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Abstract

The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connec-
tivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron
dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting.
We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the
learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words,
the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that
progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-
world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of
the Jacobian matrix. This drives the system through the ‘‘edge of chaos’’ where sensitivity to the input pattern is maximal. Taken
together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Neural networks show amazing abilities for information
storage and processing, and stimulus-dependent activity
shaping. These capabilities are mainly conditioned by the
mutual coupling relationships between network structure
and neuron dynamics. Actually, learning in neural net-
works implies that activity guides the way synapses evolve;
but the resulting connectivity structure in turn can raise
new dynamical regimes. This interaction becomes even
more complex if the considered basic architecture is not
feed-forward but includes recurrent synaptic links, like in
0928-4257/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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cortical structures. Understanding this mutual coupling
between dynamics and topology and its effects on the com-
putations made by the network is a key problem in compu-
tational neuroscience, that could benefit from new
approaches.

In the related field of dynamical systems interacting via
complex coupling networks, a large amount of work has
recently focused on the influence of network topology on
global dynamics (for a review, see Boccaletti et al., 2006).
In particular, much effort has been devoted to understand-
ing the relationships between node synchronization and the
classical statistical quantifiers of complex networks (degree
distribution, average clustering index, mean shortest path,
modularity. . .) (Grinstein and Linsker, 2005; Nishikawa
et al., 2003; Lago-Fernández et al., 2000). The main idea
was that the impact of network topology on the global
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dynamics might be prominent, so that these structural sta-
tistics may be good indicators of the global dynamics. This
assumption proved however largely wrong so that some of
the related studies yielded contradictory results (Nishikawa
et al., 2003; Hong et al., 2002). Actually, synchronization
properties cannot be systematically deduced from topology
statistics but may be inferred from the spectrum of the net-
work (Atay et al., 2006). Accordingly, many studies have
considered diffusive coupling of the nodes (Hasegawa,
2005). In this case, the adjacency matrix has real nonnega-
tive eigenvalues, and global properties, such as stability of
the synchronized states (Barahona and Pecora, 2002), can
easily be inferred from its spectral properties.

In this perspective, neural networks can be considered as
mere examples of these complex systems, with the particu-
larity that the dynamics of the network nodes (neurons)
depends on the network links (synaptic weights), that
themselves vary over time as a function of the node dynam-
ics. Unfortunately, the coupling between neurons (synaptic
weight) is rarely diffusive, so that the corresponding matrix
is not symmetric and may contain positive and negative ele-
ments. Hence the mutual coupling between neuron dynam-
ics and network structure remains largely to be understood.

Our general objective is to shed light on these interac-
tions in the specific case of random recurrent neural net-
works (RRNNs). These network models display a rich
variety of dynamical behaviors, including fixed points, limit
cycle oscillations, quasiperiodicity and deterministic chaos
(Doyon et al., 1993), that are suspected to be similar to
activity patterns observed in the olfactory bulb (Skarda
and Freeman, 1987; Freeman, 1987). It is known that the
application of biologically-plausible local learning rules
(Hebbian rules) reduces the dynamics of chaotic RRNNs
to simpler attractors that are specific of the learned input
pattern (Dauce et al., 1998). This phenomenon endows
RRNNs with associative memory properties, but remains
poorly understood.

Our previous work showed that the evolution of the net-
work structure during learning can be tracked in numerical
simulations via the classical topological statistics from
‘‘complex networks approaches’’ (Berry and Quoy, 2006).
In a companion paper (Siri et al., 2007), we devise a math-
ematical framework for the effects of Hebbian learning on
the dynamics, topology and some functional aspects of
RRNNs. This theoretical approach is shown to explain
the effect of learning in a ‘‘canonical’’ RRNN, i.e. a com-
pletely connected network where a neuron projects both
excitatory and inhibitory synapses. The major advantage
of this simplification is that it allows mathematical analy-
sis. But this network type remains poorly realistic from a
biological point of view. The aim of the present paper is
thus to study the effects of learning with a more biological
connectivity, for which the precision of the theoretical tools
developed in our companion paper is not guarantied a
priori.

In particular, we segregate the neurons into two distinct
populations, namely excitatory (projecting only excitatory
synapses) and inhibitory (projecting only inhibitory syn-
apses) neurons. Furthermore, the network is sparsely con-
nected and the overall connectivity parameters are fixed to
emulate local circuitry in the cortex. We show that the
application of Hebbian learning leads to drastic changes
in the network dynamics and structure. We also demon-
strate that the mathematical arguments mentioned above
remain a very useful unifying framework to understand
the effects of learning in this system.

2. The model

2.1. Connectivity

We consider networks with a total of N = 500 neurons
and random connectivity. Each neuron is either inhibitory
(with probability pI) or excitatory (with probability
pE = 1 � pI) and projects to pcN randomly chosen postsyn-
aptic neurons (independently of their excitatory or inhibi-
tory nature). Probabilities are taken uniform on [0,1] for
the network connectivity pc and fraction of inhibitory neu-
rons pI. From a network point of view, this means that the
connectivity network is (uncorrelated) random. For
instance, the number of synapses between an excitatory
and an inhibitory neuron will be proportional to pEpIpc.
In the neurophysiology literature, this principle, known
as ‘‘Peter’s rule’’ is usually considered a valid approxima-
tion of the neocortical microcircuitry (Binzegger et al.,
2004). We fixed pI and pc so as to account for the neural
circuitry of a typical neocortical column. Experimental
quantification of the fraction of inhibitory neurons in the
cat primary visual cortex showed limited variations from
one layer to the other (with the exception of layer 1), with
an average of 0.21 (Gabbott and Somogyi, 1986). Here we
used pI = 0.25. The connectivity pc of pyramidal neurons in
rat somatosensory cortex has been experimentally esti-
mated to �0.10, (Markram et al., 1997; Kalisman et al.,
2005). Geometrical analysis based on experimental data
from the mouse cortex however yielded higher values,
�0.26 (Stepanyants et al., 2002). Here, we used pc = 0.15.

