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Some Aspects of the Spline Smoothing Approach to Non-parametric 
Regression Curve Fitting 

By B. W. SILVERMAN 
University of Bath 

[Read before the Royal Statistical Society at a meeting organized by the Research Section 
on Wednesday, October 10th, 1984, Professor J. B. Copas in the Chair] 

SUMMARY 
Non-parametric regression using cubic splines is an attractive, flexible and widely- 
applicable approach to curve estimation. Although the basic idea was formulated 
many years ago, the method is not as widely known or adopted as perhaps it should 
be. The topics and examples discussed in this paper are intended to promote the 
understanding and extend the practicability of the spline smoothing methodology. 
Particular subjects covered include the basic principles of the method; the relation 
with moving average and other smoothing methods; the automatic choice of the 
amount of smoothing; and the use of residuals for diagnostic checking and model 
adaptation. The question of providing inference regions for curves-and for relevant 
properties of curves-is approached via a finite-dimensional Bayesian formulation. 
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VALIDATION; AUTOMATIC SMOOTHING; RESIDUALS; REGRESSION DIAGNOSTICS; 
LOCAL REWEIGHTING: CHANGE POINT; MODEL CHOICE; BAYESIAN INFERENCE; 
EMPIRICAL BAYES; B-SPLINES; GROWTH CURVES; FUNCTIONALS OF CURVES; ROBUST 
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1. INTRODUCTION 
Consider the regression problem where we have observations Yi at design points ti, i = 1, .. ., n 
and the observations are assumed to satisfy 

Yi = g(ti) +e1. (1.1) 

In this paper the non-parametric estimation of the function g will be discussed. It will be assumed 
that the design points satisfy t, < t2 S ... < tn and that the errors ei are uncorrelated with zero 
mean. At first the variances of the ei will be assumed to be equal, but later this assumption will 
be relaxed. 

1.1. Motivation 
Before embarking on any technical details, it is important to consider the reasons why we 

might be interested in the estimation of the curve g, or, indeed, in any regression technique. 
Regression, of whatever kind, has two main purposes. Firstly, it provides a way of exploring and 
presenting the relationship between the design variable and the response variable; secondly, it gives 
predictions of observations yet to be made. A method for estimating a curve g will also be used 
for a third purpose, to give estimates of interesting properties of g. For example, in the study of 
growth curves the maximum rate of growth is an important quantity and so the maximum of the 
derivative of g will be of interest. This example will be discussed further in Section 7 below. 

Especially for the first and third of these purposes, a non-parametric method of estimation is 
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desirable, because it does not force the model into a rigidly defined class. An initial non-parametric 
estimate may well suggest a suitable parametric model (such as linear regression) but nevertheless 
will give the data more of a chance to speak for themselves in choosing the model to be fitted. We 
shall see, in Section 5.2 below, an example where a non-parametric regression curve is most helpful 
in suggesting an appropriate parametric model. 

The non-parametric regression method described and developed in this paper is the spline 
smoothing approach. The basic idea dates back at least to Whittaker (1923) and the method has 
been much studied in the past 20 years. Despite this attention by specialists, the method is not as 
widely known or used among the wider statistical and scientific community as perhaps it should 
be. 

1.2. Material Covered 
Various aspects of the spline smoothing method are discussed below. It will be seen that spline 

smoothing provides a natural and flexible approach to curve estimation, which copes well whether 
or not the design points are regularly spaced. As in almost all non-parametric smoothing methods, 
there is a smoothing parameter which determines how much the data are smoothed to produce the 
estimate. The automatic choice of this smoothing parameter will be discussed; the method 
described is computationally cheap and statistically efficient. 

Much of the recent work in regression analysis has been concerned with the use of residuals for 
model checking. We shall see how some of this work can be adapted to non-parametric regression. 
A feature frequently highlighted by residual plots is inhomogeneity of the error variance, 
suggesting the appropriateness of a weighted model, where observations are weighted by the 
reciprocals of their variances. A procedure for estimating the weights using local variance estimates 
will be described and illustrated by an example. 

Most non-parametric smoothing methods provide only a single estimate for the curve, without 
giving any indication of the likely estimation accuracy. Spline smoothing can be viewed in a 
Bayesian context as an inference problem in a high but finite dimensional space. This Bayesian 
formalism, described in the latter part of the paper, allows inference regions to be found directly 
for values of the curve itself and for quantities which depend linearly on the function g. A fast 
method for simulating from the posterior distribution of g will be developed; this makes it 
straightforward to obtain, by Monte Carlo methods, point and interval estimates for quantities, 
such as the maximum gradient, which do not depend linearly on g. 

The various methods developed in the paper are illustrated in practice by their use on three 
data sets drawn from different fields of application. All the techniques described have been 
implemented in Fortran on a mainframe computer; details of the programs are available from 
the author. 

The fimal section of the paper discusses extensions of the various techniques and gives some 
additional references to related work. A detailed bibliographic review of previous work on spline 
smoothing is rendered unnecessary by the excellent survey by Wegman and Wright (1983). Among 
the many developments since the formulation of spline smoothing in its modern form by 
Schoenberg (1964) and Reinsch (1967), special mention must be made of the substantial 
contribution made by Wahba in a series of papers in recent years; a selection of these is given in 
the references below. 

2. THE BASIC IDEA 
The most widely used approach to curve fitting is, of course, least squares. If we place no 

restrictions at all on the curve g then we can reduce the residual sum of squares z { Yi - g(ti)}2 
to zero by choosing g to be any curve which actually interpolates the data (provided the ti are 
all distinct). Such an interpolant would usually be rejected by the statistician on the grounds that 
its rapid fluctuations were implausible. The most commonly used device for avoiding such 
"implausible" estimates is to restrict attention to curves g which fall in some parametric class. 
Another approach is to quantify the competition between the two conflicting aims in curve 
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estimation, which are to produce a good fit to the data but to avoid too much rapid local 
variation. 

A measure of the rapid local variation of a curve can be given by a roughness penalty such as 
the integrated squared second derivative. Various roughness penalties have been suggested and 
used (see Good and Gaskins, 1971, and Boneva et al., 1972) but f(git)2 is most convenient for 
our purpose. Using this measure, defime the modified sum of squares 

S(g) = YS Y-g(t1)}2 + afg" (X)2dx; (2.1) 

the smoothing parameter a represents the rate of exchange between residual error and local 
variation. Minimizing S(g) over the class of all (twice-differentiable) functions g winl yield an 
estimate g which, for the given value of a, gives the best compromise between smoothness and 
goodness of fit. 

It can be shown (see Reinsch, 1967) that the curve g has the following properties: 

(i) it is a cubic polynomial in each interval (t1, ti+ 1 ); 
(ii) at the design points t1, the curve and its first two derivatives are continuous, but 

there may be a discontinuity in the third derivative; (2.2) 
(iii) in each of the ranges (- oo, t1 ) and (ta, oo) the second derivative is zero, so that g is 

linear outside the range of the data. 
Any curve which satisfies (i) and (ii) is called a cubic spline with knots ti. It should be stressed 
that the properties (2.2) are not imposed on the estimate, but arise automatically from the choice 
of roughness penalty f(g" )2. 

One of the useful consequences of the properties of g is computational. To find g explicitly we 
need to find the four coefficients which give the polynomial form of g in each interval. It turns 
out that all these coefficients can, essentially, be found by solving a band-limited linear system of 
size n. Stable and fast numerical algorithms for solving such systems are available: De Boor (1978, 
Chapter 14) gives a description of the way that g can be found and a Fortran implementation. 
The present author and collaborators have adapted De Boor's programs to yield a method which 
fmds g using 35n multiplications/divisions for the first value of the smoothing parameter and 25n 
thereafter. Thus the computational burden involved in finding g is very small and goes up linearly 
as the number of data points. 

3. WHAT IS SPLINE SMOOTHING ACTUALLY DOING TO THE DATA? 
A major conceptual problem with curve estimates like the spline smoother is that they are 

defined implicitly as the solution to a minimization problem rather than as an explicit formula 
involving the data values. This difficulty can be resolved, at least approximately, by considering 
how the estimate behaves on large data sets. The approximation described in this section has a 
dual purpose: not only to give a deeper understanding of the spline smoothing method but also 
to provide an ingredient of much of the practical methodology given later in the paper. Exact 
defmitions, statements and proofs of results in this section are given in Silverman (1 984a). 

It can be shown from the quadratic nature of (2.1) (cf. equation (2.2) of Wahba, 1975) that 
g is linear in the observations Y1, in the sense that there exists a weight function G(s, t) such that 

n 

g(s) =n1 E Yi G(s, ti). (3.1) 
z-=1 

The weight function depends on the design points tl,..., tn and also on the smoothing parameter 
a. We can obtain the asymptotic form of the weight function, and hence an approximate explicit 
form of the estimate. Suppose that n is large and that the design points have local density f(t), 
in that the proportion of ti in an interval of length dt near t is approximately f(t)dt. 

Provided s is not too near the edge of the interval on which the data lie, and a, is not too big or 
too small, it is the case that, for large n, 



4 SILVERMAN [No. 1, 
1 1 (s-tN 

G(s, t)~ 
L 

- K I 1(3.2) 
f(t) h (t) h(t) (32 

where the kernel function K is given by 

K(U) ~ exp (- I u 1/A/2) sin(I u 1/A/2 + r/4) (3.3) 
and the local bandwidth h(t) satisfles 

h(t) = oa4 n- 4 t) 4 (3.4) 

A graph of K iS given in Fig. 1. The basic message of these formulae is that the spline smoother is 
approximately a convolution (or weighted moving average) smoothing method. However, in 
general, the data are not convolved with a fixed width kernel function, but the scaling parameter 
h varies across the sample. Several specific conclusions can be drawn. 

0.4 

c 

- 0.2 - 
U) 

0 
-8 -4 0 4 8 

t 

Fig. 1. The effective kernel function K. 

(i) The form Of K implies that the observation at ti only has an influence on nearby parts of the 
curve 9. This influence dies away exponentially-a favourable contrast with the behaviour of some 
other curve fitting methods such as polynomial regression. 
(ii) Altering the smoothing parameter a alters the amount of smoothing applied generally. 
However, it is important to note the one-quarter power dependence of h on a, consequlent on the 
fact that a~ has dimensions of the cube of length. Thus we should not be surprised to encounter 
a large variation in the appropriate value of a in different problems, particularly if the scales of the 
design variables are different. 
(iii) The dependence of the local bandwidth on the density f is intermediate between fixed kernel 
smoothing (no dependence on f) and smoothing based on an average of a fixed number of neigh- 
bouring values (effective local bandwidth proportional to 1llf). Theoretical considerations (see 
Silverman, 1 984a) suggest that such intermediate behaviour is desirable because, in certain senses, 
moving from fixed kernel to nearest neighbour methods over-compensates for effects caused by 
variability in density of design points. Under suitable assumptions the ideal local bandwidth would 
be proportional to f--2-. Given the asymptotic nature of all the arguments used we should con- 
clude only that h proportional to a low negative power of f is appropriate; the dependence in (3.4) 
shows that the spline smoother adapts automatically to non-uniform data in an excellent way. 

Some exact calculations of the weight function G of (3.1) reported in Silverman (1 984a) show 
that -the approximate formula (3.2) is very accurate for moderate n except in the extreme tails 
of the design sample. That paper also contains details of a boundary correction to (3.2) that 
improves the approximation near the edge of the data. 

4. CHOOSING THE SMOOTHING PARAMETER 
For many practical purposes, it is probably sufficient to choose the smoothing parameter a 

subjectively, by plotting out a few curves and choosing the one which "looks best". From the 
exploratory point of view this exercise is beneficial in that it will draw attention to interesting 
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features that only show up at certain values of the smoothing parameter. However, there are many 
reasons why an automatic method of choice is useful. The inexperienced user will doubtless feel 
happier if the method is fully automatic. An automatic choice can in any case be used as a starting 
point for subsequent subjective adjustment. Scientists reporting or comparing their results will 
want to make reference to a standardized method. If the smoothing method is to be used routinely 
on a large number of data sets or as part of a larger procedure then an automatic method is 
essential. Against these arguments should, of course, be set the caveat that completely automating 
statistical methods encourages the user to use methods blindly and not to give enough 
consideration to prior assumptions (whether or not from a Bayesian point of view). For this 
reason I prefer to use the word automatic rather than objective for methods that do not require 
explicit specification of control parameters. Of course, all these remarks apply equally to the 
closely-related problem of determining how many parameters to fit when using parametric models. 

4.1. &oss-validation and Related &iteria 
Several methods have been proposed for choosing the smoothing parameter. Probably the most 

attractive class of such methods is cross-validation which is popular, generally, for choosing the 
complexity of statistical models. See, for example, Stone (1974). 

The basic principle of cross-validation is to leave the data points out one at a time and to 
choose that value of a under which the missing data points are best predicted by the remainder of 
the data. To be precise, let gal be the smoothing spline calculated from all the data pairs except 
(ti, Yi), using the value a for the smoothing parameter. The cross-validation choice of a is then the 
value of a which minimizes the cross-validation score 

XVSC (a) = n-1 1 { Yi -goi(ti)}2. (4.1) 

This is identical to the PRESS criterion for model selection in regression generally; see Cook and 
Weisberg (1982, Section 2.2.3). Define a matrix A (a) by 

A i(ax) = n1 G(ti, t1) (4.2) 

where G is the weight function of (3.1) above. 
A standard argument in regression theory, given by Cook and Weisberg (1982) and for this 

special case by Craven and Wahba (1979), shows that (4.1) has the easier computational form 

XVSC (a) = n Y {4Z3) 
* 1 -A 1(o)}12 (3 

Craven and Wahba also suggest the use of a related criterion, called generalized cross-validation, 
obtained from (4.3) by replacing Ai1(a) by its average value, n -trA(a). This gives the score 

GXVSC (a) = n -1 RSS(a)/{ 1 - n -1 tr A(a) }2, (4.4) 

where RSS(a) is the residual sum of squares I { Yi - '(t1)}2. In their paper Craven and Wahba 
(1979) also give theoretical arguments to show that generalized cross-validation should, 
asymptotically, choose the best possible value of a in the sense of minimizing the average squared 
error at the design points. This predicted good performance is borne out by published practical 
examples in various papers by Wahba and co-workers. 

To use the formula (4.4) one still needs to find the trace of A(a); unless a suitable numerical 
device or approximation is used this can be quite a burden computationally. 
I 

It is possible to derive such an approximation, which can be calculated extremely quickly. Let 
f(t) be an estimate of the local density of the design points ti, calculated using the fast algorithm 
of Silverman (1 982a), on a range [a, b] just containing the design points; for definiteness set 

a =-t, - n L1 
_t - 

, ) n =t 1 _n-1 tn - ti )- Le 
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b 

Co =rrn l f(t) dt3 (4.5) 

a 

The constant co is not needed to enormous accuracy and is calculated once only for each design 
set. It can then be shown that 

n 

tr A(a) 2 + {1 + co a(i - 1.5)4 (4.6) 
i 3 

Substituting (4.6) into (4.4) gives a score function called the asymptotic generalized cross- 
validation (AGXV) score which can then be minimized to give an automatic choice of smoothing 
parameter. Full details of the mathematical justification of the approximation, and further 
computational remarks, are given in Silverman (1 984b). 

It requires trivial additional computing time to find the AGXV score once the smoothing spline 
g has been obtained. Minimizing the score to within reasonable accuracy takes, in practice, con- 
sideration of about ten values of oa. The time taken by the entire procedure goes up roughly 
linearly as the number of data points and takes under 1 second for 50 data points on a Honeywell 
Multics mainframe machine. 

To see how the method behaves in practice, a simulation study was carried out. Full details are 
reported in Silverman (1984b). The practical performance of AGXV turns out to be even better 
than that of generalized cross-validation in that, for non-uniformly spaced data, the proportion 
of cases giving a bad value of the smoothing parameter is substantially reduced. 

5. WEIGHTED OBSERVATIONS AND REGRESSION DIAGNOSTICS 
It is often the case that we wish to consider weighted observations, where the sum of squared 

deviations in (2.1) is replaced by a weighted sum of squares to give a modified weighted sum of 
squares 

Sw g) = v W, { Yi -g(t1)}2 + cxfg" (x)2dx (5.1) 
for a given sequence of weights wi. The minimizer of (5.1) will again satisfy the conditions (2.2) 
and can again be found using De Boor's (1978) algorithms. In this section, various aspects of the 
weighted smoothing problem will be considered. 

5.1. Choosing the Smoothing Parameter 
The arguments about cross-validation can be extended to the weighted case. It is natural to use 

a weighted cross-validation score 

XVSC (ao) = n -l I Wi { Yi - 
g;i (t1) }2 

in place of (4.1). The same arguments as in Section 4 then give a generalized cross-validation score 
as in (4.4) but with the residual sum of squares replaced by a corresponding weighted sum of 
squares I w1{ Y, -k(t1)}2 . The approximation (4.6) to tr A(a) carries through as above, except 
that the density estimate f used in (4.5) is constructed from the weighted design points, that 
is to say 

f(t>= E wih-1 4(h-1(t-Xi)}l E wi, (5.2) 
i i 

where k is the standard normal density function and h is chosen using the analogous formula to 
(2) of Silverman (1982a). The algorithm of that paper is easily adapted to calculate (5.2). As in 
the non-weighted case, the overhead required to find the AGXV score is trivial once g has been 
found, and the time taken by the entire procedure is just as before. 



1985] Non-parametric Regression Curve Fitting 7 

5.2. Regression Diagnostics and Estimation of the Variance 
There has been a great deal of attention paid recently to diagnostic plots for checking the 

assumptions in regression. An excellent treatment is given by Cook and Weisberg (1982, Chapter 
2). Many of the ideas for diagnostics in linear regression can be carried over to the spline smooth- 
ing technique, though there are some important differences. The usual, and well-established, 
methods of plotting residuals directly, against fitted values or against the design points, carry over 
without modification. 

The more sophisticated techniques discussed by Cook and Weisberg mostly require knowledge 
of the so-called "hat matrix" which maps the vector of observations Y1 into the vector of pre- 
dicted values g(ti). The hat matrix is then precisely the matrix A(ca) considered in Section 4 above, 
since it is the case that 

n 

g(ti)= E A i(o) Y1 for eachi; (5.3) 
j = 1 

to see this, combine equations (3.1) and (4.2). 
The basic principle behind the techniques discussed by Cook and Weisberg (1982) is to adjust 

the residuals to account for biases caused by the estimation. Consider the model var ei = a2wTi, 
for a given sequence of weights. The studentized residuals are then defined by 

a""' I - A,, (a) }1/ 

where a is an estimate of the standard deviation factor in the model. 
Motivated by the corresponding formula for standard linear regression, Wahba (1978) has 

suggested a formula in the unweighted case which generalizes to 

y W, { y, 
- 

(t)} (5-5 (5.5) 
n - tr A(o) 

In simulation studies Wahba (1983) has found that (5.5) gives a good estimate of a 2. 
It is in the spirit of the argument on cross-validation to replace the ri of (5.4) by generalized 

residuals defmed by 

= WIj/2 {yj(t) 
r,* =_ d trA(cx)}-i (5.6) 

and furthermore to replace trA(oz) in (5.5) and (5.6) by the approximation (4.6), which will 
already have been calculated if the smoothing parameter is chosen by AGXV. If this procedure 
is followed, then both a and the ri* are available for negligible cost, 

It is interesting to note from the definition of re" that the average value of r*2 is 1. This 
provides valuable intuition when looking at residual plots and is a sample version of the property 
var (ri) = 1 which holds for studentized residuals in ordinary linear regression (Cook and Weisberg, 
1982, p. 19). The exact distribution of the ri*2 of (5.6) is a generalization of the doubly non- 
central beta, and in any case depends on the unknown curve g, and so any inferences to be drawn 
from residual plots are likely to be qualitative rather than quantitative. The same is of course true 
of the way that residuals for ordinary regression are actually used in practice the vast majority 
of the time. 

