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Abstract-The elements of an algorithm are presented which predicts for some simple forms (circle\ and 
ellipses) the kinematic and figural aspects of the trajectories of the human wrist when these arc dr;cun 
in any arbitrary plane of free. three-dimensional space. The algorithm is based on theorrticai CO~\K- 
erations and experlmental data and specifies in a unique way the angular motion at the shoulder anJ clho~r 
joints by utilizing a coordinate transformation, which is only approximate, between the ~~~WVI t’x~rlnh~~ 
(trajectory) and intrinsic (joint angles) parameters. A way to extend the use of this algorithm try :~IXWI~~ 
any arbitrary complex movement m all possible planes of space is also suggested. 

It is a matter of everyday experience that once a 
particular skilled movement has been learned, move- 
ments which are equivalent to it in terms of its finality 
but which differ in terms of the kinematic and 

dynamic details of joint motion can be produced with 
apparent ease. For example, once handwriting has 
been learned, script of different sizes and in different 
planes (e.g. horizontal or vertical, as on a black- 
board) can be generated with little degradation in 
performance. Yet in any given instance the relative 

amount of angular motion at a particular joint and 
the amount and timing of the muscular contractions, 

which give rise to it. can be expected to be unique to 
that particular instantiation. This aspect of motor 

behatior has been recognized for a long time and has 
been termed “motor equivalence”.6,‘0 

However, little is known about the algorithm, that 
is the set of rules, according to which a specified 
movement can be generalized to an arbitrary size, 
speed. location and orientation in space. In this 
paper. we shall present some of the elements of a 
possihle algorithm according to which a specified 
curve can be traced by the hand in an arbitrary plane 

in space. To simplify the problem we shall consider 
only motion at the shoulder and elbow joints, neglect- 
ing any contribution of wrist and hand motion to the 

desired trajectory. Furthermore, we shall consider 
only simple. closed trajectories such as circles and 
cllipscs. but in the Discussion we shall take up the 
questlon of how the proposed algorithm could be 
generalized to generate arbitrary curved motion of 

the hand in space. 

_-- 
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To approach the subject. it is useful to break dou II 
the problem into a set of scqucntial opcratrons. 
Suppose that the task is to draw an ellipse 01‘ a given 
size in a particular plane. i.e. that the path of‘lhv hand 
in space is specified. In addition to the parh. the speed 

of the hand along the path would also have to he 
specified. Secondly. the trajectory of the hand in 

space must be converted into a trajsctor> 01 angular- 
motions at the shoulder and eihow joints. Thrrcilv. 

given a specified trajectory of joint angufxr mc~tions. 
torques acting at each of the joints ;tdequ:r~c IO 
produce the desired motion must be dstcrmincti. 

In this paper, we shall focus on the kinematic 

aspects of the problem. namei! the lir\t t\+o oper- 
ations described above. and each of thcs;c \tcp\ rr11l 
be considered in detail below. 

The speed of the hund ulon,~ t/w ptrth 

The simplest way to specify the speed (11’ the 
movement would be merely to rcqulrc th;~t :I g~rcn 

distance be traversed in a certain time. I-or :I tlosed 
trajectory, such as an ellipse, this could be cqutvatent 
to requiring that one cycle of the movcmen[ hc 
completed in a particular time. Note th;tt >uctl :I 
constraint would specify the akcrage spcccl but not 
the instantaneous speed of the mo\emcnt Fxpcri- 
mentally it has been found. honever. that the ln\tan- 
taneous speed of the hand does depend on the lttc;ti 
spatial characteristics of the mo\cment. In p;trttcut;rr. 
Viviani and Terzuolo” found that the’ 1:1ngent1al 
velocity at the hand was inversely I-clatcd IO the 
curvature of the path traced h> It. Thl\ rciatlcm\hlp 
held true for handwriting and drawing mo~cn~nt~ 
(circles and ellipses) and even for scribbles dm~rt 111 

the horizontal plane, Qualitatively. their ohberv;lttona 

have been confirmed by Abend (‘I r~l ’ and h> Fla+ 
and Hogan5 for point-to-point arm mo\emcnts 111 rhe 

horizontal plane. 
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Empirically, Lacquanti et al.’ described this re- 
lation by a power law relating the instantaneous 
angular velocity (1) to the curvature h 

fJj = f&-z I, (1) 

where K is a constant. The implications of this 
relationship for arm motion in three-dimensional 
space, which will be derived in the following, are: (I) 
motion at the wrist is confined to a plane. and (2) 
sinusoidal wrist motion satisfies this relation identi- 
cally (see also Ref. 21). 