The initial weight of each synapse between a postsynap-
tic neuron i and a presynaptic neuron j, W ð1Þ

ij , is drawn at
random, according to a Gamma distribution, whose
parameters depend on the nature of the presynaptic neuron
j. If j is inhibitory, W ð1Þ

ij � Gammað�lw=ni; rw=niÞ, where
Gamma(m, s) denotes the Gamma distribution with mean
m and standard deviation s, and ni = pIpcN. If j is
excitatory, then W ð1Þ

ij � Gammaðlw=ne; rw=neÞ where ne =
pEpcN. Using Gamma distributions (instead of Gaussian
ones, for instance) allows to ensure that inhibitory (excit-
atory) neurons project only negative (positive) synapses,
whatever the values of lw and rw. Thanks to the normali-
zation terms (ne and ni), the total excitation received by a
postsynaptic neuron is on average equal to the total inhibi-
tion it receives. Hence, in their initial setups (i.e. before
learning) our networks are guarantied to conserve the exci-
tation/inhibition balance (on average).
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2.2. Dynamics

We consider firing-rate neurons with discrete-time
dynamics and take into account that learning may occur
on a different (slower) time scale than neuron dynamics.
Indeed, synaptic plasticity is known to implicate intracellu-
lar sensors of the neuron average voltage activity, most
notably intracellular calcium. Modifications of conduc-
tances in response to changes in intracellular calcium con-
centrations are however much slower than the dynamics of
neuron membrane potential. The properties of such two-
time scale systems have been exploited in the modelling lit-
erature to propose explanations to the tuning of rhythmic
motor patterns (Soto-Trevino et al., 2001) or long-term
storage of plastic modifications (Delord et al., 2007), for
instance.

In the present model, we wished to capture this aspect
while keeping the model as simple as possible. Hence, syn-
aptic weights are kept constant for s P 1 consecutive
dynamics steps, which defines a ‘‘learning epoch’’. The
weights are then updated and a new learning epoch begins.
We denote by t P 0 the update index of neuron states (neu-
ron dynamics) inside a learning epoch, while T P 1 indi-
cates the update index of synaptic weights (learning
dynamics).

Let xðT Þi ðtÞ 2 ½0; 1� be the mean firing rate of neuron i, at
time t within the learning epoch T. Let WðT Þ be the matrix
of synaptic weights at the Tth learning epoch and n the vec-
tor ðniÞNi¼1. Then the discrete time neuron dynamics (1)
writes:

xðT Þi ðt þ 1Þ ¼ f
XN

j¼1

W ðT Þ
ij xðT Þj ðtÞ þ ni

 !
: ð1Þ

Here f is a sigmoidal transfer function (f(x) = 1/
2(1 + tanh(gx))). The output gain g tunes the nonlinearity
of the function and mimics the excitability of the neuron.
ni is an external input applied to neuron i and the vector
n is the ‘‘pattern’’ to be learned (see below). W ðT Þ

ij represents
the weight of the synapse from presynaptic neuron j to
postsynaptic neuron i during learning epoch T. Finally,
at the end of one learning epoch, the neuron dynamics indi-
ces are reset: xðTþ1Þ

i ð0Þ ¼ xðT Þi ðsÞ 8i.

2.3. Input pattern

The pattern to be learned by the network consists in the
(time constant) external input ni applied to each neuron i at
each update step (Eq. (1)). For the purpose of the present
paper, the exact value of this pattern is not very important,
as soon as its maximal amplitude remains small with
respect to the neuron maximal firing rate. Here, we use
ni = 0.010sin(2pi/N) cos(8pi/N) "i = 1, . . . ,N. The main
rationale for this choice is that this pattern is easily identi-
fied by eyes when the nis are plotted against i, which is par-
ticularly helpful when interpreting alignment results, such
as in Fig. 6.
2.4. Learning

In the present work, we used the following Hebbian
learning rule:

W ðTþ1Þ
ij ¼ kW ðT Þ

ij þ sj
a
N

mðT Þi mðT Þj HðmðT Þj Þ; ð2Þ

where a is the learning rate, sj = +1 if j is excitatory and �1
if it is inhibitory and H denotes the Heaviside step function
(H(x) = 0 if x < 0, 1 otherwise). The first term in the right-
hand side (RHS) member accounts for passive forgetting,
i.e. k 2 [0, 1] is the forgetting rate. If k < 1 and mi or
mj = 0 (i.e. the pre or postsynaptic neurons are silent, see
below), Eq. (2) leads to an exponential decay of the synap-
tic weights (hence passive forgetting). Another important
consequence of this rule choice is that if k < 1, the weights
are expected to converge to stationary values. Hence k < 1
also allows avoiding divergence of the synaptic weights.
Note that there is no forgetting when k = 1.

The second term in the RHS member of Eq. (2) generi-
cally accounts for activity-dependent plasticity, i.e. the
effects of the pre and postsynaptic neuron firing rates. In
our model, this term depends on the history of activities
through the time-average of the firing-rate:

mðT Þi ¼
1

s

Xs

t¼1

xðT Þi ðtÞ � di; ð3Þ

where di 2 [0, 1] is a threshold that represents the maximal
spontaneous firing rate of the neuron, i.e. the boundary be-
tween spontaneous and presynaptically evoked activity. In
the present study, we set di = 0.10, "i. Hence, a neuron i

will be considered active during learning epoch T whenever
mðT Þi > 0 (i.e. whenever its average firing rate has been
>10% of the maximal value), and silent otherwise.