An alternative approach based on the equation (5.4) is possible. The work described in Section 
3 can be used to give easily-calculated approximations to the individual diagonal entries of the hat 
matrix, and hence approximate values of the ri. We shall not pursue this idea further in the present 
paper. 
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5.3. Two Examples 
To illustrate the techniques developed so far, and to provide motivation for some of the later 

discussion, we now consider the data presented in Fig. 2. These observations consist of accelero- 
meter readings taken through time in an experiment on the efficacy of crash helmets. The experi- 
ment, a simulated motor-cycle crash, is described in detail by Schmidt et al. (1981) and this 
particular data set was very kindly provided by Wolfgang Hardle. For various reasons, the time 
points are not regularly spaced, and there are multiple observations at some time points. In 
addition the observations are all subject to error. It is of interest both to discern the general 
shape of the underlying acceleration curve and to draw inferences about its minimum and 
maximum values. In this section we shall concentrate on the general shape; for remarks on the 
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Fig. 2. The motor-cycle impact data. 

other question see Section 7 below. Obviously, a more detailed analysis would concentrate on the 
time series nature of the data, but for illustrative purposes we shall concentrate on the model (1.1) 
with independent errors. 

It is clear from Fig. 2 that the variance of the data is not constant, and a method to cope with 
this difficulty is discussed in the next section. Applying the smoothing method directly, and using 
AGXV to choose the smoothing parameter, gives the plot shown in Fig. 3. This gives a clear 
indication of the general pattern of the data, in particular the fact that the curve rebounds well 
above its original level before settling back, and gives crude point estimates for the maximum and 
minimum values. It perhaps does not follow sufficiently accurately the first bend in the curve 
where the variance is relatively small. 

A plot of the absolute values of the generalized residuals, as defined in (5.6), is given in Fig. 4. 
This makes the inhomogeneity in variance very clear. We shall see in Fig. 7 below that the variance- 
stabilizing method developed in the next section also copes with the two possible outliers in this 
plot. 

Another example is presented in Fig. 5. The data set is that discussed in Example 2.3.2 of Cook 
and Weisberg (1982) and is described in detail there. The data relate to 272 eruptions of Old 
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Fig. 3. The motor-cycle impact data with automatically chosen smoothing curve. 
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Fig. 4. Absolute values of generalized residuals for motor-cycle impact data. 
Unweighted case. 

Faithful geyser in Yellowstone National Park, USA, and were provided by Roderick A. 
Hutchinson, the Yellowstone Park geologist. Cook and Weisberg fitted a linear regression to these 
data but noted some curvature effects in a residual plot; in particular they suggested that for large 
z-values the linear regression might be giving predicted y-values that are too large. The 
automatically-fitted spline smoothing curve makes this conclusion immediately clear, and further- 
more suggests that an alternative parametric model for prediction might be a two-phase linear 
regression, treating the two data clusters separately. The least squares two-phase regression divides 
the data at x = 3 and is shown in Fig. 5. A likelihood ratio test decisively rejects single linear 
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Fig. 5. Old Faithful geyser data, showing linear regression fit, automatic spline smoothing curve, 
and least squares two-phase linear regression. 

regression in favour of two-phase regression; the data give a x2 statistic of 33.85 while the maxi- 
mum of 100 simulated values from the null distribution of the x2 statistic is 16.83. (The 
simulation is necessary because of the remarks of Feder, 1975, that the usual theory does not 
give the correct null distribution. See also Hinkley, 1971, for remarks on a related problem.) 

Even if one prefers to use the more classical two-phase linear regression for the ultimate pur- 
poses of explanation and prediction, the spline curve is an important exploratory step towards 
the final model choice. It would need a very well-trained eye to suggest any model other than 
ordinary linear regression on the basis of the data plot in Fig. 2.3.4 of Cook and Weisberg (1982). 

5.4. Iterative Estimation of the Weights 
Consider the regression model (1.1) where the errors es are no longer of equal variance, but 

satisfy var es w7 1 r2,a for some weight system w. It is rare in weighted least squares regression 
for the appropriate weights to be given explicitly. A natural and simple technique for obtaining 
estimates of the weights in non-parametric regression is to use the unweighted estimate of the 
curve g as an initial estimate to obtain local estimates, via local residual sums of squares, of the 
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error variances. This approach assumes that the true error variance depends smoothly on the 
design variable. 

Since there is no great need to have very accurate values for the weights, a fairly crude pro- 
cedure may be used. It seems to be satisfactory, in practice, to estimate wi via a local moving 
average of squared generalized residuals, by 

ni 

wll= (ni - mi +I)-' E r*21 (5.7) 
i= (i 

where, for some fixed k, 

m- =max(, i - k) and ni n-rn (n, i + k). (5.8) 

Putting k = 5 has produced good results for data sets of moderate size. 
The estimated weights can then be fed back into the model. The method of Section 5.1 can be 

used to give an automatic choice of smoothing parameter for the weighted problem, and hence a 
new estimate of g can be obtained. A plot of the generalized residuals for the weighted problem 
can now be used to check the adequacy of the estimated weights. 

The effect of applying this technique to the data of Section 5.2 is shown in Fig. 6. The dotted 
curves should be ignored for the moment. This curve is generally rather similar to Fig. 4 but 
follows the data near the left of the picture rather more closely, suggesting that the curve is 
constant at first. In addition there is some suggestion of a regular oscillation in the right-hand 
half of the plot. The plot of generalized residuals shown in Fig. 7 shows behaviour much improved 
over that of Fig. 4. 

It is possible to perform another iteration where the weights are re-estimated; the natural 
analogue of (5.7) is to define new weight estimates by 

ni 
Al *2 (5.9)~~y * Wi 1(ni-mi + l)f w1 r- (5 9) 

- mi 

100 

.20 

-100 

I ,I I 

0 20 40 60 
Time (ms) 

Fig. 6. Reweighted curve, with approximate probability intervals, constructed from 
motor-cycle impact data. 
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Fig. 7. Absolute generalized residuals for reweighted motor-cycle impact data. 
Above: first reweighting iteration;below: second reweighting iteration. 

where w; are the old estimates of the weights, and the r1* are the new generalized residuals. The 
process of finding the automatically smoothed curve and plotting residuals can then be repeated. 
If this is done with the motor-cycle impact data, Fig. 6 is little changed and there is a slight 
improvement in the residual plot, but at the expense of introducing a pattern of weights that is 
very non-uniform indeed. 

It is, of course, possible to automate the entire procedure so that the first, unweighted, estimate 
is not plotted out at all, but the reweighting step is carried out as a matter of course. One could 
even iterate until some sort of convergence occurs. My own preference is to proceed more 
cautiously, looking at residual plots and the estimated curve at each stage before carrying out 
another reweighting iteration. 

Another possible application of reweighting in the light of local variance estimation arises in 
ordinary regression in cases where the variance can be taken to depend smoothly on the predicted 
value of each observation. Here, the natural approach would be to smooth a plot of squared 
residuals against predicted values, to obtain estimates of the weights. An approach of this kind 
can be applied quite generally, and provides an alternative to the use of transformations to deal 
with inhomogeneous variances. 

6. ERROR ESTIMATES FOR CURVES 
Most non-parametric regression methodology to date has concentrated on the estimation of a 

curve without paying too much attention to the question of finding a confidence region (or other 
prediction region) for the curve. Two notable recent exceptions are Wahba (1983) and Wecker and 
Ansley (1983); see also Clark (1980). In the remainder of this paper, we shall build on, and 
modify, the ideas of Wahba (1983) to develop a methodology which is relatively simple and which 
enables inferences to be made not only about values of the curve itself but also about interesting 
functionals of the curve, such as its maximum value or gradient. The basis for our approach is a 
finite-dimensional Bayesian formulation of the curve estimation problem. 
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6.1. A Bayesian Model 
The idea of viewing non-parametric curve estimation in a Bayesian context dates back at least 

to Whittle (1958). It is, perhaps, natural to look at the problem in a Bayesian way, because the 
choice of how much to smooth corresponds to some sort of prior information. 

Bayesian models previously suggested in connection with non-parametric smoothing (Kimeldorf 
and Wahba, 1970; Good and Gaskins, 1971) have involved inference in infimite-dimensional spaces. 
Apart from causing conceptual difficulties, the use of an infinite-dimensional formulation leads to 
paradoxes such as the one alluded to by Wahba (1983); although the intention is to choose among 
curves for which fg"2 is fmite, the posterior distribution is entirely concentrated outside the space 
of such smooth curves. The treatment described in this section requires fmite-dimensional spaces 
only, and avoids such problems. It shares with previous approaches the use of a prior log likeli- 
hood equal to a negative multiple of the roughness penalty, but concentrates the prior, and hence 
the posterior, entirely on the space of spline curves with knots at the design points. 

Consider the model (1.1) with the errors ei having independent normal distributions with 
mean zero and variances wj-1 2, where the weights wi and the variance factor a' are assumed 
known. Let W be the diagonal matrix with entries wi. For simplicity, assume that the design points 
ti are all distinct; coincident design points are easily dealt with but at some cost in notation. Let 
r be the space of all spline curves g satisfying (2.2), in other words all cubic splines with knots 
{ti} satisfying the "natural boundary conditions" (2.2) (iii). 

For each i = 1, . . ., n, let j3i(t) be the so-called B-spline, which has the following properties: 

pi E F, so pi satisfies conditions (2.2); 
ji (ti) > 0 for each i; (6.1) 
f3i(t) = 0 if t is outside the interval (ti_2, ti+2). 

B-splines are well known in the numerical analysis literature and the reader is referred, for example, 
to De Boor (1978, Chapter 9) for fuller details and historical remarks. The only property we 
shall need for the moment is the fact that any curve g in r can be written uniquely as a linear 
combination of B-splines; call the coefficients yi so that 

n 

g(t}9 Z y113(t). (6.2) 

Thus, to specify a curve g(t) in r, we need to specify the n parameters 'yi; write these as a vector 'y. 
Define n x n matrices B and Q2 by 

Bij= a1(ti) (6.3) 

and 
00 

Q; gi 4't(t)It)t (6.4) 
_ 00 

It can then be shown, by adapting the arguments of Utreras (1980), that Q2 is a non-negative 
definite symmetric matrix with two zero eigenvalues. It is easy to see that the residual sum of 
squares and the roughness penalty can be written in terms of the vector y and the matrices B and 
Q2; we have 

Z w1{Y1-g(t1)}2 Z E w1{ Y1- ZE-W1(t1)}2 =(yBy)T W(Y-By) 

and 

fg."(t)2dt yT ge 
Our Bayesian formalism underlying spline smoothing can now be stated simply. Define 
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X = a/a2. Using the notation _ to mean "equals up to a constant", take the prior log likelihood 
over F to be 

lprior (7) A-l X7Tg2 = -I Xfg'(t)2 dt. (6.5) 
Were it not for the two zero eigenvalues of Q1, (6.5) would give a multivariate normal prior 
structure; as it is, the prior is "partially improper" giving infinite variance to two of the eigen- 
vectors of Q. 

Combining (6.5) with the density of the observations Yi, given the curve g, gives the posterior 
log likelihood (by a standard Bayesian manipulation): 

n 

p (7) c - I xTa - 1 v-2 Z w{Y -g(t1)} (6.6) 

T(X + -2 BT WB) z +a -2 yT WB7 (6.7) 

Thus the posterior distribution of y is multivariate normal with mean 
% 
and variance matrix 

where 

S = XE2 + a-2 BTWB (6.8) 

and 
j=a-2S BTWY. (6.9) 

The connections with spline smoothing become clear by noting that (6.6) combined with (6.5) 
gives 

-2 'post (g) afg"(t)2dt + z 12 { Yi -g(tg)}2, 

so that the posterior log likelihood is a negative multiple of the modified weighted sum of squares 
(5.1). Thus maximizing lpost (g) and minimizing Sw(g) are identical operations. Two main con- 
clusions can be drawn; these parallel closely those of Wahba (1978, 1983), but they have been 
obtained in a different framework and by a much simpler argument. 

I. The spline smoother g is the posterior mean (and the maximum of the posterior likelihood) in 
the Bayesian formulation described above. 
2. From (6.3) the vector of values g(ti) is equal to By. The posterior mean obtained for y shows 
that the hat matrix A(a) satisfies 

A(a)=a-2 BS-' BTW 
and hence that the posterior variance/covariance matrix of the vector gi = g(ti) is given by 

varpost g) =varpost (BWy) = BSlBT = a2A(a) W1. (6.10) 
The choice of smoothing parameter a coincides with the choice of the inverse scale factor X in the 
prior covariance implied by (6.5). We shall discuss this point a little further in the next section. 

6.2. Plotting Inference Regions for Estimated Curves 
It is of great importance to consider how Section 6.1 ties in with earlier discussion about the 

appropriate choice of smoothing parameter. Pure Bayesians are advised to skip this paragraph 
since they will have no philosophical need to choose the smoothing parameter automatically! 

A possible approach is to estimate the smoothing parameter a (and, if necessary, the variance 
factor a2) from the data, using the techniques of Sections 4 and 5, but then to draw inferences 
using the Bayesian model. This broad approach is that used by Wahba (1983) for her own prior 
and cross-validation method, and was found by her to perform well in simulation studies, in that 
the inference regions obtained have the properties required of frequentist confidence intervals. 
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It can be viewed as an empirical Bayes approach, since the prior is chosen automatically by the 
data under consideration. 

Concentrate, first, on obtaining inference regions for predicted values g(ti). To find the exact 
posterior variance of g(ti) from (6.10) requires the determination of the diagonal element A(a)jj, 
but the approximations discussed in Section 3 makes it possible to find an approximate inference 
region very rapidly. For the case where all the weights are one, we have from (4.2) and (3.2) 
that 

A(oe)i l4 -3/4 2-3/2 f(t,)-314 (.. A (aji a n - 2 1fty1.(6.11) 
Replacing f(ti) by the kernel estimate previously obtained in the calculation of the AGXV score 
gives the required approximation. A generalization of (6.11) to the weighted case, derived from 
the results of Silverman (1984a), is given by 

A (aiiae-14 W (Wk) -3/4 2 -3/2 f(t) -3/4 

Using (6.10) it follows that an approximate 95 per cent probability interval for g(t1) is given by 

? 2uor118 (w*j-3/8 2-3/4 f(t)-3/8. (6.12) 

The formula (6.12), together with the boundary correction mentioned in Section 3, was used to 
draw the dotted curves in Fig. 6. They make it clear that our confidence in the accuracy of the 
predicted curves is high in some places, for example near the left-hand end of the interval, and 
lower near the middle. 

Another example, which we will discuss further in the subsequent sections, is given in Fig. 8. 
Here the data were collected in a microbiological experiment carried out at the ARC Meat 
Research Institute, Langford, Bristol and were kindly supplied by Dr T. A. Roberts. The measure- 
ments are the logarithms (to base 10) of the population count per milWitre of the organism 
Staphylococcus aureus in a heart infusion broth. The real interest in ths particular study is not 
in the value of the size of the colony at any time but in the behaviour of the rate of growth and 
particularly in the value of the maximum rate of growth. We shall discuss these questions in the 
next section. 

8- 
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Fig. 8. Microbiological data, with estimated growth curve and probability intervals. 
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7. ESTIMATING PROPERTIES OF CURVES 
Very many of the important questions in curve estimation involve quantities derived from the 

curve such as its gradient at a particular time or its maximum value. Such numerical properties 
are called functionals of the curve. (A functional '(g) is a mapping from the space of curves to the 
real numbers.) 

In discussing the estimation of functionals of curves, we shall adopt the same Bayesian 
approach as in Section 6, with the same expectation that many readers will choose the smoothing 
parameter automatically from the data. Before discussing details of particular functionals, it is 
convenient to distinguish between the two cases of linear and non-linear functionals, and also to 
develop the algebraic details of Section 6.1 a little further. 

7.1. Preliminaries 
A functional 4 is called linear if, given any curves g1 and g2 and numbers X1 and X2, 

kX191 + X2g2) = X1 (gl) + X2 4(g2). 

For example, the gradient at time t is a linear functional because, if g3 = Xlgl + X2g2, then 

g3 (t) = Xlgl (t) + X2g2 (t). 

However the maximum value in [0, 1 ] is a non-linear functional because, in general, 

max(Xlgl + X2g2)X X1I max g1 + X2 max g2 - 

The estimation of linear functionals is relatively straightforward and will be dealt with in 
Section 7.2 below. Non-linear functionals, discussed in Section 7.3, require a little more care. 
In both cases, the B-spline parametrization introduced in Section 6.1 leads to very considerable 
savings in computer time and space. The key property is the last property of (6.1), which implies 
that the matrix B of (6.3) is a band matrix of bandwidth 2 (that is to say that Bij is zero if 
I j - i I > 2) and that the matrix Q of (6.4) is a band matrix of band width 4. Since Q2 is symmetric 
and W is diagonal, the inverse covariance matrix S of (6.8) is a symmetric band matrix of band- 
width 4. Let S have Choleski decomposition 

S = LLT. (7.1) 

Then L is a lower-triangular band matrix of bandwidth 4. 
The values and all derivatives of all the B-splines at each ti can be found quickly using the 

properties given in De Boor (1978). The band nature of all the matrices involved then makes it 
possible to find the matrices S and L, and the vector ", in relatively small amounts of time and 
storage which depend linearly on the number of data points. Once this has all been done, the 
discussion of the next two sections yields practicable methods for finding estimates and inference 
regions for both linear and non-linear functionals of the estimated curve. 

7.2. Estimating Linear Functionals 
Suppose ;(g) is a linear functional of interest, for example i(g) = g'(t) for some fixed t. Define 

a vector i/ by 

{'i 4;'(s). (7.2) 

Finding the values ,Bi is straightforward in all cases considered, since the value and derivatives of 
f3i at each t1 have already been found, and each Xi is a piecewise cubic polynomial. It follows from 
(6.2) and the linear properties of 4ithat 

o(g) = 10iq. (7.3) 
Since the posterior distribution of y is multivariate normal with mean 

" and variance matrix S-, 
it follows from (7.3) that the posterior distribution of (g) is normal with mean iTz and variance 
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a2 = 4TS51 4'. Finding u23 is easy because of the band nature of the matrix L; the vector L14' 
can be found by back-substitution in a small linear amount of time and storage, and, by (7.1), 
U2 is just (L -4')T(L-' 4). 

Of course, the mean 'Tj is precisely '(j); this is to say that the point estimate of, for 
example, g'(t) is given by differentiating the curve estimate g at t. The linearity of the functional 4 
is vital if this is to be the case. 

This methodology is illustrated by giving estimates of the growth rate underlying the data in 
Fig. 8 above. Fig. 9 shows plots of the estimated derivative g'(t) and inference regions calculated 
by ?2 posterior standard deviations of g'(ti) at each ti. 

7.3. Estimating Non-linear Functionals by Simulating from the Posterior 
If the functional 4 is non-linear, then the posterior distribution of ;(g) will not, in general, 

be tractable, because it is that of a non-linear function of a high-dimensional multivariate normal 
distribution. However we shall see in this section that it is easy to simulate from the posterior 
distribution and hence to make inferences about any functional of interest. 

Suppose z is a vector of n independent standard normal random variables. Let p = + (LT)-'Z. 
Then p has a multivariate normal distribution with mean j and variance matrix 

(LT)-' {(LT)-'}T =(LT)-' L-1 =(LLT)-l =S 

so that the distribution of p is precisely the required posterior distribution of the B-spline 
coefficients y of (6.2). Furthermore, finding each realization of p involves simulating n normal 
random variables and solving a single band-limited upper-triangular linear system, a very small 
computational burden. 

Once a posterior realization of y has been found, it is straightforward, using if necessary the 
stored values of the B-splines and their derivatives, to find the corresponding value of the 
functional 4(g). Again the computer time and storage required will be linear in n. This 
methodology makes it practicable to generate large numbers of simulated values from the posterior 
distribution of 4(g), and hence to obtain Monte Carlo estimates, to any reasonable degree of 
accuracy, of its characteristics. 