From analytical geometry the tangential velocity V is 
given by 

V-ct=o/tit 0) 

where 11 is the instantaneous speed and t is the tangent vector 
of unit length. Substituting for UJ in (1) and rearranging 
terms, one obtains 

*‘ih_ = x-3. (3) 

Since the acceleration A is given by 

A = dv/dt t + v2Kn, (4) 

where n is the unit normal to the trajectory and the two 
terms represent the tangential and normal components of 
the acceleration, the vector cross-product of velocity and 
acceleration is 

V x A = t&b, (5) 

where b is the instantaneous normal to the plane of motion 
(binormal). Thus, equation (1) is equivalent to 

VxA=Kb (6) 

where K and b are constants. (For planar motion, b is 
constant by definition,) 

Differentiating (6) one obtains 

V x dA/dt = 0. (7) 

which implies that the velocity V and its second derivative 
V are parallel: 

V=c(t)V. (8) 

In a Cartesian coordinate system {x, y, z 1, the com- 
ponents of (8) are 

8, = CU, 

6, = co 1 
i’. = CD. . _ 19) 

For periodic motion, under the assumption that c is 
constant, equation (9) has the solution 

L’, = x0 sinpt 

u,. = y, sin (pt - 6,) 

t‘: = z0 sin (pf - 6,) (10) 

and by equation (6) 

yOz, sin (8, - 6, 

V x AS-~’ -.u,z,sin& 

i I 

(Ill 
.yoxo sin 6, 

Param~t~~~at~o~ of the plane of motion 

The conversion from wrist trajectory in space into 
a trajectory of angular motions at the shoulder and 
elbow joints implies a coordinate transformation 
from the reference frame in which the trajectory of the 
hand is described into the reference frame describing 

joint angular motions. Both reference frames have to 
be specified. While a number of different coordinate 
systems could be chosen, some judicious choice can 
perhaps be made on the basis of available data ” “’ and 
results obtained, 

To describe the motion of the hand we use the 
Cartesian coordinate system shown in Fig. 1. Tn this 
frame of reference, A’ represents the anterior direc- 
tion. Y the lateral direction and Z the vertical. defined 
relative to the subject. In this coordinate system. the 
plane of motion of the hand is defined by the unir 
vector b perpendicular to the plane of motion. Two 
scalar parameters are adequate to define b. We have 
chosen the planar elevation Y and its azimuth 1. 
defined as 

tan x = b,./h, 

tan Y = -h,/Jbf + hf. (12) 

x and !P are both zero when the motion of the hand 
lies in the frontal plane, as in drawing on a black- 
board. Note that these two parameters could have 
been defined differently; the choice was motivated by 
ex~rimental data to be presented in this paper. 

For the trajectories we shall consider, namely cir- 
cles and ellipses, one additional parameter serves to 
define the figural characteristics of the motion, 
namely the slant (a). Consider for simplicity motion 
restricted to one of the principal planes such as the 
sagittal plane. In this instance, y0 = 0 (lo), and slant 
is defined as a = 6,, that is the phase difference be- 
tween the vertical and horizontal components of the 
motion. When this phase difference is 90”, an ellipse 

Fig, 1. Parameters used to define the angular orientation of 
the arm. The angles 0 and /3 represent the angular elevation 
of the arm and forearm and are measured in a vertical plane 
relative to the vertical (2 ) axis. The yaw angles 1 and a are 
measured in the horizontal plane from the anterior (X) 

direction. 
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and 

with its major and minor axes oriented horizontally or 

vertically will result. Slant angles of 0’ or 180- pro- 
duce rectilinear motion and intermediate values yield 

ellipses which are slanted anteriorly or posteriorly. 
When the motion of the hand is in an oblique plane, 