The definition of this learning rule was guided by the fol-
lowing tradeoff between biological knowledge and our sim-
plified computational model. For excitatory synapses (i.e.
sj = +1), the rule Eq. (2) captures long-term potentiation
(LTP) and homosynaptic long-term depression (LTD).
LTP is evoked by the association of strong presynaptic
and postsynaptic activities and derives from the molecular
properties of NMDA channels (Bliss and Collingridge,
1993). In the rule, this phenomenon is reflected by an
increase of the second term in the RHS member of Eq.
(2) whenever mj > 0 and mi > 0. Concerning LTD, we
neglected in the present study possible plastic interactions
between synapses (i.e. heterosynaptic forms) (Tao et al.,
2000; Nishiyama et al., 2000) and took into account only
homosynaptic LTD. Hence, the second term in the RHS
member of Eq. (2) decays for mj > 0 and mi < 0, which
translates the biological conditions for homosynaptic
LTD (strong presynaptic activity, low postsynaptic activ-
ity). Finally, in the absence of presynaptic activity, the
NMDA receptors and downstream signalling pathways
are not activated, so that no plastic change occurs (at least
if heterosynaptic forms are neglected). This is accounted
for in the model by the Heaviside term HðmðT Þj Þ.
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From a functional point of view, the rule Eq. (2) for
excitatory synapses is a Hebbian rule, both in the sense that
it is associative (depends on both pre and postsynaptic
activities) and that it is anti-homeostatic (i.e. leads to
diverging neuron activity).

In contrast to inhibitory synapses, there is much fewer
experimental documentation of long-term plastic modifica-
tions for inhibitory synapses. LTP and LTD at GABAergic
synapses have however been reported in several regions of
the vertebrate brain, including the cerebellum and visual
cortex (Kano, 1995). As in the case of excitatory synapses,
heterosynaptic plastic interactions can occur (e.g. Nugent
et al. (2007)). Here again, we focused on the homosynaptic
forms only. To keep the learning rule as simple as possible,
we have chosen to endow inhibitory synapses with a behav-
ior that is symmetric to that defined for excitatory ones (i.e.
we only change the value of sj to sj = �1), in agreement
with some of the available experimental results. For
instance, in rat cerebellum, the inhibitory synapse from
Purkinje cell (PC) to the deep cerebellar nuclei (DCN) neu-
rons undergoes LTP when both the pre and postsynaptic
neurons are active, while homosynaptic LTD is observed
with high PC activity and silent DCN neurons (Aizenman
et al., 1998). This is accounted for in Eq. (2) by the decrease
of the (negative) synaptic weight (increase of its absolute
value) for mj > 0 and mi > 0, and its increase (decreasing
absolute value) for mj > 0 and mi < 0.

For these inhibitory synapses, the learning rule Eq. (2) is
thus still Hebbian in the sense that it remains associative.
However, in contrast to its influence on excitatory syn-
apses, it is homeostatic. For instance, if the presynaptic
inhibitor and the postsynaptic neurons are both active,
the inhibitory influence of the synapse will increase, thus
contributing to a decrease of postsynaptic activity.

The resulting rule shares common features with classical
learning rules. For instance, it includes time-averages of the
neuron activities, as well as passive forgetting, like in the
original Bienenstock–Cooper–Munro (BCM) rule (Bienen-
stock et al., 1982). However, in contrast to the latter, our
rule does not consider sliding threshold mechanisms sepa-
rating LTD from LTP. Furthermore, thresholding con-
cerns presynaptic activities as well as postsynaptic ones.
Finally, it is based on two time scales, i.e. the update rate
for the neuron firing rate is different from the update rate
for the synaptic weights. In fact, Eq. (2) is similar to the
so-called ‘‘covariance’’ (or Linsker’s) rule (Linsker, 1986;
Montague and Sejnowski, 1994), for which the activity
dependent plastic term (the second term in the RHS
member of Eq. (2)) is proportional to (xi(t) � hpost) (xj(t) �
hpre), where hpost and hpre are two thresholds. Hence, our
learning rule can be considered a two-time scale covariance
rule with passive forgetting.

Note that definition (3) actually encompasses several
cases. If s = 1, weight changes depend only on the instan-
taneous firing rates, while if s� 1, weight changes depend
on the mean value of the firing rate, averaged over a time
window of duration s in the learning epoch. In many
aspects the former case can be considered as genuine plas-
ticity, while the latter may be related to meta-plasticity
(Abraham and Bear, 1996). In this paper, we used
s = 104. Finally, weights cannot change their sign. Note
however that this setup does not have a significant impact
on the present results.

3. Results

3.1. Spontaneous dynamics

We first present simulation results on the spontaneous
dynamics of the system, i.e. the dynamics Eq. (1) in the

absence of learning. The phase diagrams in Fig. 1 locate
regions in the parameter space for which chaotic dynamics
are observed in simulations. Each panel shows the isocurve
L1 = 0 (where L1 is the largest Lyapunov exponent1) that
represents the boundary between chaotic (L1 > 0) and
non chaotic (L1 < 0) dynamics.

It is clear from this figure that chaotic dynamics are
found for large parts of the parameter space. Generally
speaking, chaotic behaviors disappear when the average
weight lw increases, which may be related to an increase
of the average neuron saturation. A more surprising obser-
vation is that chaotic dynamics tends to disappear when the
gain of the transfer function g is increased. This behavior is
in opposition to the behavior observed with classical ran-
dom recurrent networks with homogeneous population
(where each neuron has both excitatory and inhibitory pro-
jections). In the latter models (and even in related two-pop-
ulations models, see Daucé et al. (2002)), chaotic dynamics
usually appear for increasing values of g (see e.g. Cessac
and Samuelides (2007)).

This is an interesting property of the spontaneous
dynamics in our model, whose understanding is however
out of the scope of the present paper and is left for future
work. In the framework of the present study, these phase
diagrams mainly allow locating suitable parameters for
the initial conditions of our networks. We wish the initial
dynamics to provide a wide range of possible dynamical
regimes, a large (KS) entropy and self-sustaining dynamics.
For these reasons, we set our initial dynamics inside the
chaotic region, and fix lw = 50, rw = 1.0, g = 10 and
N = 500. The initial weight distribution will thus consist
in a Gamma distribution with effective average �2.67 and
s.d. 0.053 for inhibitory synapses, and 0.89 and 0.018,
respectively, for excitatory ones.

