope turned out to be 7.2% for L1
and 4.7% for L2.

mean interspike interval T in our data is at least 30 msec. In a typical case,
we have T/τ ∼ 10, because τ is typically 10 msec and T is typically 100 msec.

It would be interesting, however, to examine the case of smaller T/τ .
This happens if some slower processes are taking place in a neuron, and
the decay time constant τ is larger than the mean interspike interval T. Let
us consider the looser condition, T/τ ≥ 0.1, which means that the decay
time constant τ can be as much as 300 msec, regarding the present data. We
can determine the new 1% envelope for this excessively loose condition and
enumerate the number of data lying outside the 1% envelope. The number
of data lying outside the new 1% envelope turned out to be 27 in L1 (4.1% of
666) and 10 in L2 (1.6% of 611), and we can still reject this excessively loose
constraint T/τ ≥ 0.1. Furthermore, let us examine the loosest condition: no
constraint on the time constant. We can also determine the 1% envelope
for this no-constraint case. The number of data lying outside the new 1%
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envelope is 13 in L 1 (2.0% of 666) and 3 in L2 (0.5% of 611). We should point
out that this no constraint on the time constant τ , as well as the excessively
loose constraint T/τ ≥ 0.1, is not biologically reasonable.

The data lying outside the original 1% envelope (dashed lines) generally
have large SK values (see Figure 5). It is important to note that the fraction
of the number of such data is smaller in the L2 case (4.7%) than in the L1 case
(7.2%). We saw in section 2 that L2 has a tendency to neglect long intervals,
comparable in length to that of the individual segment interval. The major
cause of the large SK values is thus the presence of a few anomalous long
intervals embedded in a spike sequence.

6 Discussion

In a heated discussion aroused by Softky and Koch (1993), most studies have
been focused on the irregularity of the spike sequence, or a large CV value.
As Shadlen and Newsome (1994) pointed out, the simple leaky integrate-
and-fire model can reproduce the observed spiking irregularity if the inhi-
bition is balanced with the excitation. This is also true of the OUP, which
is naturally derived from the leaky integration assumption. In this article,
we proposed examining spiking data on the basis of the coefficient of vari-
ation, CV, and the skewness coefficient, SK. We have analyzed the spiking
data recorded from the prefrontal cortex of rhesus monkeys on the plane
determined by these two coefficients. As a result, the data are found to be
inconsistent with the genuine Ornstein-Uhlenbeck process if the model time
constant is chosen within the reasonable range.

The inconsistency is mainly due to the data of large SK values. The
anomalous long intervals embedded in spike sequences could be a cause
of this discrepancy. There is a possibility that the anomalous long intervals
are due to experimental error. This could result, for instance, if the rela-
tive distance between a microelectrode and a neuron gradually changed
and a spike discriminator thus failed to detect actual spikes for a period.
Thus, a more detailed examination of the original spike sequence is desir-
able. However, the result obtained from spike sequences prepared by the
method L2, which has the tendency to remove quite long intervals, still re-
jects the genuine OUP. This implies that the disagreement cannot be due
simply to experimental error. It represents a real inconsistency.

We must keep in mind that there is an additional possibility for error
to enter in the data preparation, owing to the principle of linkage itself.
We linked spike sequences of different trials, assuming that each neuron is
statistically subject to the same conditions when under the influence of the
same cue stimulus. This is true if the neuronal assembly always assumes
a definite stationary state (in a statistical sense) that depends only on the
cue stimulus. Monkey’s unsuccessful trials are interpreted here as failures
of neuronal assembly in maintaining a particular stationary state, and thus
we removed all the data from unsuccessful trials. There is, of course, a
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possibility that the apparent stationary state existing in the delay period is
not uniquely determined by the cue stimulus alone, but that it also reflects
various other factors. If we were able to obtain truly long stationary spike
sequences, we would not be bothered with these complicated linkage proce-
dures, and we could directly compare the data on the basis of the (CV, SK).
We should note, however, that it is not easy to prove that any given neuron
is in a statistically stationary condition for a long period. Active animals
are generally not stationary, and therefore the neuronal spiking cannot be
stationary either if the neurons are more or less involved in the animal’s
behavior. The present highly controlled delay-response task succeeded in
maintaining the monkey’s temporally stationary state during this delay pe-
riod. Thus, we believe that the present data are of relatively good quality as
biological data.