the slant depends on both 6, and Sz (IO). In such a 
case. we define slant by the following procedure. We 
consider the frontal plane (x and Y equal to zero) to 
be the cardinal plane of motion. A figure in this 
cardinal plane can be rotated into any oblique plane 
hy IWO successive rotations: first, by an angle x about 
the vertical Z-axis, then by an angle Y about the 

l’-axis defined after the first rotation. If we define a 
coordinate system /.Y’. j”. z’) which is rotated by x 
and Y. the relationship between this primed and the 
tixcd. unprimcd coordinate system (Fig. I) is given by 

cos Y cos % cos Y sin z -sin Y 

-sin x cos 1 0 

sin Y cos x sin Y sin )! cos Y 

rs 7 
x ( .v } (l3a) 

C-J 

-cos Y cos;! -sin1 sin Y cos x 

cos Y sin r cos x sin Y sin x 

-sin Y 0 cos Y 1 

r.x’7 

In the primed coordinate system, the normal b is by 
dctinition (1.0.0). and by using (I 3b) 
b = lcos Y cos x, cos Y sin x. -sin Y } in the un- 
primed coordinates. The definition of elevation Y and 
azimuth x given in (I 2) follows automatically. 

In this coordinate system, slant c is defined as the 

phase difference between the vertical (c,,) and lateral 
(I’, ) components of the velocity and I‘,. = 0. In the 
unprimed coordinate system, the velocity com- 
ponents IV,. I‘, . I‘: ) are again obtained by using (I 3b). 

.sl,cc~~fic’rrfioll of lorqur 

Once the motion of the arm has been specified joint 
torques adequate to produce this motion must be 
dctcrmincd. Mathematically. joint torque depends in 
a nonlinear manner on the angular accelerations, 
velocities and displacements and for arm motion in 

three-dimensional space these equations have a large 
number of terms. In robotics, efficient schemes to 

solve these equations have been developed.’ Tabular 
solutions have also been proposed.” Alternatively, it 
has &o been suggested that the system takes advan- 

*Note that the problem as we have formulated it is 
tncc)mplete. To fully define the motion, one would also 
need to specify Its location in space and its amplitude. 
This latter aspect of the problem is beyond the scope of 
thn paper. 

tage of the visco-elastic properties of muscles by 
specifying a trajectory of equilibrium points. thus 
obviating the need to solve the equations ana- 
lytically.? 

Note that the required joint torques must be 
partitioned among the muscles acting at each joint 
according to some set of rules. Pellionisz and 
Llinas”~‘d have suggested a way in which this might 
be accomplished and this suggestion is being in- 
vestigated experimentally.’ These problems wilt not 
be taken up further in this paper. 

The theoretical question and an esperimental approach 

The problem we wish to consider now is the 
following: given a desired plane of motion of the 
hand (i.e. 1 and Y) and a figure having a given slant 
(a), can one derive a simple set of rules to specify the 
appropriate angular motion at the shoulder and 
elbow joints?* A solution of this problem can be 

obtained analytically by solving equations (IO). (I I) 
and (I 2) for the joint angles (e.g. as given by equation 
14). Such a solution will not be unique since the arm 
has four degrees of freedom (three at the shoulder 
and one at the elbow) while only three parameters are 

necessary to describe the motion of the hand in space. 
However, uniqueness could be achieved by imposing 

some constraint. 
If such an exact procedure were used. the execution 

of a given movement in different planes in space 
would require a separate solution each time and it 
would thus appear as if each movement were novel, 
contrary to everyday experience. Therefore it is ap- 

pealing to hypothesize that the problem is solved in 
an approximate manner” and that such approxi- 
mations involve simple relations between extrinsic 

parameters (such as x, Y, a) and intrinsic parameters 

related to the joint angles. We have attempted to 
uncover such simple relations experimentally by ask- 
ing subjects to draw circles and ellipses with their arm 

in different planes in space. In the following sections 
we will briefly outline the experimental procedures, 
present the experimental results and the results of 

some simulations. 

EXPERIMENTAL PROCEDURES 

The experimental arrangement and details of the ana- 
lytical procedures have been described fully m a previous 
publication in which we consider drawing movements rc- 
stricted to the vertical plane.‘” The location of the elbow and 
of the wrist in three-dimensional space was determined by 
means of a pair of ultrasound emitters and a set of three 
microphones. I6 The elbow angle of flexion extension was 
measured goniometrically.’ 