Examples of non-linear functionals whose posterior distributions are intractable, but which 
yield easily to this approach, are the maximum value and the maximum gradient of g in a given 
interval, the point at which g is maximized, and the number of "bumps" (suitably defined) in g. 
Another such functional, of interest in developing non-parametric calibration methods, is the point 
at which g crosses a given level. It should be stressed that the basic technique will work for any 
functional of interest. 
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Fig. 9. Estimated growth rate for microbiological data, with probability intervals. 
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The maximum gradient is an important quantity in the growth curve study described above. 
Using the value automatically chosen by AGXV for the smoothing parameter, and the estimate 
(5.5) for a2, one hundred realizations of the posterior were generated. The one hundred posterior 
values obtained for the maximum gradient had sample mean 0.84 and standard deviation 0.06. 
Furthermore, a probability plot (tested by the Shapiro and Wilk, 1965, method as implemented 
in the MINITAB statistical package) showed that the posterior distribution of the maximum 
gradient is approximately normal. It is important, and possibly surprising, to note that the point 
estimate 0.84 of the maximum gradient is somewhat larger than the maximum value 0.77 of the 
curve A' plotted in Fig. 9. This discrepancy is a consequence of the non-linearity of the functional 
4,; in fact it can be shown, using Jensen's inequality, that the posterior mean of the maximum 
gradient will always be greater than the maximum gradient of g'9. 

A similar procedure was applied to obtain estimates and posterior standard deviations for the 
minimum and maximum of the acceleration curve estimated in Fig. 7. The point estimates were 
-114.8 and 37.5 and the standard deviations 6.2 and 9.1 respectively. 

Stewart (1979) also uses the idea of simulating from a high-dimensional posterior distribution 
in order to find the distribution of functions of the underlying parameters or curve. Our approach 
allows realizations of the posterior to be obtained directly, rather than by Stewart's rejection 
sampling technique. 

8. RELATED TOPICS 
8.1. Robust and Generalized Smoothing 

A natural extension of the spline smoothing approach is to devise a robust version of the 
procedure, by replacing the sum of squared errors in (2.1) by a different function of the errors, 
to give 

SR(Og= p{Y,-g(t1)}+afg"(X)2dx. (8.1) 
Here the function p(x) would usually be a convex function which is less rapidly increasing than 
x2 . Minimizing SR (g) then gives a smoothing spline which is robust against or resistant to outliers 
in the data. This idea' has been discussed by Lenth (1977), Huber (1979) and Cox (1983), among 
others. Huber (1979) points out that the minimization of SR may be carried out in practice by 
an iterative reweighting scheme where a sequence of functionals Sw, as defmed in (5.1), are 
minimized successively for weights and data points which are modified at each stage. The basic 
ideas of iteratively reweighted linear regression (see Green, 1984) carry over to the spline smooth- 
ing case, and have been explored and developed by O'Sullivan (1983). Especialiy when viewed 
as an iterative reweighting procedure, the robust spline smoothing method has something in 
common with the local variance estimation method suggested in Section 5.4 above. However, 
there are obvious differences both in the underlying model and in the calculations actually carried 
out in practice. 

The formulation of (8.1) can be extended further by generalizing the location dependence 
of the distribution of Y on g(t). This has the flavour of generalized linear models (McCullagh and 
Nelder, 1983). Suppose that p(y, 0) is a function of a real parameter 0 and an observation y, 
which may now take values in any space. Define 

SGL (g) = z P { Yi, g(ti)} + a fg" (X)2 dX. (8.2) 
Usually, - f p(y, 0) will be the log likelihood or partial likelihood of 0 given y for some para- 

metric family of distributions. In that case, - I SGL(9) is a penalized version of the log likelihood 
function of {g(ti)} as a vector of parameters underlying independent observations Y,. A general 
discussion of the idea of penalized likelihood is given by Silverman (1984c). By the same 
procedure as in generalized linear models, suitable choice of the function p gives non-parametric 
versions of many regression techniques, such as logistic regression (see Silverman, 1978; Anderson 
and Blair, 1982) and the robust regression methods discussed above. 

Provided that SGL has a finite minimum at g, it can be shown that g will be a spline function 
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satisfying conditions (2.2) above; again, g can often be found by an iterative reweighting strategy. 
It appears to be the case (see Silverman, 1978, 1982b; O'Sullivan, 1983) that g will exist provided 
that z p { Yi, g(ti)} has a finite minimum in the space of all linear functions g. 

The cross-validation ideas for choosing a have a natural analogue: the score to be minimized 
would be 

XVSC(a) = z p { Yi, ga-i (t1)}, (8.3) 

where goZ is the minimizer of SGL(g) - P { Yi, g(ti)}. Since, in the general case, each gj' would 
have to be found by an iterative technique, calculating (8.3) for a range of values of a requires 
considerable computational effort. O'Sullivan (1983) has considered how generalized cross- 
validation can be applied in this case. Detailed work on the generalization of the approximations 
of Section 4 above remains to be done. 

Another topic for further investigation is the application of the Bayesian ideas of Sections 6 
and 7 in the context of this discussion. Assume that -1 p is a log likelihood function. An easy and 
natural approach, once the maximum g has been found, is to expand the posterior log likelihood 
- SGL to second order about g g. This quadratic approximation (cf. Box and Tiao, 1973, 
equation (1.3.85)) yields a simple multivariate normal approximation to the posterior 
distribution. Furthermore, one can find an equivalent weighted least-squares problem, based on 
pseudo-observations r7i and pseudo-weights Coi, such that, setting a2 _ 1, the normal approxi- 
mation is precisely the posterior distribution for the equivalent problem. Thus all the methodology 
of Sections 6 and 7 can be applied, without modification, to find approximate inference regions 
and to simulate from the approximate posterior, once the estimate g has been found. The pseudo- 
observations and pseudo-weights are defined (using subscript 2 to denote differentiation with 
respect to the second argument) by 

= -(ti) P2 { Yi, '(t4) }/P22{ Yi, g(ti) }, 

Wi = 2 P22{ Yi, (t) }I 

Formulae closely related to these are found in Huber (1981) and McCullagh and Nelder (1983). 
The accuracy and usefulness of the normal approximation in this precise context would be an 
interesting subject for future work. 

8.2. The Multivariate Case: Surface Estimation 
Huber (1979) described univariate spline smoothing as the "theoretically cleanest approach to 

linear smoothing". The attraction of the method is the happy combination of circumstances that 
the estimate is the solution of a neatly expressed and intuitively attractive minimization, and that 
it can be calculated and stored easily as a piecewise polynomial. Unfortunately, in the case. Where 
the design points are multivariate, the mathematics do not fall out quite as nicely. The function g 
is now a function of a vector variable; if the design points are bivariate, then g can be viewed as 
the height of a two-dimensional surface. 

One approach is the "thin plate" spline (see Meinguet, 1979) where the roughness penalty 
fg"2 is replaced by f (g2 + 2g22 + g222) and a corresponding formula in higher dimensions; here 
subscripts denote partial derivatives with respect to the corresponding arguments. Some progress 
can now be made; roughly speaking, it is possible to find a finite set of functions {,3i} such that 
the smoothing surface can, for the given design points, be expressed in the form (6.2). 
Unfortunately the f3i are not bounded or of bounded support and the counterparts of all the 
matrix manipulations required to find the coefficients y'i require the handling of full, rather than 
banded, matrices. Wahba and Weldelberger (1980) give further details together with interesting 
practical examples. The approach of Sections 6 and 7 above could equally be applied to this case, 
though at considerable computational cost. It is to be hoped that further theoretical and practical 
work will be done in this area; it would be interesting to be sure that the behaviour of the 
functions as does not lead to numerical instabilities, a problem considered by Dyn and Levin 
(1983). 
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Of course, the need for useful computational approximations is even greater in the multivariate 
case. Another important topic would be to understand the role that boundary effects play in the 
estimation. In the one-dimensional case the boundary condition (2.2) (iii) is applied implicitly in 
the procedure (see Rice and Rosenblatt, 1983); though the present author has not found this to 
lead to any practical difficulties, it will certainly be the case that the boundary will be felt much 
more strongly in the multivariate case, where far more of the points are near the "edge" of the 
data set. 

ACKNOWLEDGEMENTS 
I am delighted to acknowledge the helpful comments of the referees and of several colleagues, 

including A. Baddeley, C. Chatfield, R. Fowler, W. Hdrdle, J. Rice, A. Robinson and S. Wilson. I 
am very grateful to G. Watters for computational assistance and to the Science and Engineering 
Research Council for support. 

REFERENCES 
Anderson, J. A. and Blair, V. (1982) Penalized maximum likelihood estimation in logistic regression and 

discrimination. Biometrika, 69, 123-136. 
Boneva, L. I., Kendall, D. G. and Stefanov, I. (1971) Spline transformations: three new diagnostic aids for the 

data analyst (with Discussion). J. R. Statist. Soc. B, 33, 1-70. 
Box, G. E. P. and Tiao, G. C. (1973) Bayesian Inference in Statistical Analysis. Reading, Mass.: Addison-Wesley. 
Clark, R. M. (1980) Calibration, cross-validation and carbon-14. II. J. R. Statist. Soc. A, 143, 177-194. 
Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London: Chapman and Hall. 
Cox, D. D. (1983) Asymptotics for M-type smoothing splines. Ann. Statist., 11, 530-55 1. 
Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions. Numer. Math., 31, 377-403. 
De Boor, C. (1978) A Practical Guide to Splines. New York: Springer-Verlag. 
Dyn, N. and Levin, D. (1983) Iterative solution of systems originating from integral equations and surface inter- 

polation. SIAM J. Numer. Anal., 20, 377-390. 
Feder, P. I. (1975) The log likelihood ratio in segmented regression. Ann. Statist., 3, 84-97. 
Good, I. J. and Gaskins, R. A. (1971) Nonparametric roughness penalties for probability densities. Biometrika, 

58, 255-277. 
Green, P. J. (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust 

and resistant alternatives (with Discussion). J. R. Statist. Soc. B, 46, 149-192. 
Hinkley, D. V. (1971) Inference in two-phase regression. J. Amer. Statist. Ass., 66, 736-743. 
Huber, P. J. (1979) Robust smoothing. In Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds). 

New York: Academic Press. 
--(1981) Robust Statistics. New York: Wiley. 
Kimeldorf, G. and Wahba, G. (1970) A correspondence between Bayesian estimation on stochastic processes 

and smoothing by splines. Ann. Math. Statist., 41, 495-502. 
Lenth, R. V. (1977) Robust splines. Commun. Statist., A6, 847-854. 
McCullagh, P. and Nelder, J. A. (1983) Generalized Linear Models. London: Chapman and Hall. 
Meinguet, J. (1979) Multivariate interpolation at arbitrary points made simple. ZAMP, 30, 292-304. 
O'Sullivan, F. (1983) The analysis of some penalized likelihood schemes. Technical Report no. 726, Dept of 

Statistics, University of Wisconsin-Madison, USA. 
Priestley, M. B. and Chao, M. T. (1972) Non-parametric function fitting. J. R. Statist. Soc. B, 34, 385-392. 
Reinsch, C. (1967) Smoothing by spline functions. Numer. Math., 10, 177-183. 
Rice, J. and Rosenblatt, M. (1983) Smoothing splines: regression, derivatives and deconvolution. Ann. Statist., 

11, 141-156. 
Schoenberg, I. J. (1964) Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. U.SA., 52, 

947-950. 
Schmidt, G., Mattern, R. and Schueler, F. (1981) Biomechanical investigation to determine physical and 

traumatological differentiation criteria for the maximum load capacity of head and vertebral column with 
and without protective helmet under the effects of impact. EEC Research Program on Biomechanics of 
Impacts, Final report, Phase III, Project G5, Institut fur Rechtsmedizin, University of Heidelberg, West 
Germany. 

Shapiro, S. S. and Wilk, M. B. (1965) An analysis of variance test for normality (complete samples). Biometrika, 
52, 591-611. 

Silverman, B. W. (1978) Density ratios, empirical likelihood and cot death. Appl. Statist., 27, 26-3 3. 
(1982a) Kernel density estimation using the fast Fourier transform. Appl. Statist., 31, 93-99. 

--( (1982b) On the estimation of a probability density function by the maximum penalized likelihood 
method. Ann. Statist., 10, 795-8 10. 



1985] Discussion of Dr Silverman's Paper 21 
(1984a) Spline smoothing: the equivalent variable kernel method. Ann. Statist., 12, 898-916. 
(1984b) A fast and efficient cross-vatidation method for smoothing parameter choice in spline regression. 

J. Amer. Statist. Ass., 79, 584-589. 
(1984c) Penalized maximum likelihood. In Encyclopedia of Statistical Sciences, Vol. 6 (S. Kotz and 

N. L. Johnson, eds). New York: Wiley. 
Stewart, L. (1979) Multiparameter univariate Bayesian analysis. J. Amer. Statist. Ass., 74, 684-693. 
Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions (with Discussion). J. R. Statist. 

Soc. B, 36, 111-147, 
Utreras D. F. (1980) Sur le choix du parametre d'ajustement dans le lissage par fonctions spline. Numer. Math., 

34, 15-28. 
Villalobos, M. A. and Wahba, G. (1982) Multivariate thin plate spline estimates for the posterior probabilities in 

the classification problem. Technical report 686, Department of Statistics, University of Wisconsin-Madison, 
USA. 

Wahba, G. (1975) Smoothing noisy data with spline functions. Numer. Math., 24, 383-393. 
(1978) Improper priors, spline smoothing, and the problem of guarding against model errors in 

regression. J. R. Statist. Soc. B, 49, 364-372. 
(1983) Bayesian confidence intervals for the cross-validated smoothing spline. J. R. Statist. Soc. B, 45, 

133-150. 
Wahba, G. and Wendelberger, J. (1980) Some new mathematical methods for variational objective analysis using 

splines and cross-validation. Monthly Weather Review, 108, 36-57. 
Wecker, W. P. and Ansley, C. F. (1983) The signal extraction approach to nonlinear regression and spline 

smoothing. J. Amer. Statist. Ass., 78, 81-89. 
Wegman, E. J. and Wright, I. W. (1983) Splines in statistics. J. Amer. Statist. Ass., 78, 351-365. 
Whittaker, E. (1923) On a new method of graduation. Proc. Edinburgh Math. Soc., 41, 63-75. 
Whittle, P. (1958) On the smoothing of probability density functions. J. R. Statist. Soc. B, 20, 334-343. 

DISCUSSION OF DR SILVERMAN'S PAPER 
Professor P. Whittle (Statistical Laboratory, Cambridge University): Mr Chairman, Colleagues. 

It is a real pleasure to me to propose the vote of thanks to Dr Silverman. His paper not only 
addresses a theoretical problem elegantly and effectively, but, I think you will agree, makes a 
genuine effort to address a practical problem practically. In other words, Dr Silverman recognises 
that it is good to have a clever idea, even better to have a workable one, and best of all to have a 
workable clever idea. 

It is plain that one cannot discuss these matters without being prepared to consider a Bayesian 
formulation (which I am understanding in a frequentist non-personal sense) and I am glad that 
Dr Silverman did so in such a matter-of-fact fashion. Of polemics we have had more than enough 
over the years, and it should be recognized that, with the exception of a short historical interlude, 
the approach has always been considered a perfectly natural one. 

Dr Silverman's approach is to minimize the form (2.1), sum of squares plus roughness penalty. 
As he observes, this is an approach which dates back at least to Whittaker. In fact, Whittaker gave 
the approach in its obvious Bayesian setting, with the roughness penalty interpreted as 
proportional to the logarithm of a prior density. Whittaker and Robinson (1924, p. 303) are quite 
explicit on this. Interestingly, they refer to a very early modern view of these matters "by Mr G. 
King, in the course of a discussion on Dr T. B. Sprague's paper of 1886, J.I.A., 26, p. 77: 'What 
is the real object of graduation? Many would reply, to get a smooth curve, but that is not correct. 
The reply should be, to get the most probable deaths'." 

Of course, the problem is also just that familiar as "signal extraction", g(x) being the signal 
and the sample providing intermittent noisy observation. In this context it is taken for granted 
that one must specify the joint statistics of signal and noise if one is to deduce reasonable pro- 
cedures. 

The appeal to cross-validation to provide an estimating principle for the smoothing coefficient 
is of course a plausible one. However, this is an appeal to an additional principle, and one might 
hope that the principle of maximum likelihood would be sufficient. If one were to give expression 
(2.1 ) its full Bayesian interpretation then one would have a negative log-likelihood 

-2 Z (Yi-g(ti))2 + -_ (N2 A2g)2 + n log a2 -N log 
a N 1 NNog~ 
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Here X, a 2 are appropriate scale factors and the integral in (2.1) has been approximated by a sum, 
the differences A2g being taken over an appropriate interval. One might now minimize this 
expression, not merely with respect to g, but also with respect to o2 and X, thus effectively 
estimating the smoothing coefficient a = Xa2 However, the quantity N now appears as a 
parameter, which one cannot allow to become infinite without degeneracy. This seems then like 
an exchange of one parameter, the smoothing coefficient, for another, the number of "degrees of 
freedom of the model". These ideas seem close to those the author sets out in Sections 5 and 6, 
and I should be interested in his reactions to them. 

The multivariate or multidimensional case so often provides a test of the fundamental work- 
ability of a procedure, and Section 8 is interesting for this reason. If one applies the author's 
procedure with p-dimensional x, then the smoothing kernel (under constant observation density) 
would have Fourier transform 

a 
_. 

a oI- 

where the arrow indicates what the expression becomes under a polar transformation. The integral 
of this expression diverges if p > 4, indicating that the smoothing kernel is then infinite at the 
origin. In other words, one is scarcely smoothing the observations at all if p>- 4. Rather para- 
doxically, one must increase the degree of the differentials in the roughness penalty, i.e. relax 
the statistical assumptions on g, if one is to obtain a useful smoothing. 

There is much more I could say, but I am now restricted to proposing, with warmth, that the 
author be awarded a vote of thanks. 

Professor D. M. Titterington (University of Glasgow): Tonight we have heard a stylish and 
persuasive account of the practical capabilities of what is currently a very hot topic. Now, I expect 
the author will object to my apparent neglect of the theoretical aspects of the paper so I had 
better clarify the spirit of that first sentence. The recent statistical literature is very well sprinkled 
with papers on a class of problems, including nonparametric density estimation, to which the 
present topic belongs. However, it has to be admitted that many of these articles are theoretical 
and seem to lose track of their fundamentally practical basis. In simple terms, the crucial role of 
these techniques is to produce a reasonable curve or picture. Of course it is important to establish 
reassuring, more or less distribution-free, asymptotic properties, but the timing of the present 
paper is meritorious in prompting us to take stock of the current balance of activity in these areas. 

The main practical questions to me, are as follows. (i) Is smoothing worthwhile? (ii) If so, is it 
worth using sophisticated procedures for choosing the smoothing parameter? (iii) In practical 
terms, is the method of cross-validation a good one? If the answers are all "No", then many 
people, myself included, have wasted a lot of time in recent years! I shall now try to argue away, 
at least partially, from these answers. 

In Section 6.1 we encounter both a Bayesian interpretation for the smoothing procedure and a 
ridge-regression formulation for the recipe (equations (6.8) and (6.9)). In a review of the massive 
literature on "conventional" ridge regression, Draper and van Nostrand (1979) find that the 
technique hardly ever improves substantially upon ordinary least squares, unless the Bayesian 
structure is genuine. The degree of smoothing imposed is typically very small, in that the resulting 
smoothed estimates do not differ much from the unsmoothed. One has to admit that the Bayesian 
interpretation of the spline-smoothing prescription is rather contrived but it is clear, from Figs 5, 6 
and 8, that the smoothed estimate here differs substantially from the unsmoothed interpolating 
spline. The crucial factor is that, in most conventional ridge regression contexts, the number of 
"parameters", k, say, is small, compared with the sample size, n. Here, k n, effectively, and, as 
a result, the variance of the unsmoothed estimator is uselessly large. Other manifestations of such 
high parameterizations are the work of Green et al. (1983) and an approach to image enhancement 
which emanates from the following model. The relationship between the true image intensities, , 
and the observed picture, Y, is 

Yi = (By)i + ei, i = 1, . . ., n, 
where n is the number of pixels, B describes the resolution properties of the observing instrument, 
E(e) = 0 and cov (e) = a2 WJ, say. Note that, even if B, W and a2 are known, this is a saturated 
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model and is often ill-posed. A common method of producing a stabilized estimate of y is to use a 
so-called regularization prescription which is, notationally, the same as (6.8) and (6.9). The 
imposition of a certain amount of smoothing is usually very advantageous, but the formality of 
choice has varied. Phillips (1962) suggests the ad hoc approach of simply choosing a degree of 
smoothing "that appears to take out the oscillation (instability) without appreciably smoothing 
the function", but the more formal method of Reinsch (1967) has been popular. In one version 
of this, for the case W = diag (wl, . . ., wn), ct might be chosen so that 

2: Wi { Yi -(B "(a))i }2 = na2,(* 
i 

in which a2 would have to be estimated. Some interesting questions are as follows. 