3.2. Structure modifications

In this section, we want to study what changes are
induced in the network structure by the learning rule Eq.
(2). The quantification of the structure of random weighted
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networks such a those obtained here is however not trivial.
In the following, we adopt two different approaches. We
first use quantifiers from the so-called ‘‘complex networks’’
approaches that mainly apply to the adjacency matrix.
Albeit these quantifiers uncover important structural
changes, we show they do not provide explanations for
the evolution of the dynamics during learning. We then
approach the problem from the perspective of the Jacobian
matrix and show it actually provides useful tools to link
structural to dynamical changes.
3 Here, to build reference networks, we start with the weight matrix at
learning epoch T, WðT Þ and rewire it at random but preserving the
inhibitory/excitatory nature of the neurons. Hence for each element W ðT Þ

ij ,
we choose (uniformly) at random another element W ðT Þ

kl with the same sign,
3.2.1. Adjacency matrix

3.2.1.1. Definitions. The major goal of the ‘‘complex net-
works’’ approaches is to develop quantitative tools for
the characterization of random networks with complex
(i.e. neither purely uncorrelated not purely regular) struc-
tures (for a review, see Boccaletti et al. (2006)). These quan-
tifiers are usually defined on the adjacency matrix of the
network, i.e. the matrix A whose elements aij = 1 if a syn-
apse exists between i and j, and 0 otherwise.This matrix can
be extracted from the weight matrix W by thresholding
and binarization. Here, we applied a simple relative thres-
holding method that consists in keeping only the absolute
values of the h percent highest weights (again, in absolute
value) from the nonzero connections in W. Hence gradual
decrease of h enables to progressively isolate the adjacency
network formed by the strongest weights only. The result-
ing matrix is then binarized and symmetrized, yielding the
adjacency matrix AðhÞ whose elements aij(h) indicate
whether i and j are connected by a synapse with a large
(>h) weight (either inhibitory or excitatory), compared to
the rest of the network2.

To characterize the structure of these matrices, the two
main quantifiers are the clustering index and the mean
shortest path (see Siri et al. (2007) for formal definitions).
2 We limit the range of h values to ensure that not more that 10% of the
neurons get disconnected from the network by the thresholding process.
The clustering index C reflects the degree of ‘‘cliquishness’’
or local clustering in the network (Watts and Strogatz,
1998). It expresses the probability that two neurons con-
nected to a third one are also connected together and thus
can be interpreted as the density of triangular subgraphs in
the network. The mean shortest path (MSP) is the average,
over all nonidentical neurons pairs (i, j), of the smallest
number of synapses one must cross to reach i from j. Note
that these two quantifiers are informative only when com-
pared to the same measures obtained from reference ran-
dom networks, Crand and MSPrand

3.
3.2.1.2. Results. Fig. 2A and B shows simulation results for
the evolution of the relative clustering index
CðT ÞðhÞ=CðT ÞrandðhÞ and MSPðT ÞðhÞ=MSPðT ÞrandðhÞ during learn-
ing. The distribution of the initial weights over the network
being totally random, one expects Cð1ÞðhÞ=Cð1ÞrandðhÞ � 1 and
MSPð1ÞðhÞ=MSPð1ÞrandðhÞ � 1 "h. This is confirmed in Fig. 2.

For T J 100, the relative MSP remains essentially 1 for
all thresholds h (less than 4% variation, Fig. 2B). Hence,
the average minimal number of synapses linking any two
neurons in the network remains low, even when only large
synapses are considered. Conversely, the clustering index
(Fig. 2A) increases at T > 100 for the stronger synapses
and reaches a stable value that is up to almost two twofold
the value found in the reference random networks. Hence,
if one considers the strong synapses at long learning
epochs, the probability that the neighbors of a given neu-
ron are themselves interconnected is almost twofold higher
than if these strong synapses were laid at random over the
and exchange their values. We then compute the clustering index and
mean shortest path of the resulting rewired network, and average the
obtained values over 15 realizations of the rewiring process, yielding the
reference values Crand(h) and MSPrand(h).
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network. In other terms, the learning rule yields correla-
tions among the largest synapses at long learning epochs.

In the literature related to ‘‘complex networks’’, networks
with a larger clustering index but a similar MSP with respect
to a comparable reference random network, are referred to
as small-world networks. Hence, the learning rule Eq. (2)
organizes strong synapses as a ‘‘small-world’’ network.

Emerging experimental evidence shows that numerous
brain anatomical and functional connectivity networks at
several length scales indeed display a common small-world
connectivity (for a recent review, see Bassett and Bullmore
(2006)). These include quantifications of the physical (Shefi
et al., 2002) or functional (Bettencourt et al., 2007) connec-
tivity of neuronal networks grown in vitro; quantifications
of the anatomical connectivity of Caenorhabditis elegans

full neural system (Watts and Strogatz, 1998) or, at larger
scale, cortico-cortical area connectivity maps in macaque,
cat (Sporns and Zwi, 2004) and more recently human
(He et al., 2007); and quantitative studies of functional
human brain connectivity based on MEG (Stam, 2004),
EEG (Micheloyannis et al., 2006) or fMRI data (Achard
et al., 2006; Eguiluz et al., 2005).

An hypothesis for this frequent observation of small-
world connectivity in real biological networks could be that
small-world networks are emerging properties of neural
networks subject to Hebbian learning. In favor of this pos-
sibility, small-world connectivity has recently been shown
to arise spontaneously from spiking neuron networks with
STDP plasticity and total connectivity (Shin and Kim,
2006) or with correlation-based rewiring (Kwok et al.,
2007). Hence our present findings tend to strengthen this
hypothesis.