From these measures the angular orientatton of the arm 
and of the forearm was calculated. The parameters we have 
chosen are defined in Fig. 1. They are: 0 and /I (the angular 
elevation) and 7 and z (yaw) of the arm and forearm. 
Angular elevation is measured m a vertical plane relative to 
the vertical (Z) and yaw in the horizontal plane relative to 
the anterior direction (X). These angles were identified 
previously psychophysically as the preferred coordinate 
system for the recognition of the orientation of the arm in 
space.” 



In these calculations we assumed that the center of 
rotation at the shoulder remains fixed. This assumption is 
not strictly valid and introduces uncertainty in the calcu- 
lation of upper arm orientation. One estimate of this error 
is given by the difference between the measured and calcu- 
lated elbow angles; I8 the root-mean-square difference be- 
tween these values typically ranged from 2’ to 4 Forearm 
pronation-supination and wrist rotations were not mca- 
sured. These degrees of freedom affect the motion at the 
fingers. Therefore, the subjects were asked to perform the 
task while keeping the wrist rigid. However, given the size 
of the movements we studied, the potential contribution of 
motion at the distal joint to the overall motion is negligible. 

In terms of these orientation angles, the position of the 
wrist is given by 

X, = I, sin 0 cos 7 + I, sin b cos a 

y, = I, sin I) sin 9 + I, sin B sm z 

2, = 1, cos 0 - 1, cos b. (14) 

As we have shown previously’* and as predicted by the 
derivation presented above (IO), for freely and repetitively 
drawn circles and ellipses, the horizontal and vertical com- 
ponents of the motion at the wrist are well approximated by 
sinusoids. The variation in the orientation angles is also 
close to sinusoidal.‘* Therefore, the mean, amplitude and 
phase of the fundamental for each of the parameters (wrist 
motion and orientation angles) was calculated by Fourier 
analysis. The distortion from true sinusoidal motion was 
defined conventionally to be the root-mean-square 
difference between the fundamental component and the 
experimental value, normalized by the latter’s variance. 
Distortion can thus range from 0 to I. 

The normal to the plane of motion at the wrist (b) was 
calculated according to (6) by averaging several cycles of the 
motion. The elevation Y and azimuth x of the plane were 
calculated according to (12). Since the direction of the 
normal is reversed for clockwise and counterclockwise 
motion. we adopted the convention that the X-component 
of the normal (b,) point in the anterior ( + A’) dirccttan. T’hls 
restricts the absolute value of /[ to be less than 90 I:~u 
h, < 0, the sign of each of the components of b was inverted. 
(For example, a circle drawn in the clockwise direction 111 
the frontal plane gives b, = 1 while a countrrclockwrse 
rotation gives b, = - 1. There IS an ambiguity. howzvcr. 
since the latter could be represented by x := IX0 :md ‘1 slar!! 
0 = -9O‘or by x = 0” and c = 90 .) 

The motion of the wrist was then rotated into the cardrnal 
(frontal) plane using (13a). In this coordinate system. the 
motion would lie in the plane .Y = constant. Slant 0 was 
calculated as the phase difference between the : and i’ 
fundamental components of the motion at the wrist. The 
extent (E ) to which wrist motion deviated from the plane 
was calculated by 

t: = {X:U;E(L.;+ Clf,;‘.:. (Ii) 

where L’, is the out of plane component of the velocity (in 
the primed coordinate system) and I’, and V, are the in-plane 
components. 

The data to be reported summarize the results ot 8 
experiments involving 6 subjects. 

EXPERIMENTAL RESULTS 

The results of a typical trial are shown in Fig. 2. 
In this instance the subject was asked to draw a 

med. 