If we can assume that the data are free from possible experimental errors,
then we should revise our understanding of fundamental and environmen-
tal conditions of neuronal spiking. In this case, we must reexamine the
three fundamental assumptions used in deriving the Ornstein-Uhlenbeck
process: those concerning the linear integration mechanism, the decay of
the membrane potential, and the delta-correlated stationarity of incoming
inputs to a neuron. A plausible mechanism that could be added to the orig-
inal integration mechanism is a nonlinear shunting inhibition, in which the
inhibition current is strong enough suddenly to cancel the membrane po-
tential accumulated to that point. If the shunting inhibition is brought about
by some other simple Poisson process, however, a neuron would be sub-
ject to a random interruption, which would bring about a relatively short
silence. Thus, the nonlinear shunting mechanism of this kind does not ap-
pear to explain the anomalous long intervals. It appears that we rather have
to start with a thorough examination of all sorts of statistical structure of
the incoming inputs to a neuron.

Appendix

We summarize here the method we used to obtain the first-, second-, and
third-order cumulants of the first passage time T of the OUP. These cumu-
lants respectively correspond to

C1 = T, C2 = (T − T)2, C3 = (T − T)3.

Each cumulant Ck, which is a function of the initial position α and the
threshold ω, can be decomposed as Ck(α, ω) = ψk(α) − ψk(ω). Each ψk is
given by the set of other functions {φk}k as

ψ1 = φ1, ψ2 = φ2 − φ2
1 , ψ3 = φ3 − 3φ2φ1 + 2φ3

1 .

The functions {φk(x)}k are not known in a closed form, but are known in
the form of several kinds of series expansions. A series expansion formula
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due to Ricciardi and Sato (1988) is

φRS
1 (x) =

L∑
n=1

γ (n)xn,

φRS
2 (x) = 2

L∑
n=1

γ (n)ω1(n)xn,

φRS
3 (x) = 3

L∑
n=1

γ (n)(ω2(n)+ ω2
1(n))x

n,

where,

γ (1) = −
√
π

2
, γ (2) = −1

2
,

γ (n+ 2) = n
(n+ 2)(n+ 1)

γ (n), (n ≥ 1),

ωk(0) = 0,

 ω1(1) = ln 2

ω2(1) = π2

12
, ωk(n+ 2) = ωk(n)− 1

nk
.

An asymptotic formula due to Keilson and Ross (1975) is

φKR
1 (x) =

M∑
n=0

x−2n(p(0)n ln |x| + p(1)n ),

φKR
2 (x) = 2

M∑
n=0

x−2n
(

1
2

p(0)n ln2 |x| + p(1)n ln |x| + p(2)n

)
,

φKR
3 (x) = 3!

M∑
n=0

x−2n
(

1
3!

p(0)n ln3 |x| + 1
2

p(1)n ln2 |x| + p(2)n ln |x| + p(3)n

)
,

where,
p(0)0
p(1)0
p(2)0
p(3)0

 =


1
0.63518142
0.81857797
0.78512305

 ,


p(0)n+1
p(1)n+1
p(2)n+1
p(3)n+1

 =


an 0
bn an
cn bn an
0 cn bn an




p(0)n

p(1)n

p(2)n

p(3)n

 ,
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an ≡ −2n(2n+ 1)
2n+ 2

, bn ≡ 2n+ (2n+ 1)
2n+ 2

, cn ≡ − 1
2n+ 2

.

For the practical estimate of the cumulants, we summed the first 100 terms
for the RS expansion formula (L = 100) and the first 10 terms for the KR
expansion formula (M = 10). In order to connect these functions sufficiently
smoothly, we sought the best position to switch these expansion formulas,
respectively, for each φk,

φKR
1 (x) for x < −5.70, φRS

1 (x) for − 5.70 ≤ x,

φKR
2 (x) for x < −5.55, φRS

2 (x) for − 5.55 ≤ x,

φKR
3 (x) for x < −5.50, φRS

3 (x) for − 5.50 ≤ x.

By means of these expansion formulas, we estimated the CV and SK
values,

CV = C1/2
2

C1
, SK = C3

C3/2
2

.
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