Unfortunately, these indicators give no obvious clue
about the mutual coupling between global dynamics and
the network structure. Hence, in our case at least, the clas-
sical statistics of the ‘‘complex networks’’ do not provide
causal explanation for the dynamical effects of learning.
For instance, it does not help understand why dynamics
complexity systematically decreases during learning. The
adjacency matrix is however not the only viewpoint from
which the network structure can be observed (see Siri
et al. (2007) for a discussion). In the following, we propose
as an alternative to examine the structure at the level of the
Jacobian matrices.

3.2.2. Jacobian matrices

3.2.2.1. Definitions. Denote by F the function F : RN ! RN

such that Fi(x) = f(xi). In our case, the components of the
Jacobian matrix of F at x, denoted by DFx are given by

oF i

oxj
¼ f 0

XN

k¼1

W ikxk þ ni

 !
W ij ¼ f 0ðuiÞW ij: ð4Þ

Thus it displays the following specific structure:

DFx ¼ KðuÞW; ð5Þ
with

KijðuÞ ¼ f 0ðuiÞdij: ð6Þ

Note that DFx depends on x, contrarily to W. Generally
speaking, DFx gives the effects of perturbations at the lin-
ear order. To each Jacobian matrix DFx one can associate
a graph, called ‘‘the graph of linear influences’’. To build
this graph, one draws an oriented link j! i iff of ðuiÞ

oxj
6¼ 0.

The link is positive if of ðuiÞ
oxj

> 0 and negative if of ðuiÞ
oxj

< 0. A
detailed presentation of the properties of the graph of lin-
ear influences can be found in Cessac and Samuelides
(2007) and Siri et al. (2007). We just recall here that this
graph contains circuits or feedback loops. If e is an edge,
we denote by o(e) the origin of the edge and t(e) its end.
Then a feedback loop is a sequence of edges e1, . . . ,ek such
that o(ei+1) = t(ei) "i = 1, . . . ,k � 1, and t(ek) = o(e1). A
feedback loop is said positive (negative) if the product of
its edges is positive (negative).

In general, positive feedback loops are expected to pro-
mote fixed-point stability (Hirsch, 1989) whereas negative
loops usually generate oscillations (Thomas et al., 1981;
Gouzé, 1998). In a model such as Eq. (1) the weight of a
loop k1,k2, . . . ,kn,k1 is given by

Qn
l¼1W klþ1kl f

0ðuklÞ, where
kn+1 = k1. Therefore, the weight of a loop is the product
of a ‘‘topological’’ contribution ð

Qn
l¼1W klþ1klÞ and a

dynamical one ð
Qn

l¼1f 0ðuklÞÞ.
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3.2.2.2. Results. We measured the evolution of feedback
loops during learning via the weighted-fraction of positive
circuits in the Jacobian matrix, RðT Þn , that we defined as

RðT Þn ¼
rþðT Þn

jrþðT Þn j þ jr�ðT Þn j
; ð7Þ

where rþðT Þn (resp. r�ðT Þn ) is the sum of the weights of every
positive (resp. negative) feedback loops of length n in the
Jacobian network at learning epoch T. Hence RðT Þn 2
½0; 1�. If its value is >0.5, the positive feedback loops of
length n are stronger (in total weight) than the negative
ones in the network. We computed the weighted-fraction
of positive feedback loops for length n = 2 and n = 3 (i.e.

RðT Þ2 and RðT Þ3 ).
The evolutions of RðT Þ2 and RðT Þ3 are presented in Fig. 3A.

During the first �20 learning epochs, the time course of
these quantities are highly noisy (and the corresponding
standard deviation very large), so that we could not inter-
pret them conclusively. However, a T � 25 learning epochs,
RðT Þ2 stabilizes to values <0.5 ðRð1Þ2 � 0:47Þ, indicating a
slight imbalance in favor of negative feedback loops over
positive ones. According to the above theoretical consider-
ations, this indicates a trend toward complex oscillatory
dynamics. This viewpoint may be considered another per-
spective to explain the initial chaotic dynamics. Note how-
ever that the initial imbalance in circuits of length-3 is
much more modest, Rð1Þ3 � 0:497.

When 25 < T < 50, RðT Þ2 increases and converges to
�0.50. A dynamical interpretation would be that the corre-
sponding dynamics attractors become progressively less
chaotic and more periodic. This is exactly the behavior
observed in the simulations (see Fig. 5B). Hence in spite
of the huge fluctuations observed at the beginning, the
study of the feedback loops in the Jacobian matrix offers
a useful interpretation to the reduction of dynamics
induced by learning at short learning epochs.

Upon further learning, RðT Þ2 and RðT Þ3 remain constant at
0.5 up to T � 100 learning epochs. Thus, these quantities
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Fig. 3. Evolution of the weighted-fraction of positive feedback loops RðT Þn for

(dotted line). The weighted-fraction of positive feedback loops is computed

weights of every positive (resp. negative) feedback loops of length n in the netw
Values are averages over 20 different networks using k = 0.90. Standard deviat
parameters as in Fig. 2.
do not detect variations in the balance between positive
and negative feedback loops for 50 < T < 100. However,
at longer times (T > 100), RðT Þ2 and RðT Þ3 both increase

abruptly and rapidly reach �0.62 for RðT Þ2 and �0.56 for
RðT Þ3 . Hence, at long learning epochs, the system switches
to a state where positive feedback loops hold a significantly
larger weight as compared to negative ones. Note that the
time course of these indicators for T > 25 closely follows
the time course of the relative clustering index (Fig. 2A).
The causal relation between these two phenomena is how-
ever not obvious.