Fig. 2. Perspective view of wrist motion in three-dimensional space. Shown is a typical example in which 
the subject was asked to draw a slanted ellipse in the frontal plane. The direction of motion is indicated 
by the arrows and the dashed lines depict the projection of wrist motion onto the horizontal and sagittal 

planes. 
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slanted ellipse in the frontal plane. In this trial the 

deviation from planar motion E, calculated according 

to (15). was 0.15. For the 31 trials obtained for this 
subject the average deviation from planar motion E 
was 0.089 _t 0.026. The elevation Y of the plane of 
motion was -7.4 (Negative values of Y indicate 
that the upper portion of the curve is anterior to the 

lower portion, as may be appreciated from the 
projection of the ellipse onto the sagittal plane.) The 

azimuth x was 2.6’. (Positive values of x indicate the 
medial portion of the curve is anterior to its lateral 
portion, as can be seen from the projection of the 
ellipse onto the horizontal plane.) Slant CJ was - 34”. 
The same ellipse drawn in the counterclockwise direc- 
tion would have given g = 34”, while an ellipse 
slanted in the opposite direction (upper portion lat- 
eral) would have resulted in cr > 90’. The period of 

the motion was 1.22 s. a value typical for our subjects 
drawing figures of this size. 

I’ ” ” ” 

0 2.5 5.0 s 

Fig. 3. Kinematics of wrist motion and orientation angles 
during a drawing movement. The data are for the slanted 
ellipse shown in Fig. 2. From top to bottom, the traces show 
the tangential velocity (V,) and the curvature K of the wrist, 
and the yaw (q) and angular elevation (0) of the arm and 
of the forearm (/I and a). Note that the curvature is largest 
when the tangential velocity is smallest, the modulation in 
the orientation angles is close to sinusoidal and the two 
angular elevations are close to 180” out of phase. Scale (per 
division): V, - 50 cm/s, K - 0.33 cm-’ and 45’ for the orien- 
tation angles. Tangential velocity ranged from about 

40-120 cm/s in this trial. 

In each trial, we specified the approximate plane of 

motion, its direction (clockwise or counterclockwise) 

and the slant. The location in space and the size of 

the figure to be drawn were not specified. Further- 
more, we were not able to determine how accurately 
the requested plane of motion was reproduced except 
in the trivial cases when the figure was to be drawn 

in one of the principal planes. In those instances Y’ 
and x were generally within IO of the specified 
values. 

As we have reported previously, and in agreement 

with the theoretical predictions (IO). the horizontal 
and vertical components of the motion at the wrist 
could be well approximated by sinusoids.lx For exam- 
ple, for the trial illustrated in Fig. 2 distortion in the 
horizontal component of wrist velocity was 14% and 

I I % for the vertical component. The modulation of 

the orientation angles of the arm and forearm was 
also close to sinusoidal. The variation in the yaw 

(q, a) and elevation (U,p) angles of the arm and 
forearm are shown in Fig. 3. In this instance. arm 
yaw (q) had the largest distortion (30% for velocity). 
The tangential velocity of the wrist (l’, ) and the 

curvature of the wrist motion (K) are also illustrated 
for this trial. In agreement with previous results. the 
two variables arc inversely related. Tangential vcloc- 
ity is at a minimum when the curvature is largest. as 

predicted by (1) and (3). 
Since the modulation in the orientation angles was 

generally close to sinusoidal, it was possible to com- 
pute the amplitude and phase of the fundamental 
component for each of the angles. We have pre- 

viously shown that when the plane of wrist motion is 
close to vertical (ul CC 0), the modulations in the 

angular elevation of the forearm (0) and of the arm 
(0) are approximately 180 out of phase (Fig. 3). 

independently of the azimuth (Y) and slant ((T) of the 
motion.‘* Results summarized in Fig. 4 extend these 
observations to instances in which the plane of wrist 
motion deviated considerably from the vertical. The 
figure shows the distribution of the phase differences 
between the two angles of elevation. Trials have been 

grouped according to the amount by which the plane 
of motion at the wrist deviated from the vertical. i.c. 
according to the absolute value of Y. Only those 
trials in which the distortion in the modulation 01 

both angles of elevation was less than 30”)” arc 
included. As can be seen from Fig. 4 and Table 1. the 
values for the phase difference between /j and I) 
clustered around 180 when the plant of motion IS 

Table 1. Variation of phase difference between /I and I) as 
a function of planar elevation Y 