(a) Is Phillips' very ad hoc approach as good as any, particularly if, as in some sections of the 
present paper, we are only carrying out exploratory analysis? 
(b) Is cross-validatory choice feasible in image-enhancement problems in which n can be very 
large, 218 or more? 
(c) Comparison of (*) with (5.5) suggests that (*) imposes more smoothing, and therefore 
larger biases, than does cross-validation. Is the difference meaningful from a practical point of view 
and is it possible that cross-validation is less reliable? In Wahba (198 1), for instance, examples are 
given with n= 32 and n - tr A(a) below 1, suggesting that cross-validation can severely under- 
smooth. 

At this point, I should like to make a few specific remarks. 

(i) I have to say that the curves in Figs 3 and 6 seem very similar, in spite of the differences 
in sophistication. I wonder if a more interesting residual plot would be one of the signs of the 
residuals. 
(ii) It would be nice if the confidence bands in Fig. 6 allowed simultaneous inference for all 
values of t. It would then be possible to say useful things about the curve as a whole. For 
instance, one could use Professor Stone's (other) bootlace (Stone, 1983) to assess the minimum 
plausible number of inflexions or modes by tightening the lace between the bands. However, I 
note from p. 139 of Wahba (1983) that "strictly speaking, these curves only have meaning at 
t = 1/n" (the knots) and that they are pointwise intervals. 
(iii) The kernel-function representation is fascinating and I wonder if the link will lead to 
quick ways of calculating a good smoothing parameter in density estimation. 

Finally, let me return to my original theme. A recent monograph (Prakasa Rao, 1983) contains 
an impressively comprehensive review of the theory behind these and other problems, but among 
over 500 pages, only one is devoted to Figures. It is perhaps not surprising that these Figures 
originate from the work of tonight's speaker and point to his regard for practical and pragmatic 
aspects, which complements his theoretical expertise. I hope that tonight's paper will stimulate 
further investigation of the real practical capabilities of the methods as well as reducing the 
tendency towards theoretical overkill. 

I have much pleasure in seconding the vote of thanks. 
The vote of thanks was carried by acclamation. 

Dr E. M. Scott (University of Glasgow): I wish to congratulate Dr Silverman on a well- 
prepared and comprehensive paper, which has surely provided sufficient detail of one form of 
spline smoothing for many "less expert" users to consider implementing this approach. 

My comments take the form of general remarks concerning the relationship between spline 
smoothing and other methods of non-parametric regression estimation. There are one or two very 
important points which I think worthy of note. 

The first comment concerns the representation of the smoothing spline as a weighted average. 
However complicated the form, this brings spline functions into line with other methods of non- 
parametric regression estimation, and so definitions of consistency and convergence given by Stone 
(1977, 1982) will prove applicable. I suspect the similarity between the various methods in final 
form will mean that other methods are preferred before splines due to their "less complicated 
form". There is one other formulation of smoothing splines which computationally proves much 
simpler, namely regression splines (Wegman and Wright, 1983). The description of splines as piece- 
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wise polynomials constrained to join and be continuous at knots, means that by the introduction 
of knot number and position as further parameters, the spline may be fitted using standard 
multiple regression packages (Smith, 1979; Buse and Lim, 1977). Suggestions concerning the 
choice of these further parameters are given by Wold (1974). Estimation of the regression function 
by a variety of methods of non-parametric regression reveal little difference in the final smoothed 
function. Thus choice of method will often be controlled by computational simplicity and ease of 
use (Scott, 1984). 

Dr Silverman stresses rightly the importance of being able to use the fitted form for inference 
concerning fitted values etc. He does, however, state that this aspect has been neglected in the 
literature. If we consider some alternative methods of non-parametric regression estimation we will 
see that other authors are aware of the importance of this aspect of their work. The Bayesian esti- 
mate proposed by O'Hagan (1978) includes the derivation of the posterior expected value and 
variance of his estimate, while Clark (1980) dealt almost entirely with the problem of providing 
confidence and prediction bands for his estimate based on convolution smoothing. If we consider 
kernel regression estimation, confidence and prediction bands for the curve may be obtained 
through a "conditional density estimation" approach. 

My final comments deal with the extension to multivariate function estimation. Thin plate or 
Laplacian smoothing splines prove practically intractable in greater than 3 dimensions. Kernel 
regression estimates will extend readily, while for convoluted smoothing a multi-dimensional inter- 
polating function would require to be defined. The multivariate problem may be tackled in a 
different manner using the ideas of projection pursuit which models the regression surface as a 
sum of smooth functions of linear combinations of the predictor variables (Friedman and Stuetzle, 
1981). 

Dr F. H. C. Marriott (University of Oxford): Dr Silverman has given an admirably clear and 
complete account of spline regression. The examples show how well the method works, and 
naturally raise the questioni of possible extensions, particularly to the case of more than one 
regressor variable. 

The paper relies heavily on two results- the relationship between a natural roughness penalty 
and the cubic spline, and the simplicity of the computation owing to the band structure of the 
matrices involved. Neither seems to generalize simply to the multiple regression case. This 
difficulty in extending results beyond the simplest problems seems to apply to nearly all non- 
parametric methods, and largely accounts for the popularity of linear models and their extensions. 

Perhaps the most important application of the method is graphical, making it possible to 
display a curve fitted more or less objectively, but without preconceptions about its form. An 
analogous procedure is scarcely possible with more than two or three regressor variables, and it 
is reasonable to restrict attention to these cases. I have not seen the references in the final section 
of the paper, but there are obvious difficulties in the complexity of the surfaces and in the 
computing problems. 

There are, of course, other methods of tackling the problem, none of them so elegant or 
intuitively appealing, but that may nevertheless give a reasonable answer. 
(i) Simple interpolation may be applied to subsets of the data, and the resulting surfaces 
averaged. The degree of smoothing then depends on the size of the subsets. 
(ii) Regressor variables may be fitted stepwise, using cubic splines. This is clearly less flexible 
than a true multidimensional spline, but may be modified by fitting x1, then fitting x2 to the 
residuals for overlapping ranges of xl and splicing the resulting surfaces together. 
(iii) Kriging methods have already been mentioned in the discussion. 

These possibilities are all, in a sense, approximations to generalized spline fitting. I should be 
interested to know whether my doubts about the feasibility of a true generalization are justified, 
and if so whether any of them gives a satisfactory working method. 

In conclusion, as well as being an excellent account of existing methodology, this paper raises 
theoretical and practical questions of great importance. I hope that it will stimulate much valuable 
research. 

Dr J .T. Kent (University of Leeds): I have two comments to make on this very lucid and use- 
ful paper. First is a statement about some work on spherical splines carried out with Peter Jupp at 
the University of St Andrews. We were interested in fitting smooth paths to data from the line to 
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the sphere, for example, polar wander paths. It turned out that the most promising approach was 
to "unwrap" the problem from the sphere onto the plane, thus looking for a smooth path from 
the line to the plane. Of course, a path to the plane R2 is just an ordered pair of paths to the line 
R1, in our case with a common smoothing parameter. Thus, all of the standard spline techniques, 
as discussed in tonight's paper, can be used to fit a smooth function and to assess its accuracy. 
Note that our problem can be considered to be multivariate in that we are concerned with smooth 
functions from the line to a several-dimensional space. This usage is in contrast to Section 8.2 of 
the paper which is concerned with smooth real-valued functions of several variables. 

Secondly, I have a question. Spline techniques require the explanatory variable x to be known 
precisely, just as in standard regression analysis. However, if in a linear regression model of y on x, 
it turns out that x is measured subject to error, then the regression model should be replaced by a 
linear structural relationship. Is there any extension of spline techniques to this "errors-in- 
variables" case? In the example of polar wander paths, the times are seldom known very precisely. 

Dr Frank Critchley (University of Warwick): I would like to congratulate the author on the 
clarity, breadth and depth of his paper, to make one comment, to note two related topics and to 
ask three questions about possible extensions. 

Comment Even allowing for their definition as predictors of g(-) itself rather than future values, 
the approximate probability intervals in Fig. 6 seem perhaps rather too good to be empirically 
convincing, especially in the region of 15 ms. Presumably their narrowness reflects the strength of 
(prior) model and/or the convolution nature of the estimation method. 

Related topics. (1) Splines are slowly becoming more widely used in multivariate analysis: see, for 
example, Gifi (1 98 1), De Leeuw (1 982), Van Rijckevorsel (1 982) and Ramsay (1 982). This latter 
uses M-splines to fit the key distance-dissimilarity function of multidimensional scaling. Note that, 
if we regard the degree of the polynomials and the number and location of the knots as para- 
meters, we have a special case of the parametric scaling method introduced by Critchley (1978). 
(2) In recent unpublished work I consider a multivariate variable kernel density estimation method 
with local smoothing parameter proportional to s(shi)-Y, 0 S y < 1, i = 1, . . ., n, where s denotes 
a global measure of scale. If we require that the method be self-respecting, i.e. that f(ti) = hi, then 
for given y, this reduces to a one-parameter problem. Moreover, the jackknifed likelihood is now 
an explicitly known smoothed version of the likelihood so that no further computation is needed 
to evaluate it. See also Abramson (1982). It will be of interest to see how the ideas of tonight's 
paper relate to this problem, for example taking yi to be a fixed kernel estimate of f(ti). 
Questions. It is of interest to ask how far the present paper's results extend to: (1) a full quadratic 
loss function; time series models; (2) the multivariate case in which the data points ti are ordered 
in some way; (3) cases with constraints such as g(O) = 0. 

Dr M .C. Jones (University of Birmingham): It might be useful to potential users of nonpara- 
metric regression estimates to point out two practical advantages of the spline regression method, 
as discussed in Dr Silverman's excellent paper, over some other nonparametric regression 
estimation methods, particularly in comparison with the kernel method. These remarks are 
illustrated by a practical application to a small dataset (n = 28) kindly supplied by my colleague 
Dr M. J. Faddy. 

The data are shown in Fig. Dl, along with a (constant bandwidth) kernel estimate (the dotted 
line); the value of the smoothing parameter has been chosen subjectively to give a reasonable fit to 
the main body of data corresponding to small and moderate values of the x-variable. Also in Fig. 
Dl, a similar spline regression estimate is shown (the solid line); again, the smoothing parameter is 
chosen subjectively so that the two estimates are similar over much of the range of values of 
interest. 

These data exhibit a long right-hand tail to the x-distribution. Consequently, the (constant 
bandwidth) kernel estimate follows the last few y-values very closely; the spline estimate, however, 
performs rather better (at least for the 4th-, 3rd- and 2nd-last datapoints). This amply illustrates 
Dr Silverman's comments (Silverman (1984a) and Section 3 of the current paper) on the 
(asymptotic) equivalence of the spline method to a variable kernel estimate, in which a larger 
bandwidth would be used in the tail. Indeed, the insistence even of the spline smoother on getting 
very close to the last y-value reflects the breaking down of that equivalence close to the boundary 
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of the interval of interest. The spline approach has an advantage even over the variable kernel 
method in that the variation in the bandwidth is decided implicitly in a sensible way. 

The second advantage of spline regression over the kernel approach lies in accommodating 
constraints-a question raised by Dr Critchley in his contribution. For these data, there are 
physical reasons why the curve must go through the origin. There is no satisfactory way of doing 
this in the kernel case; ad hoc methods such as adding several points at (0, 0) can give some sort of 
approximation to this, but are not very good (see, for example, the dotted line in Fig. D2 corres- 
ponding to adding 4 points at the origin). Conversely, however, there is a perfectly natural 
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Fig. D2. . kernel estimate with 4 additional points at (0, 0), .. spine 
estimate constrained to go through (0, 0). 

extension of spline smoothing to cope with such constraints; this amounts to a combination of 
spline smoothing with the well-known method of spline interpolation. Computationally, there is 
no further programming to be done since, as de Boor (1978 p. 274) points out, interpolation to a 
given point can be achieved by a weighted spline smoothing (of the data plus constraint point) 
with the weight corresponding to the constraint point set to a very large value. The resulting esti- 
mate for this dataset is the solid line of Fig. D2; this does, indeed, give a much more satisfactory 
curve. Perhaps the first peak still looks a little too low, but this would seem to be a consequence 
of insisting on fitting a smooth function to these data; it may well be that a sharp peak is 
appropriate in this case. 
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Professor A. F. M. Smith (University of Nottingham): In his Bayesian model (Section 6.1), 

Dr Silverman has specified a class of prior distributions concentrated on the space of natural spline 
functions with knots at the design points. In this way, he has succeeded in obtaining a finite- 
dimensional version of the curve-fitting problem with obvious attractions from a computational 
point of view. 

There is, however, a rather drastic implicit restriction of the space of possible curves, as can be 
seen most clearly by considering the limiting case of zero errors (a2 -* 0, in the author's notation). 
In this case, the posterior concentrates entirely on the unique natural spline function interpolat- 
ing the data points, and the posterior variance is zero everywhere along the curve, no matter how 
far it is extrapolated beyond the data configuration. This elimination of posterior uncertainty 
makes me feel uneasy, although the problem is obviously less acute if the method is to be used 
only for interpolatory purposes with large data sets possessing a rather dense set of knots. 

With small data sets, even in the case of zero errors we should surely require that the posterior 
variance for curve values be strictly positive at all non-design points. This is so, for example, if we 
use the integrated Wiener prior over the completed space of functions with square integrable 
second derivatives (see Wecker and Ansley, 1983). Moreover, since the prior densities implicit in 
the two methods are proportional, this difference in qualitative behaviour is due entirely to the 
restriction placed on the space of functions by the author's method. 

A somewhat different approach can be developed by noting that curve-fitting using a (d - 1)st 
degree polynomial corresponds to the rather rigid prior belief that the dth and (d + 1)st derivatives 
of the function are zero everywhere. It is interesting to consider what happens if this assumption 
is weakened by specifying instead a class of stochastic processes which reflect beliefs that these 
derivatives are, say, small, continuous and differentiable everywhere. These kinds of ideas are being 
explored by my student Martin Upsdell in a Ph.D. thesis being written at Nottingham and he will 
give a brief account of work in progress. 

Mr M. P. Upsdell (University of Nottingham): Consider specifying prior distributions on 
functions by specifying a function C(x, y), giving the prior covariance between the values of the 
dth derivatives of the function at the positions x and y. The prior mean of the dth derivative will 
be taken to be zero. The space of functions considered is that of the reproducing kernel Hilbert 
space with kernel C(x, y), which consists of the completion of the space of functions of the form 

f(x) = z aiC(x, bi) 

for some finite collection of constants ai, bi. It can be shown that any function f in this space is 
continuous in mean square if and only if C is continuous, and f is differentiable in mean square if 
and only if C is differentiable. Thus choosing a covariance function for the dth derivative which is 
continuous and differentiable will ensure that the probability is concentrated on functions with 
finite dth and (d + l)st derivatives. Any parameters used to specify the function need not be 
prespecified but can be estimated from the data by the assignment of "vague" hyperpriors. This 
methodology does not require large data sets with dense knots, nor does it use asymptotic argu- 
ments. It also provides intuitively reasonable answers when we pass to the limit case of zero errors. 

If the covariance function is Markov, then the Kalman Filter method of Wecker and Ansley 
can be used to estimate the parameters with order n computations per iteration. However, if the 
covariance function is not Markov, it requires the inversion of the covariance matrix with order n3 
computations per iteration. We are thus faced with a dilemma. Either we can ensure order n 
computations, or we can specify a prior which concentrates the probability on functions with 
(d + l)st derivatives, but not both. Perhaps the solution is to obtain access to a parallel processor, 
since parallel processors can invert the required matrices in order n steps. 

As an illustration of a covariance function that might be used, consider the function 

Ir2 /X-y 
2 

C(x, y) - exp l 
r rJ 

suggested by O'Hagan (1978). An idea of the relative probability given to different functions can 
be obtained by considering limiting values of the parameters 'r2 and r (which, in practice, can be 
estimated from the data, thus providing a form of data-adaptive solution): (i) as -*2 0, the 
variance of the dth derivative tends to 0 and the probability becomes concentrated on the space 
of polynomials of order d - 1; (ii) as r - oo, the correlation between the function values tends to 
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one, the dth derivative tends to a constant and the probability becomes concentrated on the space 
of polynomials of order d; (iii) as r -e 0, the covariance function tends to the Dirac delta function, 
the probability becomes concentrated on those functions which do not have a dth derivative, and 
the mean funiction becomes the natural polynomial spline. 

Approaches which consider the Wiener process for the (d -1 )st derivative correspond to using a 
covariance function C(x, y) = r2 min (x, y) for the (d - l)st derivative or equivalently, C(x, y) = 
r28(x -y) for the dth derivative,, where 6 is the Dirac delta function (cf. the case r -* 0 above). 
This leads, of course, to the apparent paradox which the author refers to at the beginning of 
Section 6.1. It might be argued, however, that this is of little practical consequence; in much the 
same way as the exclusion of the set of rationals by a normal distribution on the real-line causes us 
no real worry. 

Dr P. J. Diggle (University of Newcastle and CSIRO, Canberra): It is a pleasure to add my 
congratulations to Dr Silverman on his excellent paper. I would like to take up the issue of serially 
correlated errors in non-parametric regression, which Dr Silverman mentions briefly in his 
discussion of the motorcycle impact data. 

Suppose that we replace (1.1) by an autoregressive formulation, 

Yi-g(ti) =p{t Yi-j-g(t1)} + ei: i = 1 ... n, (1) 
where the design-points ti form a time-sequence. Consideration of the usual weighted least squares 
criterion for estimating g(t), conditional on Y1 and assuming p known, suggests replacing RSS(a) 
in equation (4.4) by 

n 

RSS(oa, p) =E [{ Yi -g(ti) } - p Yi_ 1-g (ti- 1 ) }2] (2) 
i = 2 

As an example, I simulated (1) with n = 100, e1 - N(O, 1), p = 0.75, design points ti equally 
spaced over the interval (0, 1) and g(t) = 10(1 + t). Setting p = 0.75 in (2) led to the choice of 
* = 0.00044, whereas optimization of (4.4), which effectively sets p = 0 in (2), gave 
a = 0.000 00034. Fig. (D3) shows that the smaller value of a gives an estimate g(t) which follows 
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Fig. (D3). Simulation of linear g(t) with autoregressive errors, p =0.75. Fine solid line shows 
g(t) = 10(1 + t). * data; - - - -g(t) assuming p = 0; - k(t) assuming p -I0.75. 
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the data rather too closely, whereas the larger value gives a much better approximation to the 
underlying linear trend. 

Obviously, one should not read too much into a single, small-scale example. In particular, the 
autoregressive equation (1) is but one of many possible formulations of serially correlated error 
structure. Nevertheless, the example does illustrate the important point that ignoring serial cor- 
relation will generally lead to undersmoothing. This seems inevitable since, in a non-parametric 
framework and without controlled replication, it is impossible to maintain a formal distinction 
between a deterministic regression curve g(t) and a g(t) which is a realization of a stationary 
random process. 

For essentially the same reason, any attempt to estimate the autocorrelation structure from a 
single set of data seems bound to run into difficulties. An exception to this would be if physical 
considerations suggest that g(t) can be assumed constant over some part of the design region -the 
initial portion of the motorcycle impact data might be a case in point. 

Dr P. J. Green (University of Wisconsin-Madison): I congratulate Dr Silverman on an excellent 
paper that will surely encourage the practical application of spline methods. 

The definition of the prior in Section 6.1 remains somewhat implicit, although the author has 
clarified the issue by reducing the dimensionality from oo to n. B-splines have attractive features 
important for numerical computation, but an alternative basis aids interpretation without altering 
the prior. 