Because of the particular form of the Jacobian matrix in
our system, the sign of a feedback loop is given by the sign
of the weights along it (see above). We thus proceeded
(Fig. 3B) to the computation of the evolution of the
weighted-fraction for feedback loops computed in W, i.e.
we compute here the weight of a feedback loop e1, . . . ,ek

as the product of the synaptic weights of its edges, thus
independently of the neuron state. The evolution of the
weighted-fraction of positive feedback loops in W does
not account for the initial imbalance observed in the feed-
back loops of DF. However, its evolution at long times is
remarkably identical to that measured in DF. Thus, the
weighted-fraction of positive feedback loops in W is able
to account for at least part of the evolution of the dynamics
and represents a link between purely structural and purely
dynamical aspects. However, more information can be
extracted by a more dynamical approach.

3.3. Dynamical perspective

As shown above, studying the evolution of the network
structure during learning can yield valuable information
about general characteristics such as oscillatory or fixed-
point regimes. It is however not enough to explain the
major dynamics changes. In the following, we inspect the
system from a purely dynamical perspective, and show that
related theoretical tools allow a quantitative explanation of
the network evolution due to learning.
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jrþðT Þn jþjr�ðT Þn j
where rþðT Þn (resp. r�ðT Þn ) is the sum of the

ork at learning epoch T. The loops are taken either in DF (A) or in W (B).
ions are omitted for readability purpose. See text for definitions. All other
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Starting from spontaneous chaotic dynamics, applica-
tion of the Hebbian learning rule (2) in our sparse two-pop-
ulations model leads to dynamics simplification, as in the
case of completely-connected, one-population random
recurrent neural networks (Dauce et al., 1998). Fig. 5B
shows the network-averaged neuron dynamics obtained
at different learning epochs. The dynamics, initially chaotic
(T = 1), gradually settles onto a periodic limit cycle
(T = 270), then on a fixed point attractor at longer learning
epochs (see e.g. T = 290 in this figure). This evolution of
the global dynamics is a typical example of the reduction
of the attractor complexity due to the mutual coupling
between weight evolution and neuron dynamics.

In Siri et al. (2007), we developed a theoretical approach
derived from dynamical systems and graph theory and evi-
denced that it explains this reduction of complexity in
homogenous (single population) recurrent neural net-
works. We shall show thereafter that it also provides a use-
ful framework for the present model. Below, we first
summarize the main results obtained from this mathemat-
ical analysis (for details, see Siri et al. (2007)).
3.3.1. Main theoretical results

The first prediction of our approach is that Hebbian
learning rules contract the norm of the weight matrix W.
Indeed, we could compute the following upper bound:

kWðTþ1Þk 6 kTkWð1Þk þ a
N

1

1� k
C; ð8Þ

where kk is the operator norm (induced e.g. by Euclidean
norm) and C a constant depending on the details of the
rule. Hence the major effect of the learning rule is expected
to be an exponentially fast contraction of the norm (or
equivalently the spectral radius) of the weight matrix,
which is due to the term k, i.e. to passive forgetting (k < 1).

The next prediction concerns the spectral radius of the
Jacobian matrix. Starting from the specific form of the
Jacobian matrix in our case, Eq. (5) and noting that
jlðT Þ1 ðxÞj 6 kDFðT Þx k, one can easily derive a bound for the
spectral radius of DFðT Þx :

jlðT Þ1 ðxÞj 6 max
i

f 0ðuðT Þi ÞkWðT Þk; ð9Þ

where maxi denotes the maximum over the N neurons. This
equation predicts a contraction of the spectrum of DFðT Þx

that can arise via two effects: either the contraction of the
spectrum of WðT Þ and/or the decay of maxif

0(ui), which
arises from saturation in neuron activity. Indeed, f 0(ui) is
small when xi is saturated to 0 or 1, but large whenever
its synaptic inputs are intermediate, i.e. fall into the central
part of the sigmoid f(ui). We emphasize that when k = 1,
WðT Þ and u(T) can diverge and lead maxif 0ðuðT Þi Þ to vanish.
Hence the spectral radius of the Jacobian matrix can de-
crease even in the absence of passive forgetting. In all cases,
if the initial value of jlðT Þ1 ðxÞj is larger than 1, Eq. (9) pre-
dicts that the spectral radius may decrease down to a value
<1. Note that in discrete time dynamical systems the value
jlðT Þ1 ðxÞj ¼ 1 locates a bifurcation of the dynamical system.

According to our present setting, the largest Lyapunov

exponent, LðT Þ1 depends on the learning epoch T. We were
able to show that:

LðT Þ1 6 logðkWðT ÞkÞþ < logðmax
i

f 0ðuiÞÞ>ðT Þ; ð10Þ

where <log(maxif
0(ui)) > (T) denotes the time average of

log(maxif
0(ui)), in the learning epoch T (see Siri et al.

(2007) for formal definitions). The second term in the
RHS member is related to the saturation of neurons. The
first one states that LðT Þ1 will decrease if the norm of the
weight matrix kWðT Þk decreases during learning, resulting
in a possible transition from chaotic to simpler attractors.

Let uðT Þi ðtÞ ¼
PN

j¼1W ðT Þ
ij xðT Þj ðtÞ þ ni, the local field (or

membrane potential) of neuron i at dynamics step t within
learning epoch T. Our theoretical work also showed that
provided k < 1, the vector u ¼ ðuiÞNi¼1 converges to a fixed
point as T! +1:

huið1Þ ¼ nþHð1Þ; ð11Þ

where the elements of the vector H(1) are given by

H ð1Þi ¼ a
Nð1� kÞm

ð1Þ
i

X
j

mð1Þj Hðmð1Þj Þx
ð1Þ
j : ð12Þ

Therefore, the asymptotic local field is predicted to be the
sum of the input pattern plus an additional term H(1),
which accounts for the history of the system and can be
weak or not, depending on the exact learning rule and sys-
tem history.

In Siri et al. (2007), we studied the effects of Hebbian
learning in a completely connected (pc = 1) one-population
network (i.e. where each neuron can project inhibitory
(negative) and excitatory (positive) synapses) and showed
that these analytical arguments explain and describe results
of the system simulation with a very good accuracy.