Number of trials Total number 
(distortion < 30%) of trials Phase IYyl 

94 101 189 + 24 <: I5 
21 21 194 i 28 <: 30 
13 16 176i’l i 45 
13 29 200 * 83 :. 45 
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Elevation 

-1200 -900 

Fig. 4. Distribution of the phase difference between the angular elevations of arm and forearm. The polar 
histogram shows the distribution of the phase lead (or lag) of the angular elevation of the forearm @) 
relative to that of the arm ((3). Trials are grouped according to the ptanar elevation V of wrist motion 

(vertical: ‘P = 0”; horizontal: Y = 9(P). 

within 45’ of the vertical. No trend is apparent in the 
data. The average values reported in Table 1 do not 
differ significantly from one another (P > 0.05). The 
phase relation between the two angular elevations is 
not correlated with either the planar elevation Y 
(r = O.OOl), the azimuth x (r = 0.112) or the slant cr 
(r = 0.125). 

For trials in which wrist motion was close to 
horizontal (lull > 45”) there is a much greater vari- 
ability in the phase difference between fi and 0. 
Furthermore, in the majority of such trials (16 of 29), 

the distortion in B and/or B was greater than 30% and 
the phase relationship between the two angles could 
not be estimated. Generally, the amplitude of the 
modulation in fi and/or B was small. One example is 
shown in Fig. 5. In this instance, an ellipse was drawn 
in a plane close to horizontal (Y = - 70”). The 
distortions in the angular motion of the arm (q, 0) 
and in forearm yaw (a) were all small, ranging from 
9% for @ to 19% for 1. The distortion in forearm 
elevation is much larger (61%), the amplitude of its 
fundamental component being only 3”. 

Fig. 5. Ellipse drawn in a plane close to the horizontal. (A) shows in perspective the motion at the wrist, 
(B) the modulation in the orientation angles. Note that the angular elevation of the forearm varies little 
during this trial and is highly distorted while the modulation in the other orientation angles is closet to 

sinusoidal. 
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0.0 I I I I I I 
-90" -60° -30” O” 30” 600 QO* 

Azimuth (Xl 

Fig. 6. Correlation of the phase difference between arm (q) and forearm (z) yaw with the azimuth (% I 
of wrist motion. When the modulation in the two yaw angles is in phase, wrist motion is close to the frontal 
plane (2 = 0’) and in the sagittal plane (x = & 90 ) when the phase difference between rf and a is i 80 

The planar elevation of wrist motion ranged from vertical to horizontal in these trials. 

We previously showed that for circles and ellipses 
drawn in the frontal plane (x = 0), the modulation in 
forearm yaw (a) and in upper arm yaw (q) was 
approximately in phase.‘* whereas the modulation in 

the two yaw angles was about I 80' out of phase when 
the figure was drawn in the sagittal plane (x = ?r90 ). 
This can be appreciated in Fig. 6. in which the phase 
difference between the two yaw angles is plotted as a 

Elevation 

-360° I- L I I J 
-1800 -QO* 00 900 180” 

Slant (0) 

Fig. 7. Correlation of the phase difference between forearm yaw (0~) and arm angular elevation (0 1 with 
the slant (u) of the ellipse. The plane of wrist motion ranged from vertical (Y =6) to horizontal 

(Y = 90’), as denoted by the different symbols. 
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function of the azimuth (x) of the plane of wrist 
motion. Data for trials in 5 experiments in which 
wrist movements in different planes were explored are 
presented. The data include trials in which the plane 
of motion was close to the vertical (vl = 0) as well as 
those in which the figure was drawn in an oblique 
plane. Although there is considerable scatter in the 
data, the phase difference between the two yaw angles 
is clearly correlated with the azimuth (x) of the plane 
of motion. 

Finally, Fig. 7 shows that the phase of forearm yaw 
(GI) relative to angular elevation of the arm (0) is well 
correlated with the slant (a) of the ellipse. For the 
sake of clarity, only data for the three experiments 
which included trials in which the planar elevation of 
wrist motion (Y) differed significantly from zero are 
shown. The two variables are highly correlated 
(u = -0.977, n = 60) independently of the planar 
elevation. 