Let t denote the vector (g(ti)), then (6.5) is equivalent to a two-stage model in which t is 
Normally distributed with E(ti I 1) = 30 +Bl3ti and var (At) = a2c a1In-2, and go, i31 in turn have 
a vague prior distribution. 1-lere A is any (n - 2) x n matrix of rank (n - 2) such that BTATAB =Q, 
and can be chosen so that it is close to being proportional to the second-difference operator when 
the {ti} are equally-spaced. It would be this operator if the roughness penalty had the discrete 
form z (g(ti) - 2g(ti+1 ) +g(ti+2))2 as in the original proposal by Whittaker, and as used by Green, 
Jennison and Seheult (1983) in the analysis of agricultural field experiments. It is quite easy to 
visualize this prior, with its expectation linear in t and independent perturbations At generated 
almost sequentially with t because of the form of A. 

It also helps, I think, to make explicit the linear regression that represents the "perfectly 
smooth" curves that are not penalized, and to which the smoothing method is invariant. Other 
fixed effects may be included in a semi-parametric model yi = I x6i0i +g(ti) + ei, as in Green, et 
al. (1983), and the partial splines of Wahba (1984). 

One could question whether this linear mean is an appropriate prior assumption for the 
example illustrated by Fig. 3: surely here the context might suggest other "perfectly smooth" 
curves, from which a special-purpose roughness penalty could be constructed? 

If one blurs the distinction in status between the prior and error distributions, this becomes a 
linear model with two variance parameters. Among various methods for the well-known problem 
of estimating the variance ratio ag, the REML approach (Patterson and Thompson, 1971) seems 
attractive, and Robin Thompson has pointed out a close parallel between this and GXV. 

I have recently compared several criteria using both variety trial data and simulation: automatic 
choices of oa are fairly similar (Green, 1985). What differences there are seem to have negligible 
influence on the estimation of fixed effects; if extraction rather than identification of the smooth 
component is the aim, precise choice of the smoothing parameter is much less important. 

Dr C. Jennison (University of Durham): I would like to join the other discussants in thank- 
ing Dr Silverman for a most interesting paper. 

I am, however, worried by the proposed method for estimating the maximum gradient of a 
curve: it seems very optimistic to hope to treat such a problem in a nonparametric framework. 
Infinitesimal changes in a curve can produce large changes in its gradient; thus, whilst I do not 
question conclusions concerning single values of the g(t) fitted by the spline smoothing method, 
properties of the derivatives of the fitted g do not strike me as reliable. 

The method of obtaining Bayesian confidence intervals for the maximum gradient by simulat- 
ing from the posterior distribution is influenced greatly by the choice of prior. The prior described 
in Section 6 is concentrated on curves of a particular form and a small perturbation of such a 
curve, which would be undetectable in practice, can change its maximum gradient considerably 

One could argue that, in some experiments, the gradient at a point is only of interest if it is 
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sustained over a certain short interval of the t-axis. This leads us to consider the maximum average 
gradient over a small interval, which is proportional to the maximum increase in g over such an in- 
terval. Thus, in the microbiological example, one might be interested in the largest increase in log 
concentration over, say, a one hour, thirty minute or one minute period. Using the spline smoothing 
approach the maximum such increase can be estimated from the fitted g in an obvious way. In 
addition, if simultaneous confidence intervals for g(t) over the whole range of t-values were 
formed, a confidence interval for the maximum such increase could be obtained by considering 
all curves fitting inside this confidence "envelope". I suspect that this method would produce a 
rather wide interval. In their own way, standard parametric methods automatically smooth over 
very local behaviour and they may well be preferred for these purposes. The fitted spline smooth- 
ing curve would still be useful in suggesting a particular parametric model or indicating the region 
of the t-axis over which one is most interested in fitting a parametric model. 

Dr A. O'Hagan (University of Warwick): This is a most impressive paper, full of interesting 
material, and so there is a number of things I would like to comment on. However, since previous 
speakers having referred to several of these, I can keep my comments brief. The most exciting 
aspect of the spline approach to smoothing is its computational advantages, further enhanced by 
Dr Silverman's work. When I think that my own attempt on smoothing, presented here seven years 
ago (O'Hagan, 1978), required the inversion of an n x n matrix, a reduction to order-n com- 
putations is quite startling. Furthermore, as a Bayesian I applaud Dr Silverman's use of Bayesian 
methods, and this makes me even more keen to try his approach. 

But this is where the difficulties start. The Bayesian specifies his prior distribution so as to 
model his own prior beliefs. Convenience and tractability play a part, but Dr Silverman's prior 
distribution (6.5) seems to have been specified purely for convenience. Its role is to enable him 
to give a "Bayesian" justification for doing what he had already decided to do. Surely a Bayesian 
who wishes to use Dr Silverman's model would want to choose the parameters of his prior, in this 
case Q, to reflect his own prior information. Yet it seems that if we are allowed an arbitrary &2 
then the nice spline algorithms will be unavailable and we must obtain the posterior mean through 
(6.9). We are back to square one-n X n matrix inversion, order-n3 computations. 

Nor is this the only difficulty. Specifying the prior information will be difficult because of the 
unnatural form in which it is required. What do I know about the coefficients of the basis splines 
of the regression function? I suspect that even if I had far greater knowledge and experience of 
splines this would be a very difficult question, so what hope has the average practitioner? 

In conclusion, this paper tantalizes me. The methods are exciting, but, as a Bayesian, I would 
very much like to know what the model means and how I can use it. Also, does the model (as 
opposed to the computational algorithm) extend to higher dimensions as easily as in Section 3 of 
my paper? 

Professor A. P. Dawid (University College London): Minimizing (2.1) is the Lagrange multiplier 
equivalent of minimizing S{ Yi -g(ti)}2 subject to fg"(x)2 dx < P. In performing cross-validation, 
it would be possible to use (3, rather than cx, as the parameter of our prescription (this is very 
loosely analogous to concentrating on the size of a hypothesis-test, rather than its critical 
likelihood ratio). For given data, there will be a one-to-one relationship between a. and (. However, 
since this relationship is data-dependent, and thus changes when an observation is omitted, cross- 
validatory assessment of (3 might differ considerably from that of al. Are there any rational 
arguments for choosing between these two approaches? 

One could also argue that, to ensure sensible dependence on sample-size n, (2.1) should be 
replaced by S(g) = n 1 I{ Yi -g(ti)}2 +y f g"(x)2 dx, and that the value for y chosen from cross- 
validation on subsets of size n - 1 should be used. This is equivalent to scaling up the selected 
value of al by a factor n/(n - 1). Might this small correction improve performance appreciably? 
Note that no such adjustment is required if (3 is taken as the parameter. 

Dr P. Prescott (Southampton University): I should like to join my colleagues in thanking 
Dr Silverman for an interesting paper, entertainingly presented. However, I was a little surprised to 
see no direct reference to Cleveland's (1979) work on iterative robust locally weighted regression, 
although related references are mentioned in Section 8 of the paper. The objectives are the same 
and there are similarities in the approach to producing a smoothed representation of the data. 
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Cleveland's method uses an automatically adjusted window passing through the data. An 
appropriate model is fitted using weighted least squares within this window and each local analysis 
is used to predict a single observation. In this way an initial set of residuals is produced. The pro- 
cedure is then repeated, iteratively, using a further set of weights produced by applying robust 
M-estimator weights based on the residuals produced at each step. Two steps are usually sufficient 
for convergence of the robust weights. The main difference between the two approaches seems to 
be the local model employed. Cleveland conjectures that, although any polynomial may be used, a 
simple straight line is adequate in most practical cases. 

Dr Andrew Walden and I (1983) have used this method in some recent work on smoothing 
annual maximum sea levels at selected English ports in order to adjust the extreme sea levels prior 
to further analysis. We should be interested in knowing whether any comparisons have been made 
between these two approaches. 

The following contributions were received in writing, after the meeting. 
Dr Craig F. Ansley (University of Chicago): Dr Silverman's paper is an excellent review of 

curve fitting by splines using the cross-validation approach of Craven and Wahba (1979). However, 
he has ignored a large section of the literature which provides an enlightening alternative view of 
the problem. I refer to the work of Weinert, Byrd and Sidhu (1980; see also the references therein) 
who show how a smoothing spline can be expressed as the conditional expectation of a stochastic 
process observed with error, and, further, that the stochastic process has a simple state space 
representation that allows conditional expectations and variances to be obtained efficiently 
through standard filtering and smoothing algorithms. Wahba (1978) also has a stochastic model, 
although she does not use it as a computational device, and Ansley and Kohn (1984) show that the 
two approaches are equivalent. A form of Wahba's model with diffuse initial conditions is used by 
Wecker and Ansley (1983). 

An area in which the state space formulation is particularly useful is in establishing error 
estimates for fitted curves. Dr Silverman follows Wahba's (1983) Bayesian approach which states 
that the joint prior distribution of the values on the curve at the observed argument values is the 
same as if the curve were generated by Wahba's (1978) stochastic model. Their prior distribution 
thus depends on the arguments; if another observation were available, the prior would change. A 
prior chosen independently of the arguments would state that the joint distribution of the n values 
of the curve at any n arguments is the same as if the curve were generated from Wahba's model. 
This leads to exactly the results produced by Weinert et al. (1 980) and Wecker and Ansley (1983). 
The computational advantages of this approach are considerable. Use of the underlying stochastic 
model also gives direct results for a number of associated problems: higher order splines (Wecker 
and Ansley, 1983); smoothness properties (Kohn and Ansley, 1983); derivative estimation and 
models with concomitant variables (Ansley and Wecker, 1983). It also leads naturally to a fully 
Bayesian analysis of the model, as discussed in a forthcoming paper. 

Professor A. C. Atkinson (Imperial College, London): Like other speakers I thank Dr Silver- 
man for a lucid and interesting paper. I have two technical comments and one query about the 
data. 

1. In Section 5.2 Dr Silverman uses the studentized residual. Belsley, Kuh and Welsch (1980) 
and Atkinson (1981) give arguments in favour of the deletion residual (alas called studentized by 
Belsley et al.) in which the estimate a is replaced by the deletion estimate a(g). Among other 
properties this has the advantage that, for the normal theory linear model, the distribution is 
Student's t. Interestingly, the deletion residual comes from the likelihood ratio test for the 
presence of a single outlier. The studentized residual is obtained from the score test in which, 
of course, all parameters are estimated under the null hypothesis. 

2. The analysis of the Old Faithful geyser data provides, I feel, a clear demonstration of 
the exploratory power of smoothers. For parametric modelling I would prefer something 
which is again smoother, but now in the sense of a curve for which the two straight 
lines of Fig. 5 form asymptotes. Testing hypotheses in this smooth model might eliminate 
the problems of separate families of hypotheses mentioned at the end of Section 5.3. 

3. Inspection of Fig. 2, particularly in the region 30-40 ms, suggests that the data 
may not be a single time series but are rather the superposition of, perhaps, three series. 
An argument in favour of plots of signed residuals, rather than the squared residuals of 
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Fig. 4, is that this pattern might be more clearly displayed. If the data do consist of a super- 
position of similar series which are slightly displaced horizontally, one would expect the variance 
to be highest where the mean value is changing fastest. Would Dr Silverman please be more forth- 
coming about the structure of his data? 

Professor G. A. Barnard (Retired): Dr Silverman's use of "automatic" instead of "objective" 
to describe his suggested procedure for obtaining an initial value for the smoothing parameter is 
to be welcomed provided the two words are not taken to be opposites. The mere fact that a 
procedure can be made part of a computer routine does not, of course, make it objective. But all 
the procedures Dr Silverman discusses are objective in that they reflect known or checkable 
properties, qualitative or quantitative, of the data. His Bayesian model of Section 6 embodies 
known qualitative aspects of the data in that known mechanical properties of (simulated?) flesh 
and bone justify our assumption, for the motor cycle crash data, that low values for the second 
derivatives are more plausible than high values. And cross-validation for the smoothing parameter 
also reflects known homogeneity properties of the data although, in some cases, on looking at the 
resultant curves we may realize we know of other qualitative features which render the value 
arrived at unsuitable. 

All our statistical procedures should aim at objectivity in the sense that any assumptions we 
make should be clearly stated and should at least be empirically checkable. It would not be 
necessary to stress this, were it not for the fact that some "personal-Bayesian" statisticians give the 
impression that purely personal willingness to lay coherent bets may be all that is needed to justify 
some assumptions. 

Mr P. J. Bates (Scicon Ltd): Dr Silverman's paper is very interesting and practically important. 
There are several points I would like to make and on which I would welcome Dr Silverman's 
comments. 

Firstly, a hypothetical question-if spline smoothing can be extended to be practicable in the 
multidimensional case, can this be done in such a way to allow the dependence on one or more of 
the explanatory variables to be constrained to be of a particular parametric form? Possibly, in the 
case of linear dependence, some progress could be made by noting that, in one dimension, setting 
the smoothing parameter a to 00 corresponds to linear regression. If possible at all in what 
situations would the combination of parametric and non-parametric regression be viable? 

Secondly, the fact that the method can be extended easily to other forms of error structure as 
shown in Section 8.1 is heartening. An application in which both this and what is envisaged above 
would be useful arises in a military context. This concerns prediction of the probability of success 
of a homing weapon activated at a position (x, y, z) relative to its intended target. The dependence 
of this probability on (x, y, z) may be too complex to rely on a parametric model and there may 
be other discrete or continuous covariates to take into account. 

Finally, Dr Diggle has illustrated the importance of taking into account dependence between 
the observations when the degree of dependence, in this case the serial correlation coefficient p, is 
known. His example also demonstrates that the value of p can drastically affect the amount of 
smoothing chosen by the cross-validation method. How should one proceed when dependence is 
suspected, but the value of p is unknown and must be estimated? The particular application I have 
in mind is to Monte Carlo simulation experiments in which the variance reduction technique of 
using the same random stream for different values of the input variable is employed. Dependence 
between the observations is deliberately introduced with the aim, usually, of estimating some 
functional of the curve more precisely, but it is not known how much dependence and so how 
much it actually improves the precision of the estimate or what the "best" curve is. 

One approach may be to make a joint cross-validatory choice of a and p but I suspect that this 
may not give sensible results. Also one would then be placing a and p on the same footing philoso- 
phically: would oa be regarded as a parameter estimate or , as a choice? What is the distinction 
anyway? 

An alternative may be to apply the iterative procedure originally suggested by Cochrane and 
Orcutt (1949) for linear regression with autocorrelated errors. This would involve guessing the 
value of p, selecting (automatically or not) a given this value of p, computing the usual estimate of 
p with this oa, selecting another a and so on, it is to be hoped, to convergence. Will this work? 

Is there some more sensible way of attacking this problem? 
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Mr J. E. Besag (University of Durham): Dr Silverman's paper is particularly welcome to one 

who has in the past avoided splines, though I was a little sorry to see the paper conclude perhaps 
gloomily with the problems of multivariate design points. For univariate curve fitting, my usual 
non-parametric approach is with a pencil: I recognize that this does not allow statistical inferences 
to be made but equally I am unconvinced by the somewhat arbitrary Bayesian assumptions in 
Section 6 of the paper. Of course, in many problems, an automated solution is required. But this 
did not seem to be the case in Dr Silverman's numerical examples, which I would like to consider 
further. It may be unfair to treat them too seriously but I am unclear, and this is a general point, 
at what stage of development one ought to abandon the luxury of purely illustrative examples. 

Thus, the motor cycle impact data confirm that simple spline smoothing copes poorly with a 
discontinuity in derivative and that taking accouint of very marked heteroscedasticity improves 
the resulting picture; of course, the performance of simple smoothing is affected also by the length 
(number of points) of the recorded interval of (virtually) constant speed prior to impact. In the 
practical context, my tendency would be to adopt a parametric approach, based on a second- 
order differential equation whose fitted coefficients could be of intrinsic interest; the point of 
impact might generally require formal estimation but here this does not seem necessary. Residual 
structure could suggest more detailed analysis, though this would probably require further data. 
I certainly see no evidence of the strange behaviour depicted in Fig. 6; surely, acceleration returns 
essentially to zero, even if one accepts the Bayesian pointwise confidence bands? 

The geyser data provide another interesting numerical illustration, though I did not initially 
understand why a regression was being fitted to what seemed to be two blobs: Cook and Weisberg 
(1982, p. 40) provide a light-hearted(?) explanation and, for practical purposes, the differences 
between the various predictors is negligible, given the variability in the data. I am intrigued by the 
paucity of eruptions lasting between 21/2 and 31/2 minutes and wonder whether Dr Silverman has 
any further information. 

The third example, I would again treat parametrically: here a logit curve would seem the 
obvious candidate. One might exclude the observation at 11 hours as an outlier, though this seems 
somewhat arbitrary and, in any case, should make negligible difference, against experimental error, 
to the estimate of maximum gradient. To use the approach of Section 7 seems to me to pander to 
the availability of computational complexity and, like Dr Jennison, I am concerned about the 
effects of local characteristics, whether real or apparent; this problem does not arise for the 
extrema in the first example. 

My conclusion from this very useful paper is not to dismiss spline smoothing from statistical 
analysis, nor its potential for surface estimation, but to ask for real applications in which its use is 
more substantial and in which less sophisticated non-parametric smoothers, such as those of 
Velleman (1980), are insufficient. Comparisons with alternative sophisticated techniques, for 
example Cleveland (1979), would also be informative, especially where these can be easily adapted 
to multivariate design points. Examples might require very large data sets, which are difficult to 
present in a journal, but I wonder whether Dr Silverman can be persuaded to provide an additional 
application in his reply to the discussion: I feel sure this would be helpful to his cause. 

Dr G. Collomb (Universite Paul Sabatier, Toulouse): I would like to congratulate the author 
on his most interesting paper, which I hope will stimulate the use of nonparametric methods in 
applied statistics: this paper is a good advertisement because it involves a minimum of knowledge 
in probability theory and asymptotic statistics. 

As for the basic idea (Section 2), we note that the classical Nadaraya-Watson estimate leads to 
estimations which are very rough curves (e.g. Watson, 1964); spline estimations are more beautiful 
curves. Are these estimates also more accurate or do we have to choose between beauty (smooth- 
ness) and accuracy? An answer to these questions can be obtained by the utilization of (3.1) and 
formulae giving the m.s.e. E{g-(s) -g(s)}2, s fixed, of the kernel estimate: see Gasser and Muller 
(1979) for the curve fitting problem and Collomb (1977a) for the regression problem. The 
evaluations of the bias E{g(s)}-g(s) obtained in these two last papers depend mainly on the 
convexity of the estimated curve (e.g. Collomb, 1982, p. 176), so that convexities or concavities 
of the estimation suggest appropriate corrections in the reading of this estimation. This last remark 
completes Section 3 and also Section 6 which only concerns the case of a bias small with respect 
to the variance of g(s). The inference regions (6.12) suggest the following questions: is the 
normality of ei to be supposed, is it possible to "studentize" this result (i.e. estimate a in 6.12), is 
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the homoscedasticity condition (E ef does not depend on ti) necessary? Collomb (1 977b) gives 
such completely studentized pointwise confidence intervals in the heteroscedasticity case for the 
kernel regression estimate: (3.1) suggests a utilization of this last result, which also concerns 
the multivariate case. Such intervals are very useful from an exploratory data analysis point of 
view (e.g. Collomb, 1982, p. 177), however they do not define really a confidence band as 
obtained by Liero (1982). 

The presentation of the robust smoothing (Section 8.1) leads to the following question: can we 
say that g minimizing SR (g) defined by (8.1) is an estimate of g defined by (1 .1)? I think that g 
estimates gR defined by gR(t) = argmin E[p{ Y-g(t)}], for all t E= 1 and, for usual functions p, 

g 
generally we have g = gR only if the distribution of ei is symmetric. Lastly we note that similar 
nonparametric robust estimnates are developed by Collomb and Hurdle (1984) in the case of a 
mixing process: this kind of result shows that the initial condition of independence (Section 1) 
can be relaxed without alteration of the properties of the considered methods, which can also be 
used (Collomb, 1983, 1984) in time series analysis and prediction. 