While the model studied in the present work is much
more compatible with our knowledge of biological neural
networks, it is very different from the model studied in Siri
et al. (2007). In the present model, the connectivity is
(severely) sparse and the neurons are segregated in two dis-
tinct groups, with distinct synaptic properties. Further-
more, the learning rule Eq. (2) is also more complex.
Hence, it is not clear whether the above theoretical argu-
ments account for the current case. In particular, these
arguments mainly provide upper bounds, whose quality is
not guarantied. In the following sections, we present simu-
lation results about the influence of learning on the net-
work dynamics and function, using our theoretical
framework as an oracle.

3.3.2. Dynamics evolution in the sparse 2-populations model

Fig. 4 shows the evolution of the spectral radius of W,
jsðT Þ1 j for k = 0.90 or 0.99 in simulations of our sparse
two-populations model with dynamics Eq. (1) and learning
rule Eq. (2). Let sðT Þi be the eigenvalues of WðT Þ, ordered
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such that jsðT Þ1 jP js
ðT Þ
2 jP � � �P sðT Þi P � � � Since jsðT Þ1 j, the

spectral radius of WðT Þ, is smaller than kWðT Þk one has
from Eq. (8):

jsðTþ1Þ
1 j 6 kTkWð1Þk þ a

N
1

1� k
C: ð13Þ

It is clear from this figure that in both cases the spectral ra-
dius decreases exponentially fast, with a rate that is very
close to the prediction of the theory (i.e. /kT). Hence,
the decay predicted by our analytical approach (Eq. (8))
is obviously observed in the simulations. Note that the
clear trend in the simulation results for a decay propor-
tional to kT, even tells us that the bound in (13) is indeed
very good.

Fig. 7 shows (among other curves) the evolution of
jlðT Þ1 ðxÞj (dashed thin line). This figure confirms that the
theoretical prediction about the decay of jlðT Þ1 ðxÞj (Eq.
(9)) is also valid for this model. Hence, Eq. (9) opens up
the possibility that learning drives the system through
bifurcations. This aspect is studied below (Section 3.3.3).
3.3.2.1. Evolution of the dynamics complexity. We now turn
to directly study how the attractor complexity changes dur-
ing learning. This information is provided by the computa-
tion of the largest Lyapunov exponent. Note that another
canonical measure of dynamical complexity is the Kol-
mogorov-Sinai (KS) entropy which is bounded from above
by the sum of positive Lyapunov exponents. Therefore, if
the largest Lyapunov exponent decreases, the KS entropy
decreases as well.

Fig. 5A shows the evolution of LðT Þ1 during numerical
simulations with different values of the passive forgetting
rate k. Its initial value ðLð1Þ1 � 0:94Þ is positive (we start
our simulations with chaotic networks). As predicted by
our theoretical approach (Eq. (10)), the Hebbian learning
rule Eq. (2) leads to a rapid decay of LðT Þ1 . The decay rate
is indeed close to logðkWðT ÞkÞ for intermediate learning
epochs, in agreement with the upper bound of Eq. (10).
Hence LðT Þ1 quickly shifts to negative values, confirming
the decrease of the dynamical complexity that could be
inferred from visual inspection of Fig. 5B.
3.3.2.2. Individual neuron activities. The former results
yielded robust explanation of the evolution of global char-
acteristics of the dynamics. Additional clue can also be
obtained concerning more local aspects, such as the evolu-
tion of individual neuron activities. Fig. 6 shows the evolu-
tion of the local field u during learning. Clearly, the initial
values are random, but the local field (thin gray line) shows
a marked tendency to converge to the input pattern (thick
dashed line) after as soon as 60 learning epochs. At
T = 180, the convergence is almost complete. Hence this
behavior once again conforms to the theoretical predic-
tions Eq. (11), with n� H(1). In the results presented in
this figure, we pursue the simulation up to T = 200, at
which point we remove the pattern from the network, i.e.
we set ni = 0 "i (Fig. 2D). As a result, u looses its alignment
from the pattern and presents a noisy aspect (note that
each vector in the figure has been normalized to [0,1]). This
behavior is once again in agreement with the theoretical
predictions of Eq. (11), which indicates that hui(1) = H(1)

upon pattern removal.
To conclude, we have shown here that Hebbian learning

in our system leads to a decrease of the attractor complexity
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and entropy that can be induced by passive forgetting and/
or an increased level of saturation of the neurons. This cor-
responds in details to the scenario predicted by our mathe-
matical analysis.
3.3.3. Functional consequences

The former sections dealt with the effects of Hebbian
learning on the structure and dynamics of the network
but it does not say much about the links between the
observed dynamics changes and the network function.
We now focus on these functional aspects. The basic func-
tion of RRNNs is to learn a specific pattern n. In this
framework, a pattern is learned when the complex (or cha-
otic) dynamics of the network settles onto a periodic oscil-
latory regime (a limit cycle) that is specific of the input
pattern. This behavior emulates putative mechanisms of
odor learning in rabbits that have been put forward by
physiologists such as W. Freeman (Freeman, 1987; Free-
man et al., 1988). An important functional aspect is that
removal of the learned pattern after learning should lead
to a significative change in the network dynamics. We
now proceed to an analysis of this latter property.

3.3.3.1. Bifurcations and pattern sensitivity. The removal of
n is expected to change the attractor structure and the aver-
age value of any observable / (though with variable ampli-
tude). Call D(T)[/] the variation of the (time) average value
of / induced by pattern removal. If the system is away
from a bifurcation point, removal will result in a variation
of D(T)[/] that remains proportional to n.