CONCLUSION 

The results presented in Figs 4-7 extend our pre- 
vious observations” which were restricted to wrist 
motions close to the vertical plane, and they show 
that: (1) independently of the plane of wrist motion 
(at least for I’YJ < 45”), the modulation in forearm 
(8) and arm (0) elevation is 180” out of phase, (2) the 
azimuth (x) of the motion is given by the phase 
difference between the two yaw angles (q, a), and (3) 
the slant is given by the phase of forearm yaw angle 
(c() relative to the angular elevations. 

Note that given a phase difference of 180” between 
the two angular elevations, the two other relations 
are implicit in the way the angular orientation of the 
arm and the plane of motion have been defined. 
Indeed. this is equivalent to reducing the number of 

degrees of freedom of the arm from four to three. 
thus simplifying the problem by providing a unique 
solution. A second simplification suggested by the 
data is the existence of linear relationships (points ? 
and 3 above). The question now is: are these re- 
lationships valid only over the limited domam of 
motions explored experimentally or are they valid for 
a wide range of combinations of motions at the 
shoulder and elbow joints? Such a generalization is a 
prerequisite for the utilization of the rules expressed 
by these relationships in an algorithm for the coordi- 
nation of arm motion in all possible planes. We 
addressed this point by the use of simulattons. 

SIMULATIONS 

We assumed pure sinusoidal motion in the orien- 
tation angles, i.e. 

O(t)=e”+u,cospt 

9(t)=%+vICOS(Pt -4) 

B(t) = /xl + 8, cos fpt - fi?) 

a(t)=cr,+cr,cos(pt--6,). (15) 

Random combinations of values for the mean and 
amplitude for each of the angles were chosen over the 
following range: 

t&:20” to 65” 0, : 5’ to 30” 

4”: 10” to 50” r],:5’ to 30” 

&:50” to 95’> /!I,:5 to 40‘ 

x0: -50” to loc‘ (x,:5 to 35 

The values chosen encompassed the range of values 
found experimentally. For 100 such random combi- 
nations, the motion of the wrist was calculated 

1 80° 

Phase p re 0 

-180’ 

Fig. 8. Simulation results: variation of planar elevation (Y) with the phase difference between angular 
elevation of arm (0 ) and forearm (p ). The points denote the mean and standard deviation of [‘PI for 
random combinations of sinusoidal angular motion of the arm and forearm. All combinations of phase 

relations of the yaw angles are included in these results. 
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Fig. 9. Simulation results: dependence of azimuth (x) on the phase difference between the two yaw angles 
7 and U. The traces show contour lines of constant mean values of azimuth for random combinations of 
sinusoidal angular motion of the arm and forearm; on the left, p lags 0 by 180 and by 120 on the right. 
In the former case, motion in a plane close to the frontal plane (x = 0) results when q and u are in phase 
and on average, the motion is close to the sagittal plane when the two yaw angles are I80 out of phase, 
as was found to hold true for experimental data (Fig. 6). No such correlation exists when the phase 

difference between the two angular elevations differs substantially from 180 (right panel). 

according to (14). assuming the length of the arm and 

forearm to be equal. The plane of motion (x, Y) and 
the slant were then computed as before. The phases 
(5,. (3, and (r, were each varied in increments of 15 
For each of the 24j combinations of phases. the mean 

and standard deviation of x. Y and D were calculated. 

The results of these simulations are presented in Figs 

X%1 I. 
Figure 8 shows that on average the planar el- 

evation of wrist motion (Y ) is least when 1 and 0 arc 
I80 out of phase (Iv’ 1 = 17.) and is greatest when 
they arc in phase (l\yI = 49 ). In principle then the 
planal, elevation could be regulated by changing the 

phase relation between p and 0. (Recall that the 
experimental data indicate that this is not the case.) 