Professor Noel Cressie (Iowa State University): Dr Silverman's underlying model is set out in 
(1.1). His aim is to estimate, nonparametrically, the curve or surface therein notated as g. 
However, when the given data { Y1; i = 1,.-. ., n are to be analysed, there is a certain non- 
identifiability in the model specification. One could equally as well postulate 

where i = 1,..,n I is a sample from a stationary process {nqt; t E? RI} on the real line, or 
more generally in space. Roughly speaking, the stationary model does not try to explain all the 
large scale variation through a trend surface, but rather leaves some of it with the error (Cressie, 
1985). This allows prediction in regions where there is little or no data; linear prediction exploit- 
ing such spatial relationships has been called kriging in the mining and geostatistical literature 
(Matheron, 1963). In contrast, the spline approach presented by Dr Silverman, tries to estimate a 
trend surface smoothly. Which model one chooses, depends on the type of questions one is trying 
to answer; Watson (1972) observes that a good deal of geological data needs to be analysed using 
the dependent error model. 

Finally, it is worthwhile mentioning that there is a formal relationship between kriging and 
splines. Watson (1984) is the best source for a clear exposition of the details. Without loss of 
generality, assume design points satisfy 0 < ti1 .... < tn < 1. Add to the minimization of 
Dr Silverman's (2.1), the conditions Y1 =g(t1); i = 1,. .,n, and g(0) =g'(0) =g(l) =g'I(l) = 0. 
The former demand on exact interpolator, while the latter are there essentially for convenience, 
since the solution is directly comparable to simple kriging (i.e. kriging in the absence of drift). 
Without them, we would have to talk about universal kriging, which is best left for another 
occasion. 

The solution is a cubic spline 

g(t) = yT (C + a,) -i () 

where yT = (y1,. yn, a is the smoothing parameter in (2.1), c(t)T =(c(t,I t1), . .., c(t, tnA)) 
{ c(t1, t1) 1, and finally the piecewise cubic polynomials are given by 

C(t, t1) ={((t - t1)I(t > t)}13 /6 - t3 (I + 2t1) (1 - t1)2 /6 + t2 t1(I - ti)2 /2; 0?< t ? 1 
Watson (1 984) observes that the matrix C is positive definite, and hence so is C + aL. 

Thus we could postulate having a zero mean process { Yt; t E- 61), observed at ti. tn, 
and with covariance function E(Yt Yu) =c(t, u), t * u; = c(t, t) + a, t = u; a is often called the 
nugget effect in the geostatistics literature. We want to predict Yt using a linear function of the 
data Yt, , . . ., Ytn this is precisely kriging. By minimizing the mean squared prediction error, 
E(Yt - 1~ X1 yti)2, with respect to weights X, one finds the optimal X~ 

*(C + aI) d c(t), 
and hence the optimal predictor is 

*= yTX* = yT (C + a,) ' c(t), 
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which is exactly the same equation as for cubic spline interpolation. 

We are loath to interpret the cubic spline as a correlation function of stationary data with zero 
mean, but prefer to keep the relationship formal. It is merely expressing the type of non-unique- 
ness described at the beginning of this contribution. In two dimensions, the link is obtained 
through covariance functions like h2 log h, rather than h3 ; see Dubrule (1983). 

Having said all this, does Dr Silverman think it is possible to develop a Bayesian interpretation 
for kriging, by adopting his finite dimensional approach for splines? 

Dr J. Cuzick (Imperial Cancer Research Fund Labs, London): I enjoyed very much Dr 
Silverman's lucid exposition of the theory of spline smoothing. However I do not find the material 
in Section 7 on the estimation of functionals entirely satisfactory, be they linear or non-linear. My 
point is made most transparent by consideration of an estimate for the fourth derivative at some 
fixed point (a linear functional), where g(4) = 0 except at knots where it is undefined. This 
extreme example highlights the need for a smoother estimate of g for approximating derivatives 
and suggests that efficient estimates should be based on a penalty function with terms containing 
higher order derivatives when g is known to possess higher order smoothness. 

Professor J. Durbin (London School of Economics): In my review paper on time series 
analysis for the Society's 150th Anniversary Conference (Durbin, 1984) I referred briefly to the 
problem of seasonal adjustment and expressed the view that while existing seasonal-adjustment 
techniques require modernisation, methods based on the Kalman filter are ultimately more likely 
to be found preferable for the purpose than techniques based on ARIMA modelling. One of my 
reasons for this belief arises from the prevalence of changes in behaviour over time of economic 
and social time series. However, I have been greatly impressed by the suitability of the techniques 
discussed by Dr Silverman for the study of phenomena displaying slow structural change. 
Consequently I believe it would be of great interest to see the development of methods for the 
estimation of seasonal components in the presence of change over time analogous to those used in 
the paper for the estimation of trend. I would be interested to hear whether Dr Silverman would 
regard his approach as suitable for the seasonal adjustment problem. 

Dr G. K. Eagleson (CSIRO, Australia): It has been a pleasure to read the clearly presented and 
timely paper of Dr Silverman. While he has noted three main purposes for which regression may be 
used, he does not mention what I believe to be another important use: the comparison of two data 
sets. Can the techniques of non-parametric regression outlined in his paper be used to that end? In 
particular, can the estimates of local variance be used to assess whether two fitted regression lines 
could be assumed to be the same? 

Dr R. L. Eubank (Southern Methodist University, Texas, USA): Let me begin by thanking 
Dr Silverman for an interesting and thought-provoking paper. His use of regression type diagnostics 
for smoothing splines coincides with many of my own thoughts on this subject (Eubank, 1 984a, b). 
The close connection between smoothing splines and polynomial regression leads one to believe 
that diagnostics appropriate for use with smoothing splines should resemble those currently in use 
by regression analysts. In this regard, it is well known that diagnostic procedures should include 
information about the design as well as the fit. Design diagnostics for smoothing splines are 
provided by the leverage values, Aii(al). It can be shown that 0 < Aii(a) < 1 and that a leverage 
value too near one indicates a sensitive point in the design where an observation will tend to 
dominate its own fit. A diagnostic which encompasses both information about an observation's 
leverage as well as its fit is (in Silverman's notation) 

DFITSi = 1 Aii(o)/(l -Aii(oz)) l/2 i ri 1, i 1. n. 
This particular diagnostic indicator can be motivated from analogous quantities used in regression 
analysis and can provide valuable information over that available from measures focusing on 
residuals alone. Many other regression type diagnostics can also be suggested. 

Concerning interval estimation, there are several alternatives to Silverman's method based on 
sample estimates of the influence curve for smoothing splines. One of these (cf. Wold 1971) 
can be described as follows. For simplicity assume that wi = 1, i = 1, . . ., n, and let g[i] and 
vl i1 denote the smoothing spline estimate and vector of coefficient estimates, under the B-spline 
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basis, when (ti, Y1) has been deleted from the data. It can be shown that 

V'i] =aQ +BTB I-'BT [Y- e (Yi g'(0)) 
1 -Aii(cz) 

where ei is the ith column of the n x n identity matrix, which givesgli] (t) = vi,1(t). Given 
a functional T we then define pseudovalues 

Pi(t1) = Tj) - (n _ i()_ti l),i- 1, ) n 

and obtain the jackknife variance estimate (Efron, 1982) 

S2 -n(n - 1) yn S{p,(*)-() 
where P(T) = n -1 yn Pi(T). An approximate 95 per cent confidence interval for T(g) is provided 
by I(') ? 2S4. The computation of S2, simplifies considerably when T is linear. Dr Silverman's 
approximations for the Aii(a) have some obvious applications to jackknife interval estimation. 

Jackknife confidence intervals do not require the assumption of normal errors and are more 
computationally expedient than the Bayesian approach when 'I is nonlinear. It should also be 
noted (see e.g. Hinkley, 1977) that jackknife methods might be expected to be robust against 
nonhomogeneous error variances. It would be interesting to compare jackknife methods to 
Silverman's approach with estimated weights in this setting. 

Drs W. Greblicki and M. Pawlak (Institute of Engineering Cybernetics, Wroclaw, Poland): We 
would like to point out one difference between various nonparametric estimates and we shall do 
it in the context of density estimation. For an unknown density f having p derivatives, Wahba 
(1 975) suggested using a kernel K such that 

Xy'K(;y) dy = O, i = 1, . ,p - I and jsYP I K(y) ldy < ??. 
Then, for the kernel estimate f(x) of f(x) 

E{ f(x)-f(x) }2 < cl h2P-1 + c2 /nh, (1) 

cl and C2 are positive and h is the smoothing parameter. Hence, for h(n) - n /2P 

E{f(x) - f(x) }2 O(n~(2P1 )12P) (2) 

In turn, for the estimate fusing the cosine orthonormal series 

E{f(x)-f(X)}2 < c3N-(2p-1) + c4N/n, (3) 
where N is the number of orthonormal functions in the estimate-see also Wahba (1975). For 
N(n)- n'/2P, the rate of the cosine series estimate equals that in (2). Thus, generally speaking, the 
rates achieved for the kernel and the cosine series are the same. The same conclusion is true for 
mean integrated square error-see Rosenblatt (1971) for the kernel estimate and Greblicki and 
Pawlak (1984) for the orthogonal series. 

Now let the density be analytic, i.e., let it have all derivatives (which is often the case) and let 
the kernel be selected in the way suggested by Wahba (1975) (now p is a number arbitrarily chosen 
by a statistician). Then, the right side in (1) and consequently the rate in (2) remain unchanged. 
For the cosine series estimate, however, 

E{f(x)-f(X)}2 < c3NlIN + c4N/n (4) 
S > 0. Now, taking e.g. N(n) fnl, e> 0, we get 

E{f(x)(x)x)}2 = O(n- 
By selecting e sufficiently small, one can obtain a rate better than that achieved for the kernel 
estimate. A similar property can be also observed for estimates employing other orthogonal series 
(see e.g. Greblicki and Pawlak, 1984). 

In view of this it seems that, for analytic densities, orthogonal series estimates behave better 
than the kernel estimate. This difference between these two estimates is caused by the fact that 
the kernel is selected according to p, i.e. the number of existing derivatives of the unknown 
density, while in the orthogonal series estimate the kernel is uniquely determined by the 
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Christoffel-Darboux formula and gives a good fit of the estimate to smooth densities. Similar 
properties of both estimates can also be observed while estimating regression functions according 
to the model examined by Silverman in his paper. One problem, however, arises for analytic 
regressions (and densities): do spline estimates behave as the kernel or the orthogonal series 
estimate? 

Dr Wolfgang Hardle (Johann Wolfgang Goethe- Universitat, Germany): Dr Silverman's article 
on the spline smoothing approach to curve fitting is an excelJent contribution to the understanding 
of data smoothing. He points o-ut the various attractive features and shows in a variety of examples 
the wide applicability of spline smoothing. I found the clear and elegant discussion of Section 3, 
pointing out the relationships among spline smoothing and kernel regression, very stimulating. 

My comments will address (a) the generalized cross-validation method (Section 4) and (b) the 
proposal of an automatic choice of the smoothing parameter in the case of robust spline smooth- 
ing (Section 8. 1). 

The generalized cross-validation method can be considered as a member of the smoothing 
parameter selection procedures; 

"Choose a to minimize the score 

Sj(,;a) = RSS(aY) Z(n' trA(a))." 
Here Z denotes a "selection penalty" with expansion Z(u) = 1 + 2u + Z"(t)u2. The generalized 

cross-validation score GXVSC(a) has penalty ^(u) = (1 u) 2. A FPE-Type penalty 
4(u) = (1 + u)/(l - u) (Akaike, 1970) or Shibata's (1981) ,(u) = (1 + 2u) are also possible. 

Note that n n n 

ESn(';a,) =E {n 1 E e? + nl E -1)-(z) + 2nl E1 ej(i(tj) -g(tj))} 
i=1 i=l i=li 

x [1 + 2n 1 trA(o) +O((n 1 trA(o,))2)] 

n 
=a2 +En (E(ti)-g(ti))2-2n 1 trA(a)a2 

+ 2n1 trA(a) a2 + O((n' trA(a))2). 

So, asymptotically minimizing Sn(Z;a) is the same as minimizing n 1 =i (j(t1)-g(t1))2. 
This expansion also suggests that all possible selectors Sn(Z;ao) are asymptotically equivalent. 
However, a with a large second derivative in a neighbourhood of zero could be preferred in 
order to penalize more for undersmoothing. 

Which of the possible penalties should be applied in practice? 
Denote the robust spline by gR. An automatic choice of the smoothing parameter by means of 

(8.3) is a natural extension of the cross-validation score XVSC(a). 
Let p(s; t) = p(s - t),4 = p' and let Vn(4) be a consistent estimate of E2 /E4'. I propose the 

following score 

n 

Wn (at) = 2n -1 E p( Yi - gR (ti)) + 2n - tr A (a) Vn ( 

as a smoothing parameter selector. The idea behind Wn(a) is that, by Taylor expansion, 

n 

E Wn(a) = 2Ep(e) + 2 n' 1 E[ (ei) (g(t1)-g(ti))] 

+n1 trA (at)EVn; } +n E E[; ~(ei) (g(ti) -g ) ], 
J~ 1= 
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where g(s) is the linear approximation to g', as given by Cox (1983). The first term on the right 
hand side is independent of a, the second vanishes and the third term is the quantity of interest. 

How is Wn (a) related to XVSC? 

Professor D. V. Lindley (Somerset): This admirable paper makes the non-parametric fitting 
of curves approachable both by the mathematician, because of the elegance and simplicity of its 
argument, and by the practitioner, because of available numerical techniques. 

The precise interpretation of the roughness penalty eludes me. The way it is introduced in 
Section 2, and the language used to describe it, suggests it is a loss function. The approach in 
Section 6 gives it a probabilistic description. Mathematically this confusion does not matter 
because only the product of loss and probability matters and therefore the product can be 
interpreted either way. But when we go beyond the technique to the standpoint (to use de 
Finetti's phrase) we must ask what it means in its probabilistic interpretation. First, it has 
probability one on cubic splines with knots at the ti. In other words, change a ti and the opinion 
changes drastically. This is very unrealistic but viewed as an approximation to an underlying 
distribution may not matter. Second, what does it say about these splines: what does it mean to 
say the yi are multivariate normal with zero means and precision matrix Q? For example, what 
is the correlation between g(s) and g(t)? Does it depend on how many knots there are between s 
and t or is it, as one would have in most applications, purely a function of t - s? Third, what does 
it say for extrapolation? It apparently implies linearity outside (t1, tn). If g"(s) > 1 for all s in 
(t1, tn), would this be a reasonable inference? Statisticians should be encouraged to think about 
their model and I find it hard to be sure what the techniques so well presented here imply. 

It would be interesting to compare tonight's methods with the non-parametric methods of 
Young (1 977) using polynomials instead of splines. Notice that Young, working within the 
Bayesian framework, evaluated his equivalent of the smoothing parameter a, his X, within that 
framework, though he had to use a modal value. Perhaps cross-validation could be replaced by a 
coherent method. 

Dr J. S. Marron (University of North Carolina, Chapel Hill, USA): I very much enjoyed 
reading Dr Silverman's excellent presentation of recent advances in the spline smoothing 
approach to nonparametric regression estimation. 

The asymptotic representation (3.2) of the spline estimator in terms of a kernel estimator 
allows nearly immediate application of the results of some unpublished papers by Hardle and 
Marron. In particular it may be shown, under reasonable assumptions, that if ISE denotes the 
Integrated Squared Error: 

ISE= j{,(s) g(s) }2 ds, 

and if &a denotes the minimizer of the cross-validation score XVSC, then the estimatorg with the 
smoothing parameter taken to be a' has the compelling optimality property: 

ISE(&)/min ISE(a) -* 1, 
OL 

almost surely. 
When the cross-validation scores GXVSC or AGXV are used to find "a more work is required 

to establish results like that above, but the difficulties should not be too great in view of the 
approximations presented in Section 4. 

The fact that the local bandwidth given in (3.4) is a multiple o.f n 1/4 is disturbing at first 
glance because traditional asymptotic theory calls for a multiple of n -1/9, for this kernel. However, 
the above result says that this is not a problem if the bandwidth is chosen by cross-validation 
since the optimal selection of the scale factor a will automatically make the necessary adjustment. 
As Dr Silverman points out, it is the factor of f(X) -1/4 in (3.4) which makes the spline estimator 
seem superior to a fixed bandwidth kernel estimator. 

In Section 5, the problem of nonconstant variance is addressed by attaching weights to the sum 
of squares part of (2.1). Continuing along these lines one may wonder: does it seem worthwhile 
to also introduce a weighting scheme to the integral part of (2.1)? For example, in the case of the 
motorcycle impact data, it seems the estimator might be improved by having more smoothing for 
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times less than 15, and perhaps much less smoothing near what appears to be a "sharp corner" 
at about time 15. 

A natural question regarding the material of Section 5.4 is: would it be profitable to choose 
the number of nearest neighbours, k, in (5.8) by a cross-validatory procedure? The dependence 
of the estimator on k certainly seems more tenuous than the dependence on oa, yet a cross- 
validatory procedure seems more in the spirit of letting the data speak for themselves. 

Drs H-G. Miiller and U. Stadtmuller (University of Marburg; University of Ulm, Germany): 
There is a wealth of theoretically interesting and practically relevant results in the paper of 
Dr Silverman. We want to focus on one of his main results which shows that smoothing splines 
correspond essentially to a variable bandwidth kernel estimator. For kernel estimators, it is well 
known that under certain regularity conditions, using a kernel of order k (i.e. with (k - 1) vanish- 
ing moments) the optimal local bandwidth at a point t depends on t via the expression 

{ a2 (t)/g(k) (t)2f(t) }1 /(2 k+1 ) 

where a2 (t) denotes the local residual variance, g is the curve to be estimated and f the design 
density. Dr Silverman shows that cubic smoothing splines correspond to a kernel with k = 4 and 
adapt to f(t)-4. 

It is easy to devise variable bandwidth kernel estimators where the bandwidth varies according 
to f(t)-a, a E [0, 1 1, and which should correspond to cubic smoothing splines if k = 4, oz = 1/4, 
whereas the asymptotically optimal value for a would be oz = 1/9. Preliminary simulation results 
show that the IMSE (Integrated Mean Squared Error) of such kernel estimators with bandwidth 
varying according to f(t)-cl is nearly the same for all oa E [0, 0.5] . It is not clear whether the 
smoothing spline could be outdone by a kernel estimator adapting with an optimal oa. At least 
in equidistant designs kernel estimators are according to simulation results not worse than smooth- 
ing splines. 

For kernel estimators, it is possible to adapt also to g(k)(t) according to (*) by pilot estimators 
and this seems to be much more relevant with respect to IMSE than adaption to f(t). It can be 
shown that by such an adaption to local curvature of g asymptotic IMSE is decreased and this 
could also be demonstrated for small sample sizes by simulations (Miller and Stadtmilller, 1984). 
Therefore we would rather prefer to use locally adaptive kernel estimators than smoothing splines, 
because they allow for much more flexibility in the manner and extent of adaption. 

Further advantages of kernel estimates compared to smoothing splines are according to our 
experience: boundary effects can be taken care of (practical and theoretical relevance for global 
measures of deviation); multivariate extensions can easily be implemented, especially for a 
rectangular design; choice of different kernels allows to derive curve estimates of different degrees 
of smoothness, different rates of convergence and of derivatives; simplicity of the kernel method 
allows qualitative assessment of finite local bias and variance. 

Dr F. O'Sullivan (University of California at Berkeley): I am glad to have the opportunity to 
contribute to the discussion of Dr Silverman's fine paper. 

Generalized cross validation treats all points in the design space equally and so is likely to be 
unduly sensitive by very high leverage points. Maybe one interpretation of the asymptotic 
generalized cross validation score is that the knot density estimate implicitly produces a smoothing 
of leverage values in order to stabilize the original score? By directly considering leverage values, 
that is, diagonal elements of the hat matrix, perhaps we should be motivated to experiment with 
still other cross validation methods, especially in situations where there are extreme points in the 
design space or one is interested in criteria other than the predictive mean square error. 