On the opposite, close to a bifurcation point this varia-
tion is typically not proportional to n and may lead to dras-
tic changes in the dynamics. Call kk and vk the eigenvalues
and eigenvectors of WðT ÞKðu�ðT ÞÞ, ordered such that
jkNj 6 jkN�1j 6 jk1j < 1. In the case where the dynamics
has converged to a stable fixed point u*(T) (namely, when
LðT Þ1 < 0, see e.g. Fig. 5), our theoretical work predicted
that

DðT Þ½u� ¼ �
XN

k¼1

ðvk; nÞ
1� kk

vk; ð14Þ

where (,) denotes the inner product. As a matter of fact, the
RHS term diverges if k1 = 1 and if (v1,n) 5 0. We therefore
expect pattern removal to have a maximal effect at ‘‘the
edge of chaos’’, namely when the value of the spectral ra-
dius of DFx is close to 1.

3.3.3.2. Simulation results. To study the effects of pattern
removal in our model, we monitored the quantity

DðT Þ½K� ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ðhKiiðuÞiðT Þ � hKiiðu0ÞiðT ÞÞ2
vuut ð15Þ

that measures how neuron excitability is modified when the
pattern is removed. The evolution of D(T)[K] during learn-
ing with rule Eq. (2) is shown on Fig. 7 (thick full lines)
for two values of the passive forgetting rate k. D(T)[K] is
found to increase to a plateau, and vanishes afterwards.
Interestingly, comparison with the decay of the leading
eigenvalue of the Jacobian matrix, l1 (thin full lines) shows
that the maximal values of D(T)[K] are obtained when jl1j is
close to 1 and the largest Lyapunov exponent L1 close to 0.

Hence, these numerical simulations are in agreement
with the theoretical predictions that Hebbian learning drives
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the global dynamics through a bifurcation, in the neighbor-

hood of which sensitivity to the input pattern is maximal.

Note that this property is obtained at the frontier where
the chaotic strange attractor begins to destabilize
(jl1j = 1), hence at the so-called ‘‘edge of chaos’’. This par-
ticular dynamical regime, at the frontier between order
(periodical or fixed point regimes) and disorder (chaos),
has already be reported to be particularly suitable for
recurrent neural networks, especially when computational
power is considered (Soula et al., 2005; Bertschinger and
Natschlager, 2004). The present results show that it is the
optimal regime for the sensibility to the input pattern in
our model. Whether this also implies improved or optimal
computational performance remains however to be tested
and will be the subject of future works.

It must finally be noticed that our theory predicts that
pattern sensitivity should be maximal when jl1j is close
to one. But several aspects of our simulation results are
not accounted for by this theory. For instance, Fig. 7
shows that jl1j approaches 1 at several learning epochs.
This is related to the ‘‘Arnold tongue’’ structure of the
route to chaos. However, pattern sensibility is maximal
only for the last episode, and almost zero for the former
ones. This behavior is still unclear and will be the subject
of future works.

4. Conclusion and future works

To conclude, we have shown in this work that Hebbian
learning Eq. (2) has important effects on the dynamics and
structure of a sparse two-populations RRNN. The forget-
ting part of the learning rule contracts the norm of the
weight matrix. This effect, together with an increase in
the average saturation level of the neurons, yields a rapid
decay of the dynamics complexity and entropy. In other
words, the network forgets its initial synaptic structure
and is rewired by Hebbian learning into a new synaptic
structure that emerges with learning and that depends on
the whole history of the neuron dynamics. We have shown
that the strongest synapses organize within this emerging
structure as a small-world connectivity. The second effect
of the decrease of the weight matrix and of the increased
neuron saturation consists in a rapid contraction of the
spectral radius of the Jacobian matrix. This leads the sys-
tem to the edge of chaos, where sensitivity to the input pat-
tern is maximal. This scenario is remarkably predicted by
the theoretical arguments we developed in Siri et al. (2007).

In the presented simulations, most of the effects are med-
iated by the passive forgetting term. We believe that this
term is not unrealistic from a biological point of view.
Indeed, synaptic plasticity at the single synapse level is
not permanent and some studies reported durations of
20 min (Volianskis and Jensen, 2003) or even 20 s (Brager
et al., 2003). This would be accounted for in our model
by k	 1.

Nevertheless, most studies about long-term plasticity
have evidenced longer cellular memory time constants,
ranging from hours to days (Heynen et al., 2000; Racine
et al., 1983; Doyere et al., 1996), which would correspond
in our model to higher k values. Note however that accord-
ing to our mathematical analysis, most of the effects
reported here are expected to occur even without passive
forgetting (i.e. with k = 1), provided the learning rule
increases the average saturation of the neurons. In previous
studies, we have considered such Hebbian learning rules
devoid of passive forgetting but provoking increasing aver-
age saturation levels of the neurons. Numerical simulations
have clearly evidenced a reduction of the attractor com-
plexity during learning, in agreement with this suggestion
(Berry and Quoy, 2006; Siri et al., 2006).

Future works will focus on the study of more detailed
biological learning rules (heterosynaptic LTD, synaptic
rescaling). We will also consider activity-dependent synap-
tic turnover (pruning/sprouting). Indeed albeit an over-
looked phenomena for several decades, synaptic (or at
least dendritic) turnover is now recognized as an important
part of cortical networks, even in the adult (see e.g. Hol-
tmaat et al. (2005)). Finally, one important problem with
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the application of RRNNs as artificial neural networks, is
that it is very difficult to determine when to stop the learn-
ing process. Our results show that the effect of an input pat-
tern is maximal at those learning epochs when the system is
close to a bifurcation, but much more modest for shorter
and longer learning times. One interesting development
would thus consist in trying to find learning rules or set-
tings that would guaranty that the system remains close
to the edge of chaos, even at long learning times. As an
attractive possibility, the plasticity of intrinsic properties
(Daoudal and Debanne, 2003) could allow the network
to stabilize its activity in this region.
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Fast response and temporal coherent oscillations in small-world
networks. Phys. Rev. Lett. 84, 2758–2761.

Linsker, R., 1986. From Basic Network Principles to Neural Architecture:
Emergence of Orientation-Selective Cells. Proc. Natl. Acad. Sci. USA
83, 8390–8394.
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