An alternative cross validation score for the situation in Section 8.1 could be motivated directly 
from the pseudo-process. One might consider a score of the form 

n 
nl E [71i- g(ti) ]2/[1l-n-1 trA (o)] 2 

where m7i are the pseudo-observations and A(oa) is the hat-matrix for the "equivalent least squares 
problem" i.e. corresponding to the pseudo-observations and pseudo-weights. Huber (1979) 
suggests this score in the context of robust smoothing. An investigation of the score applied to 



40 Discussion of Dr Silverman's Paper [No. 1, 
generalized linear models is given in O'Sullivan, Yandell and Raynor (1984). The basic finding is 
that the score performs well from the point of view of a weighted mean square error criterion, 
where the weights are related to the expected Fisher information obtainable at the design points. 
A simple algorithm for computing the score may be worth describing. Keeping with the notation 
in the paper, the hat-matrix for the equivalent least squares problem is given by: 

A(ot) = B[BT WB + aoQW 1 BT W, 

where the diagonal of W contains the vector of pseudo-weights. Thus the trace term can be written 
as 

tr A (a) = tr (BT WBS 1), 

where S = [B'WB + a&2]. Now using the Cholesky decomposition of S, as given in equation (7. 1), 
the trace simplifies to: 

trA(a))=tr(BTWB(LT)Y1 L 1)= { dik<Ck,Ci>} 
i k 

where dik = (BT WB)ik and < Ck, ci > are inner products between columns of L . A further 
simplification occurs because the matrix BTWB is band limited so that the terms in brackets are 
few-at most seven with the roughness penalty in the paper. Now expanding upon a trick in 
Elden (1977), the column inner products can be found recursively, starting with the last column, 
from the relation: 

L-1 L-I. 

It follows that the trace, and consequently the cross validation score, is directly computable in 
roughly 40n multiplications/divisions. More importantly, a similar technique can be used to 
calculate directly individual leverages: The ith leverage value is the norm of the ith column of the 
matrix L 1 W /2B. However the expression for this norm involves only a very limited number (at 
most three for the situation of the paper) of inner products between neighbouring columns of 
L -1. So it turns out that the entire set of leverage values can be obtained directly with the same 
computational effort as the trace calculation. Among other things, these leverages could be used 
to compute the exact confidence intervals given in equation (6. 10). 

With regard to multivariate smoothing, a less general model for the multivariate surface is 
defined by letting some transformation of the expected response be a linear combination of 
one-dimensional functions of the independent variables or variables derived from the independent 
variables: see Stone (1984>. Along with being practically very useful, there are definite com- 
putational advantages associated with these models. Now, ideally one would like to have methods 
with which to evaluate and compare alternative specifications for such models, so it would be 
interesting to study how the empirical Bayesian analysis of the paper might apply. 

Drs R. L. Parker and J. A. Rice (University of California, San Diego, USA): We wish to con- 
trast the approach of smoothing splines so clearly presented by Dr Silverman, with another 
approach to smoothing with splines, which we will call least squares splines. In this approach, a 
small number of knots (p < n) are specified and the unknown function is approximated by least 
squares from the linear space spanned by B-splines with those knots (deBoor, 1978, Chapter XIV). 
Asymptotic properties of this scheme have been investigated by Agarwal and Studden (1980). 

Perhaps the principal advantage of this scheme over smoothing splines is that the linear system 
to be solved is of order p rather than n. Since the estimate is linear in the data, it is of the form 
given by equation (3.1) of Dr Silverman's paper. Although we do not know the asymptotically 
equivalent kernel in this case, for any given design the weight function can be easily determined by 
feeding a vector Y consisting of one 1 and the rest zeros into the estimation program. An example 
is given in Fig. D4. The most striking aspect of the figure is the presence of very pronounced side- 
lobes, which can give rise to oscillations in the fit unless the knot placement is done with a com- 
bination of care and luck. 

We have used both forms of spline smoothing as low-pass filters to remove slow secular trends 
from time series. In this situation, since n can be quite large, least squares splines might seem 
especially appealing. However, it is sometimes impossible to enforce a high enough degree of 
smoothness. Figure D5 shows a data series consisting of the sum of three high-frequency compon- 
ents, Gaussian noise, and a linear trend. Suppose that we wish to filter out the high-frequency 
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Fig. D4. The impulse response function corresponding to the 50th of 100 equispaced points in 
[0, 1 for a least squares spline with 20 equispaced knots. 
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Fig. D5. The data series is the sum of a linear trend, three high frequency cosinusoids and 
Gaussian noise. The low pass filter is a least squares spline with a single interior knot. 

components, leaving the linear trend intact. The illustration shows that with one interior knot, we 
were unable to recover the proper low-frequency behaviour. Another advantage of smoothing 
splines is that the degree of smoothness can be adjusted continuously. 
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This defect of least squares splines can be remedied by adding a penalty term involving the 
square of the second derivative to the objective function: then one is approximating the smooth- 
ing spline from a low-dimensional space of B-splines. It is permissible to use evenly spaced knots 
which considerably simplifies the programming. We have found this modification to be very 
satisfactory. 

Dr D. A. Preece (Rothamsted Experimental Station): Much as I enjoyed this paper, I remain 
very uneasy about the analyses provided both by the author and by Cook and Weisberg (1982, 
pp. 40-42) for the geyser data. Faced with the two point-clusters, within the first of which there is 
very little visible indication of a relationship between the variates, I myself would not wish to 
consider any sort of regression relationship until I knew the time-sequence for the points. I would 
then also want to know how the values of the two given variates are related to those of at least a 
third, namely "time since previous eruption". Sadly, Cook and Weisberg give only the scatter plot 
of their own two variates, so other relationships cannot be deduced. The clustering seems likely to 
have a physical interpretation that might well become apparent from knowledge of the time 
sequence; that interpretation could then perhaps motivate a statistical analysis. 

Dr A. E. Raftery (Trinity College, Dublin): One problem for which nonparametric spline 
regression may be useful, albeit with some modifications, is that of developing measures of inter- 
generational social mobility which are suitable for cross-national comparisons. 

The results of social mobility surveys are usually reported in the form of two-way cross- 
classifications of respondent's occupation by father's occupation. The classification is often 
constructed by ranking occupations on an effectively continuous status scale and then discretizing. 
Different numbers and definitions of categories have been used in different surveys and different 
countries, making comparisons difficult. This suggests using as a mobility measure an estimate of a 
population parameter defined without reference to the way occupations are categorized, unlike 
most measures proposed to date, which do depend crucially on the categorization used. 

Sociologists often wish to decompose observed mobility into "structural" mobility, forced by 
intergenerational changes in the occupational structure, and "relative" mobility. In order to assess 
the latter, we are led by the above considerations to define, for each individual, X to be the rank 
of his or her father in the population, and Y to be his or her own rank, each normalized so as to 
lie between 0 and 1. We then have the regression problem of estimating the conditional distri- 
bution of Y given X, or, equivalently, the joint distribution of X and Y (the equivalence being 
due to the fact that, assuming a continuous underlying scale, X is uniformly distributed between 
0 and 1). Once this is done, measures of relative social mobility suitable for cross-national com- 
parisons, such as E( I X - Y 1), are immediately available. 

A simple approach to the estimation problem which seems to work well for the particular data 
sets analysed is outlined by Raftery (1983, 1985). However, the spline smoothing approach is 
-much more elegant, but there are difficulties. Both X and Y are grouped, although, as pointed out 
by Good (1983), this should not present a major problem. Further, both X and Y are ranks rather 
than actual observations. Finally, a number of data sets are to be smoothed simultaneously in such 
a way as to preserve comparability. I should be grateful for any suggestions Dr Silverman may have 
as to how his results could be extended to deal with this case. 

Professor P. M. Robinson (London School of Economics): The author assumes that the 
residuals in his model (1.1) are independent, which is not necessarily reasonable where data that 
are ordered over time or some other dimension are concerned. By analogy with known results for 
kernel and other regression estimators, the presence of serial correlation may not affect some of 
the asymptotic properties of the author's estimators. However, unless n is suitably large, serial 
correlation seems likely in practice to affect adversely the precision of curve fits based on the 
author's objective functions, to have implications for the choice of smoothing parameter, and to 
suggest the use of alternative curve-fitting formulae which, in a manner possibly analogous to that 
of generalized least squares, explicitly takes account of serial correlation. Irregular spacing of the 
ti would cause complications here, but in the parametric setting methods are now available for 
efficient estimation in the presence of serial correlation, and for testing for serial correlation, in 
the presence of irregularly-spaced time series observations. The author refers briefly in Section 5.3 
to an analysis of the time series nature of the motor-cycle impact data, and it would be interesting 
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to know whether he has carried out such an analysis on these data or whether, in fact, the 
observed residuals appeared to support his assumption of independence. 

Dr A. H. Seheult (University of Durham): I have two comments. The first relates to choice of 
which derivative to penalise and connections with methods of analysing agricultural field experi- 
ments arranged in separate lines of equally-spaced contiguous narrow plots. It is sometimes 
appropriate to assume an additive decomposition for yields y of the form y = Dr + t + 77, where t 
represents a smooth fertility gradient, D is the design matrix for treatment effects r and 7 
represents independent homoscedastic errors: see Wilkinson et al. (1983). A current issue amounts 
to a choice between using first differences Aly or second differences A2y in some plausible 
weighted least squares analysis: see Green et al. (1 983), Besag and Kempton (1 984) and Wilkinson 
(1984). The choice of analysis is essentially equivalent to a choice between penalising first differ- 
ences or second differences in an appropriate penalty function, similar in form to (2.1), for some 
interpretation and choice of the "tuning constant" a. 

One resolution of the above issue would be to penalise both first and second differences in a 
penalty function of the form ?aJ tT AT Al t + al tTrTA, t + T. Presumably, cross-validation, or a 
similar method, could be used to provide an automatic choice of (al, a2); but is it worth the extra 
computational effort? Perhaps a restricted optimization along the axes al = 0 and a2 = 0, corres- 
ponding to first and second differences, separately, would be more economical and provide a 
direct choice. More generally, does Dr Silverman know of other situations where it might be 
appropriate to penalise more than one derivative simultaneously? 

My second comment concerns the relationship between generalized cross-validation and 
Tukey's rule; see Mosteller and Tukey (1977, p. 386) or Anscombe (1981, p. 358). The right hand 
side of (4.4) can be written as s2 IV where v = n - tr A (a) and s2 = RSS(a)/v is an approximate 
unbiased estimate of the error variance. Minimizing s2 Iv has an intuitive appeal when v, which 
increases with a, is interpreted as a measure of complexity of the fitted curve: it offers a choice 
between the two conflicting aims of having simple structure (v large) and small error. However, 
in line with Tukey's suggestion it is s2 /df which should be minimized, where df (the error degrees 

2~~~~~~~ of freedom) is a measure of the statistical stability of s2. In standard linear model theory, v and df 
coincide but here, if we assume s2 is approximately a chi-squared variate and the first four 
moments of the errors are proportional to those of the standard Gaussian distribution, we obtain 
df = v2/tr{I-A(a)}2. It should be noted that, as a tends to zero, v tends to zero but df tends to a 
nonzero limit, as does s2: this suggests that application of Tukey's rule would tend to lead to 
smaller values of a than generalized cross-validation, and this appears to be borne out in practice. 

Mr R. Thompson (AFRC Animal Breeding Research Organisation): To paraphrase the title of 
Section 3, I would like to ask what is (generalized) cross-validation actually doing to the data? 

For E(y) = Xa and var (y) = V = a2 (I + ZZTy) then the weighted least squares estimate of 
a = (XT V I X) 

- 
XT V-Iy can be thought of as combination of estim ates for (i) (I-Z(ZTZ) -1 ZT)y 

and (ii) ZTy. The weight given to (i) and (ii) depends on the value of y and so 'y can be thought of 
as a "smoothing" parameter. If y is normally distributed and estimation of a2 and is based on 
residuals, Sy = (I-X(XTX)YlXT)y, then estimates of a2 and y satisfy 

l[UiX1/(l + Xi_)2] -2 Y[Xi/(l +X{y)] and (1) 

[u (I +Xi0)/(l + Xiy)2] =a2z(l +Xj')/(l +X(y)], (2) 

where ui = TSy where P is orthogonal to S and SVS and p'TZZTPi = Xi (Patterson and Thompson, 
1971). This can be interpreted as fitting a linear regression a2(1 + X{y) to squares of residuals. 
u?. As u? is a chi-squared variables the weight given to u? is inversely proportional to (1 + X(y)2. 

By contrast the GXV choice of parameters satisfies 

[U 2 Xi/(I + Xiy)3] -a2 [ X/( I + Xiy)2] and 

[Ui2 (I1 + Xiy)/( 1 + Xi7Y)3 = a2 j[ I + Xi7y)/( 1 + XiY)2 . 

This is one of the same form as (1) and (2) except that the weight given to u3 is inversely 
proportional to (1 + ?yy)3. This is presumably an efficient scheme if ul has an inverse Gaussian 
distribution! 
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I would like to know if this formulation helps in understanding the choice of the spline smooth- 
ing parameter or if the computational burden is too great. 

Professor Grace Wahba (University of Wisconsin- Madison): I would like to make a few 
clarifying remarks about the rather amazing properties of the confidence intervals obtained by 
estimating the smoothing parameter by generalized cross validation and then reverting to the 
Bayesian model to get confidence intervals. First, it is my belief that it is rather important to 
have a good value of the smoothing parameter (as obtained by GCV, for example) for the whole 
thing to work. Secondly, the frequentist property of these confidence intervals (very close to 
95 per cent of the 95 per cent confidence intervals cover the true curves in Monte Carlo 
simulations) has to be interpreted as across the curve, and not necessarily for each point. To 
clarify this remark, consider the model of (1.1) with n = 100 and the variance of the eis as 
constant. If one goes through the simulation exercise one will find that the confidence intervals 
cover say, 95 or 94 or maybe 96 of the points. Now take the same true curve and run the Monte 
Carlo again, that is, draw a new set of eis. The same pleasing result is likely to obtain. However 
among the 4 or 5 or 6 points whose confidence intervals did not cover the truth, one may find 
that several of them were the same points whose confidence intervals failed to cover the truth 
in the first replication, and so forth. An extreme example of this may be found in Wahba (1983) 
Fig. 4 where the confidence interval at t = 0.5 fails to cover the point. In repeated replications 
with the same "true" curve the confidence interval at t = 0.5 repeatedly failed, although if all 
confidence intervals across the curve are taken together the total coverage is remarkably close to 
95 per cent. (In that figure the first derivative had a jump at t = 0.5.) This phenomenon is most 
likely to appear where the bias is unusually large locally, and is likely to occur in the smoothing 
spline estimates where there is an unusually large local curvature, or worse, a kink in the curve. 
The cubic smoothing spline tends to smooth over extremely high curvature regions. A high 
curvature at the boundary where there is less neighbouring information causes more difficulty 
than if it occurred in the interior. In summary, these confidence intervals get the square bias 
right on the average, but not necessarily pointwise. 

Nevertheless, if interpreted the right way, these confidence intervals appear to be amazingly 
reliable and generally tend to reflect what is going on, e.g. they are broader near the boundary 
and in regions of sparse data, etc. I would like to see the heuristic mathematics supporting them 
which appears at the end of Wahba (1983) put on a more rigorous footing. I would conjecture that 
there are at least rough mathematical justifications for Silverman's procedure for obtaining con- 
fidence intervals for some non-linear functionals, primarily those involving most or all of the whole 
curve, as opposed to those which are strictly local. As rather extreme examples, one would expect 
the results to be more trustworthy when estimating, say, the L2 norm of a function than when 
estimating, say, the absolute first derivative at a specified point which happens to be near a 
"kinky" point. In any case, with high speed computing at most peoples fingertips, an experimenter 
can get a general feel concerning how reliable the entire procedure for a particular non-linear 
functional will be for his or her experiment by starting out with a reasonably representative (for 
their experiment) collection of possible "truths", simulating several data sets for each "truth" con- 
sidered, going through the procedure of Section 7.3 for each data set, for the functional of 
interest, and comparing the results with the "truth". Possible surprises due to nonlinearity as 
noted by Silverman would become evident and, if the experimenter is concerned about unduly 
concentrated bias, its possible effects can be studied with suitable examples. Like Dr Silverman, I 
believe that it is perfectly respectable to use the computer as a tool whenever that will provide 
insight (provided, of course one knows enough about what the results ought,to look like to get the 
programme debugged!). 

Drs M. A. Tanner and W. H. Wong (University of Wisconsin-Madison; University of Chicago): 
We will comment on a few points raised by this important paper. 
1. How do the results of Section 3 depend on the form of the penalty? For example, if higher 
derivatives are used in the penalty, e.g., f{g(4)(x)}2 dx, how would the dependency of the band- 
width on the density of the design points change? Does this consideration provide an approach 
for choosing the form of the penalty (or at least the degree of the derivative)? 
2. We agree that the local dependency of the bandwidth on the density of the design points is a 
desirable property. However, this does not completely address the problem. There is another 
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aspect of local bandwidth that is important, even when the des<gn points are uniformly spaced. 
The bias of the convolution approximation is small when the local curvature is small, in which 
case one can afford to use a wider bandwidth. Thus, the size of the bandwidth should depend on 
the local curvature of the (unknown) function. In this way, adaptation using a preliminary 
estimate of curvature may be a good idea. How can this be done in the spline context? 
3. In Section 5, the local sum of squares of generalized residuals is used to estimate the local 
variation. However, this raw sum of squares decomposes into the local squared bias plus the 
variance. It seems preferable to estimate the local bias by the local mean and the local variance by 
the variance of these quantities. In this way, oversmoothing will not be confounded with non- 
homogeneity of variance. 
4. The Bayesian development in Section 6 is very nice. But the intervals which are developed in 
this section do not seem to be real confidence intervals. To draw an analogy with kernel regression, 
the standard error is being used as if the bandwidth is chosen deterministically. Thus, in repeated 
experiments, the correct coverage probability will not be achieved. Of course, one can argue that 
only the distribution conditional on the selected bandwidth is relevant. This issue may seem 
similar to that in the Hinkley--Runger (Box-Cox?) versus Bickel--Doksum controversy. However, 
it seems that the argument for conditioning on the bandwidth is much weaker than conditioning 
on the scale in the Box-Cox transformation. 
5. Finally, in order to obtain a clearer perspective of the usefulness of spline smoothing method- 
ology, it may be desirable to include a comparison with competitive methodologies such as local 
linear fit (Cleveland (1979)) or nonlinear data smoothers (Velleman (1980)). A direct comparison 
in specific examples may be quite illuminating. 
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Professor Sidney Yakowitz (University of Arizona): I am grateful for Dr Silverman's masterful 
guidance through the hinterlands of spline regression. The connections given in Section 3 with 
kernel methods, with which I am more familiar, were particularly illuminating, and as a com- 
putational specialist, I cannot help but admire the developments in Section 4 which reduce the 
number of operations in evaluating a cross-validation score from 0(n2) to 0(n). 

The matter closest to my heart and realm of experience is the theory of diagnostics and error 
variance. I applaud Dr Silverman's accomplishments in this direction. For some while, "geo- 
statisticians" and hydrologists have been painfully aware of the need for such a theory, and in 
response to this need, an activity commonly known as "kriging" (e.g., Journel and Huijbregts 
(1978), or in a more scholarly vein, Chapter 4 of Ripley (1981)) has flourished. In essence, kriging 
is a second-order linear filter predictor, where the covariance function must usually be inferred 
from the same data on which the prediction is based. Since it is a second-order theory, in principle 
squared-error estimates are immediately available. The drawback, as I see it, is that since the design 
points come from a bounded region, there is no reason to think that the covariance estimate is 
consistent. 

Recently, Yakowitz and Szidarovszky (1985) have devised a data-based estimator an(t) for the 
variance a;(t) = var {g(t) -gn(t)} of the kernel nonparametric regression estimate gn(t). We 
established that, as n - c*, 

a; (t)1q;(t) <- 1, in probability. 

By making the kernel bandwidth decrease at the "right" rate, it is readily seen that the bias com- 
ponent of the estimate gn(t) becomes negligible and that the convergence rate, under second- 
order differentiability assumptions, becomes arbitrarily close to the Stone (1980) optimal rate. 

The author replied later, in writing, as follows: 
I am only sorry that limitations of time and space prevent me from answering every single 

point made in the discussion and from referring to every contributor by name. Some of the 
most interesting and valuable contributions stand alone without the need for further com- 
ment from me. I confess that in places I shall adopt the view of Good and Gaskins (1980) that 
"as is customary .. . most of our reply will be concerned with elaborations and mild dis- 
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agreements . .. because this is more useful than agreeing". 

I am most grateful to Professor Whittle for supplying further historical information. In the 
circumstances, perhaps I should have delayed reading this paper until 1986, the centenary of 
Mr King's remarks! It was with trepidation that I presented to the Society a paper with the word 
Bayesian in the Summary-if not in the title-so Professor Whittle's kind remarks on the Bayesian 
aspects were most welcome. I believe that the degeneracy that Professor Whittle's likelihood dis- 
plays as N -o is another unpleasant consequence of the peculiar behaviour of the full infinite- 
dimensional model discussed briefly in Section 6.1 of the paper. 

However, an approach via maximum likelihood is possible, though some fudging is necessary 
to get over the partially improper nature of the prior distribution. Use the suggestion of Dr Green 
and separate out the constant and linear components of the fit as coefficients j3o and ,B The 
distribution of the curve and the data then depends on the three parameters X, ,Bo and i1, and the 
predictive (or marginal) distribution of the data can be found; see Wahba (1983b) for a closely 
related discussion. The maximum of this predictive likelihood will correspond to the maximum of 
Professor Whittle's likelihood with N replaced by n - 2 and the roughness penalty restored to its 
original form. Unfortunately, some heuristic calculations show that the minimizer of this likeli- 
hood will give a value of X that leads to substantial undersmoothing, but further work on this 
topic is clearly necessary. Wahba (1983b) investigates a different criterion, motivated by similar 
considerations; she also shows, by theoretical arguments and by simulation, that her criterion will 
lead to undersmoothing, and that cross-validation is preferable. 

Professor Whittle and several other discussants consider the multivariate case. Professor 
Whittle's elegant Fourier transform argument gives a special case of Theorem 1 of Meinguet 
(1979), which implies that, for the roughness penalty approach to work in a space of dimension 
m, it is necessary for the degree of the derivatives in the roughness penalty to be strictly greater 
than < m. I am not sure whether I would agree that increasing the degree of the differentials is 
relaxing the statistical assumptions on g; thinking in terms of the Fourier series for g, a high degree 
roughness penalty is placing very strong decay conditions on the sequence of high frequency 
coefficients, though it is also allowing a larger class of functions to have zero roughness. 

Of course the multivariate case would have taken several papers all on its own. I believe that the 
numerical difficulties of the roughness penalty approach alluded to by Dr Scott are caused not 
by the dimensionality being greater than 3 but by the number of data points being too large. 
However the dominant role of boundary effects in iigher dimensions rings a warning bell for 
kernel regression and for convoluted smoothing as well as for roughness penalty methods. I agree 
that dimension reducing ideas like projection pursuit, or something along the lines of Dr Marriott's 
suggestion (ii), are more likely to be useful. 

Several contributors mention kriging. The relations between kriging and other smoothing 
methods are not very widely understood and I am grateful to Professor Cressie for discussing them. 
As far as I can see, the basic assumption of kriging, that the unknown function is a realization of 
a certain stochastic process, is nothing other than a Bayesian prior model, interpreted, as Professor 
Whittle puts it so succinctly, in a frequentist non-personal sense. The method for updating the 
prior to take account of observed data does not appear, on the face of it, to be in accordance with 
Bayes' Theorem. A particular problem with kriging is that geological surfaces are known not to 
look anything like realizations of isotropic Gaussian processes -because of phenomena like faults - 
and therefore it is to be hoped that work will be done on more careful modelling of surfaces. I am 
sure that both the theoretical understanding and the practical methodology of kriging would be 
enhanced by a Bayesian view of the procedure. However I would be (pleasantly) surprised if the 
finite-dimensional interpretation requested by Professor Cressie would be available for kriging as it 
stands. 

Professor Titterington discusses connections with ridge regression. It is important to consider 
the conceptual differences between spline smoothing and ridge regression; I prefer to view the 
comparison in the Bayesian setting, but a non-Bayesian interpretation is equally possible. The 
context in which ridge regression was introduced (see Hoerl and Kennard, 1970) was to cope 
with problems, in the usual multiple regression setting, where the matrix XTX is not very well 
conditioned; the solution is then to put a spherical normal prior on the parameter vector. In 
spline smoothing, on the other hand, the vector of parameters g(ti) is given a highly non-spherical 
prior distribution but the matrix XTX is just the identity, if the g(ti) are considered to be the 
parameters. Spline smoothing can be forced into the ridge regression framework but only at the 
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expense of introducing a parametrization of curves g in which squared distance between two 
curves becomes, effectively, f(g -g2)2 . This is a rather unnatural thing to do, especially if assess- 
ments of estimation accuracy are then made in terms of prediction errors. 

Turning to Professor Titterington's specific remarks, I am glad that he agrees with me that 
subjective choice of smoothing will often suffice; I hope that Professor Barnard would regard a 
subjectively chosen a as satisfactory so long as its value were clearly reported as an "assumption" 
of the technique. Enormous image-enhancement problems are precisely an example where the 
techniques of my Section 4 should come into their own; ordinary cross-validation will be impos- 
sible, but approximations like AGXV will be extremely feasible, since they cost essentially nothing 
to compute. 

Professor Titterington's equation (*) could be tautological or impossible to satisfy, depending 
on how a2 is to be estimated. Indeed cross-validation can severely undersmooth occasionally; the 
simulations, and the theoretical discussion, of Silverman (1984b) show that, at least for non- 
uniform design points, AGXV is much less prone to this difficulty. I agree that the curves of Figs 3 
and 6 are fairly similar; however there is no guarantee that this should be so, and furthermore the 
posterior probability regions are very different from the unweighted data. The mechanism for 
providing "simultaneous inference" regions is provided in Section 7 of the paper; what is required 
is the posterior distribution of, say, sup I g -g 1. The upper 95 per cent point of this distribution 
can be found by simulation from the posterior and this will give the half-width of the required 
region. Similarly a lower probability bound for the number of inflexions can be obtained. 

I agree that the probability intervals are pointwise intervals; however in my finite-dimensional 
formulation they are certainly meaningful at all points, not just at the knots. I have discussed, very 
heuristically, some connections between Section 2 and density estimation in Section 7 of 
Silverman (1 984a). I do not know whether there are consequences for the choice of smoothing 
parameter, but the argument given there does indicate that a roughness penalty approach may 
adapt well when estimating long-tailed densities. Finally I strongly support Professor Titterington's 
remarks about the need for future practical investigations. Of course, what we need to avoid is 
theoretical work of the wrong kind, not all theoretical work! 

A very fair assessment of Dr Scott's suggested parametric model, least squares splines, is given 
by Drs Parker and Rice. As they point out, possibly the best way of using this approach is to 
develop a hybrid method, minimizing the penalized residual sum of squares over the space of 
splines on a fixed grid of knots. Incidentally, I doubt that the method is very much simpler com- 
putationally than non-parametric spline smoothing-it all depends which package you happen to 
have on your computer. 

Dr Kent's spherical spline proposal sounds most interesting as an example of an extension of 
the technique. I am not aware of any specific "errors-in-variables" formulation of the spline 
smoothing approach, and this would be a very useful topic for further work. 

Dr Robinson's question (see p. 50), also alluded to by Dr Marron, on processes whose degree of 
smoothness may not be stationary, is related to my misgivings about the stationarity of models 
for kriging. In the one-dimensional case, this problem can essentially be overcome, as far as the 
estimation of g itself is concerned, by using non-uniform patterns of weights and a constant 
smoothing parameter; however the penalized likelihood interpretation of the method will no 
longer hold. It is much more difficult to allow the smoothing parameter itself to vary, and change- 
point inference for a is something that would require a great deal of ingenuity to devise. 

The finite-dimensional Bayesian model has aspects which worry several of the contributors. 
Mr Upsdell and Dr Ansley might be amused by Professor Lindley's personal comment to me that 
"it is a joy not to have to go into Hilbert space". I take the point that the model seems somewhat 
unsatisfactory because of its dependence on the position of the ti. Although I have no hard evid- 
ence to offer, my experience is that moving ti a little does not alter the inferences very much and 
certainly does not have the drastic consequences feared by Professor Lindley, no doubt, as he 
suggests, because of an approximation property of some kind. In particular, at the data points 
themselves, the posterior variance/covariance structure agrees with that obtained by Wahba (1978) 
for an essentially stationary infinite-dimensional prior. Although I find it much harder to contem- 
plate personal beliefs about curves and surfaces in terms of covariances than Professor Lindley and 
Dr O'Hagan appear to, I hope that this helps to reconcile them to the finite dimensional model. 

Is Professor Smith's consideration of the limiting case with zero errors really very interesting? 
It certainly is pushing the Bayesian aspects of the method beyond the extremes I would envisage 
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for it. What worries me about using the Wiener process formulation in a Bayesian context is that 1 
know that the sample path behaviour of Brownian motion is very peculiar indeed and I am there- 
fore hesitant about saying that my prior "knowledge" is represented by a Wiener process model 
(which includes a coded version of the works of Shakespeare in every realization). Incidentally, it 
is instructive to sketch a graph of your perceived idea of a Wiener process and to compare the 
result with Fig. 9.1 of Grimmett and Stirzaker (1982). 

There are, of course, connections between my Bayesian formulation and Dr O'Hagan's much 
more general approach, and I apologise to him for not referring to them explicitly in the paper. 
Dr Ansley also points out connections with other very interesting related work with Bayesian 
connotations. To put the record straight, it must be pointed out that the formulation of Wahba 
(1983) is not dependent on the observed design points in the way Dr Ansley suggests. I entirely 
agree that more information about the effect of restricting the prior is needed. A possible personal- 
Bayesian approach-entirely feasible using the simulation methodology of Section 7-is, having 
factored out the constant and linear components of the curve, to simulate from the prior distri- 
bution of curves for various values of a and hence to choose a value of a producing curves that 
accord with prior ideas. This kind of idea is advocated by Stewart (1979). It is difficult to 
illustrate the results in published form, but on an interactive graphics terminal it is easy to get an 
idea of what the prior looks like. In addition the prior distribution of functionals of the curve 
can be obtained. 

I accept completely that my approach is inappropriate for extrapolation. Perhaps, in providing 
clearly preposterous extrapolations beyond short ranges it is doing a service in making it clear that 
such extrapolation is (nearly) always preposterous. 

In answer to Mr Upsdell's last point, the difference between the smoothing problem and the 
rational-real problem is that, in smoothing, the quantity fg" 2 is of the essence, in that it is the 
quantity that measures how smooth we think the curve is, and hence on which our prior beliefs 
depend. If I were speculating whether a number were rational I would not use the normal distri- 
bution to quantify my beliefs. 

Several contributors mention the problem of possible correlation of errors, and the connections 
with time series analysis. I am not sure whether it is appropriate to do as Dr Diggle has and merely 
modify equation (4.4), since, as Professor Robinson points out, an autoregressive error 
assumption will have consequences right through the development of the method. Nevertheless I 
certainly agree with his general conclusions. Mr Bates's suggestion of using the method of 
Cochrane and Orcutt (1949) is an obvious thing to try once we have decided how (in his 
notation) to select the smoothing parameter a for a given autoregressive coefficient p. Though 
others will disagree with me, I do not think there is very much real philosophical distinction 
between at and p. 

May I reassure Dr Jennison a little? The spline method, as shown in Section 2, will also smooth 
over very local behaviour. It would be quite straightforward to use his very sensible definition of 
maximum gradient in the simulations to get a corresponding estimate and posterior standard 
deviation. Does he not feel that the broad intervals in Fig. 9 do illustrate the lack of reliability of 
gradient estimates? 

I suspect that Professor Dawid's first suggestion might possibly make more difference than his 
second; my practical experience, and the conclusion (ii) of Section 3, indicate that the factor 
n/(n - 1) will hardly affect the curve at all. The only immediate difficulty concerning his first 
suggestion is that the determination of the curve for a given 3 (in his notation) requires a search 
over curves found for various values of oz. This will increase the computational burden consider- 
ably, particularly for the cross-validation score. 

Cleveland's (1979) approach, as mentioned by several contributors, is a robust refinement of 
local weighted moving averages. It is worth pointing out that it is essentially only in the 
"robustification" step that it matters whether local linear or local constant fit is used; a fair 
comparison would therefore be with the robust spline approach based on (8.1). A careful com- 
parison, including the effect if the data are non-uniformly spaced, would be well worth making. 
In its local weighted nature Cleveland's approach has connections with kriging as well. Another 
candidate for careful comparison would be the estimator suggested by Drs Miller and 
Stadtmiiller. 

Professor Atkinson's proposal that deleted (or externally studentized) residuals should be used 
is interesting and deserves further investigation. The details are likely to be somewhat different 
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from the ordinary regression case because the hat matrix is no longer a projection matrix. As in 
ordinary regression, the effect of external Studentization is likely to be to increase residuals that 
are already large. 

I doubt whether Mr Besag issues his students with pencils and rulers instead of teaching the re- 
producible and (in Professor Barnard's sense) objective method of linear regression. My "cause" 
was not to claim that spline smoothing was the best method in all cases but that it is a good 
method in many cases. Professor Atkinson is right about the motor-cycle data in that they are the 
superposition of measurements made by several instrunients but the data I have presented are pre- 
cisely in the form they were made available to me. Mr Besag would fit a logit curve in Fig. 8, but 
such a parametric logit model leaves no room for departures from the model and when used 
blindly (as very frequently in practice) will often suppress important Leatures of the data, such as 
multiple growth spurts or negative growth in places. Mr Besag's general point about examples 
versus applications is well taken; I was well aware that alternative methods of analysis are always 
suggested when examples are presented. I feel that the flexibility and broad applicability of the 
spline smoothing approach is already demonstrated by the examples in the paper and I would 
encourage readers to try out the method for themselves. Only in this way will a realistic assess- 
ment of the scientific value of nonparametric smoothing emerge. 

A natural approach to Mr Bates's first question, alluded to by Professor Wahba, would be to fit 
a multiple linear regression first, and then to model a smooth dependence of the residuals on, say, 
one of the explanatory variables. Another avenue of possible investigation, mentioned by 
Dr O'Sullivan, is to fit a model that is a sum of functions each of whcih is a smooth function of 
one of the coordinates only. Thus instead of fitting z = g(x, y) + error we would fit z = g1 (x) + 
g2 (y) + error, and penalize for the roughness of g1 and g2 separately. Developments of this kind 
are obviously likely to be valuable for Mr Bates's second problem as well. 

In answer to Professor Collomb, and to Professors Greblicki and Pawlak, the asymptotic rate 
of convergence of the spline method is the same, as they will have guessed from Section 3, as the 
kernel method using the kernel K. Loosely speaking, the method gives the optimal rate of mean 
square error convergence, n , for curves g with four derivatives, but does not give any improve- 
ment for smoother curves. For a careful discussion and further references, see Rice and Rosenblatt 
(1981, 1983). It should be said that the practical impact of improvements from n -8/9 to n1 +e is 
not likely to be very great. The rate can be improved further, subject to more stringent conditions, 
by using higher derivatives in the roughness penalty, as suggested by Drs Tanner and Wong and also 
by Dr Cuzick. Details of results for such penalties corresponding to Section 3 are given in 
Silverman (1984a). The power of the dependence of h(t) on f(t) is nearer to zero, but the 
sensitivity of the asymptotic arguments is probably too great for the results to be taken too 
literally in practice. I must admit to a similar suspicion about the asymptotics discussed by Drs 
Muller and Stadtmiuller, and also about some of the results referred to by Professor Colomb. 

Dr Cuzick makes a good point in demonstrating that sensible results will not be obtained for 
functionals that depend on high derivatives of g. As he says, higher order roughness penalties will 
then be appropriate. I should, of course, have qualified my remarks about the generality of the 
approach of Section 7.2 to exclude such functionals. A natural approach, which deserves further 
investigation, is to use simulation from the prior to get the prior distribution of a particular 
functional and to use this as a method of choosing the smoothing parameter. Careful work also 
needs to be done on relevant methods of automatic choice for estimation of functionals, 
especially when derivatives are involved. 

Carefully chosen roughness penalties may well be the way forward in the seasonal adjustment 
problem mentioned by Professor Durbin. The key property is the "null family" (see Silverman, 
1982b) of curves that have zero roughness. For the penalty fg 2 discussed in the paper this is 
precisely the family of linear trends. A ossible roughness penalty for studying slowly changing 
seasonal effects would be f(g"' + C02g')?, which would regard pure seasonal curves of period 
27r/c as perfectly smooth. This is an obvious topic for important future work, and answers a 
question raised by Dr Seheult. 

Dr Eubank makes several excellent points about diagnostics and other matters. The generalized 
cross-validation approach of course neglects differences between the leverage values Aii(a); this 
may be an advantage, because it reduces the influence of high leverage data points in the choice of 
smoothing parameter. The same appears to be true of the other methods mentioned in the 
extremely illuminating discussion of Dr Hardle. I hope that Dr Marron's remarks about cross- 
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validation will reassure sceptics. In answer to his last question, and to the third point of Drs Wong 
and Tanner, refinements to the local weight estimation procedure are obviously worth consider- 
ing though I would frankly be su'rprised if they made more than a fairly slight practical difference. 

Dr O'Sullivan makes several fascinating points. In particular I am very interested in his 
suggestion that AGXV goes further than GXV in reducing the influence of high leverage points. 
Taking into account the burden of finding the residual sum of squares for the given o, his com- 
putational remarks appear to reduce the computer time required for exact GXV to about twice 
that required for my procedure. It must be admitted that this will not be a vast overhead for 
moderate problems, but the compact nature of the AGXV calculations may be an advantage on 
microcomputers. 

Drs Eagleson and Raftery both ask about simultaneous smoothing of two or more data sets. 
Obviously it is sensible to use the same smoothing parameter for both curves, and the natural 
approach is to minimize the sum of the two cross-validation scores. Dr Eagleson's question could 
perhaps then be approached by examining the posterior distribution of the difference between the 
two curves. I think that Dr Raftery's problem requires a bivariate penalized likelihood smoothing 
procedure for its satisfactory solution and that the present paper does very little more than 
provide a philosophical framework for this. 

In conclusion, my warmest thanks are due to all the discussants for providing such a broad 
perspective on the material of the paper, for pointing out valuable additional references, for frank 
and open criticism (in the best traditions of the Society) and for giving me, and I hope others, a 
great deal of food for further thought and suggestions for further research. 

Dr A. Robinson (University of Bath): My comments concern the dynamic calculation of the 
spline smoother, discussed by Wecker and Ansley (1983) who apply Kalman filtering to Wahba's 
(1978) model. Mr R. A. Moyeed and myself have used the finite-dimensional formulation of 
Section 6.1 to produce a more accessible approach to dynamic calculation in certain cases, e.g. 
when precise signal extraction is not the goal. For simplicity, assume no weighting and the smooth- 
ing parameter cx is fixed. If n denotes values after n observations -Yn has posterior mean 
a 2S'BJTYn and variance Sn1 = (cxn + o2BTB -Y. The formulation of 6.1 may be associated 
with the dynamic linear model with observation equation, yv, = b, yn+l + ev, where yv is the 
(n + l)st observation at point t. (t1 < tv < ti+1 ); ev ̂ vN(O, a ) is the observation error; bu is the 
vth row of Bn+l and ryn+l are the coefficients of these B-splines based on knots 

{tl - <.. ti <V tv +1 < .. < * tn 3 

The system equation is ^In+, = Gn+1 'yn + Wn+1 where Gn+1 = B7+1 Bn and Bn() is Bn with 
(0, 0, Bn, i-i (tv), Bn, (t) Bn, i+1 (t), Bn, i+2 (tv), 0, . . ., 0) inserted between rows i and 
i + 1. The system error is wn + I X N(0, Wn + 1 ) where 

Wn+1 =-(Sn+l -1-2 bTbv)-'-Gn+l S-' GnT+ 

Computationally the method is straightforward, i.e. the mean is updated as follows: 
,Ypost 7prior + pC (v rior) - Gn lpost + C1,(yprior) 

where cV is the vth column of S -I BT+1 and y Prior is the prior mean of Yv obtained from 
{YI, Y. *, Yn }- The last equation may also provide a frame for dynamic diagnostics and choice of 
subsequent design points. 

Finally I would like to ask Professor Silverman if he considers the global choice of a by cross- 
validation restricts the adaptability of this method of fitting to a process whose "degree of 
smoothness" may not be stationary? Where desirable, would some sort of change point analysis 
for o be feasible? 
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