Figure 9 illustrates the manner in which the azi- 
muth 7 of wrist motion depends on the phases of the 
yaw angles r~ and x relative to arm elevation 0. The 

results of the simulation are plotted as equipotential 
lines for x: on the left /i and 0 are l80- out of phase 
while /j lags (I by I20 on the right. In the former case. 

in the upper right and lower left quadrants the 
azimuth of the plane of motion is close to zero (as for 

motion in the frontal plane). Thus. in agreement with 
experimental data, the azimuth is close to zero when 
x and 1) are in phase (i.e. along the main diagonal of 
the plot) and z approaches 90 when the modulation 
in these two angles is I80 out of phase. This can also 
he seen in Fig. IO where we have plotted the mean 
and standard deviation of z as a function of the phase 
lag of ‘1 relative to 0 for a phase lag of E relative to 
0 of 60 (top) and 240 (bottom). The second plot of 

Fig. 9 shows that the simple relationship between 
azimuth and the phase of a relative to 4 holds only 
when the two angular elevations ,!I and 0 are 180 out 

of phase. 

Phase Lag 

OL re @ 60” 

Phase Lag T) re 0 

_c 
00 900 180° 270° 360° 

z oo- I I 

.- 2 ./j’l 1 
-300 //‘I 1 

-6OO- i\ 
. 

i Phase Lag 

-900 - CL re 0 240’ 

L 

Fig. IO. Simulation results: mean and standard deviation of 
azimuth tx) of wrist motion as a function of the phase of 
arm yaw (7 ) relative to arm angular elevation (0). Forearm 
yaw (3) lagged 0 by 60 (top) and by 240 (bottom). In both 

cases, fi and 0 were 180 out of phase. 
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Fig. 11. Simulation results: correlation of slant (a) with the 
phase difference between forearm yaw (a) and arm angular 
elevation (0). /3 and 0 were 180” out of phase and the 
different symbols denote the mean values for different lags 
of arm yaw (1) relative to arm elevation (0, 0"; A, 60”; ‘1. 

120”; +, 180”). 

Finally, Fig. 11 shows the dependence of slant (c) 

on the phase of forearm yaw u relative to 0. Each of 
the symbols shows the results for a given lag of 7 
relative to 6; /3 and ~9 were 180” out of phase. The 
results of this simulation also confirm the experi- 

mental data presented in Fig. 7; slant shows little 
dependence on upper arm yaw q. Once again, this 
conclusion was valid only when /I and 0 were close to 
180” out of phase, the closer the modulation in the 
two angular elevations was to being in phase, the 
stronger was the dependence of slant on the phase of 

9 as well as on c(. 

One can thus conclude that the rules expressed by 
the relationships in Figs 6 and 7 are generally valid 

(provided that the modulations of the angular el- 
evations of the arm and forearm are 180” out of 

phase) and they permit a simple way of achieving a 
motion at the wrist with a given value of azimuth and 
slant. The question remains: how is the planar el- 
evation Y of the wrist specified? On the basis of 
calculations presented in the Appendix, it appears 
possible to solve this problem by regulating the 
means and amplitudes of the modulation of the 
angular elevations of the arm and forearm 

(& 4 9 BO? PI 1. 

DISCUSSION 

From the data presented above a set of simple rules 
has emerged whereby elliptical wrist motion can be 
generated in any arbitrary plane of free, three- 
dimensional space. Moreover, the general validity of 
these rules found strong support in the results of 

simulations. One of these rules 1s th:lt ii!c $;lsc 
difference between the modulation 01‘ the .tngul;il 
elevation of the arm and forearm 1s conslralnuJ to hc 
approximately 180. As already stated. ~1115 ccm\[ralr!l 
in one of the parameters required IO &tine ihc 
motion of the limb also permIta us LO spcci~> 111 it 

unique way the angular motion a~ the shoukicr :rnti 
elbow joints since it reduces the number ofdcgrce\ ~)i‘ 

freedom of the arm and forearm LO the same n:mbcr 
of parameters necessary to describe the motion of ths 
wrist in space. Furthermore. this constraint M;I~ ;t1(1 
shown previously to be uset’ul In mimmlring ths 
distortion of the vertical component oi‘ ihc V,I’IG 

motion.‘” Finally, because ot this constraint :mtI 

given the choice of coordinate systems utllitcd In the 
algorithm to describe wrist trajectories .III~! jtxnt 

angular motions, a further simplification P ;ichlcvcd 

in the sense that the coordinate transformation hc- 
tween the intrinsic and extrinsic parametcrq which 

define both slant and azimuth becomes of neccssit> J 
linear one. (Recall that the phase of the forearm yap 
defines the slant of the figure while the azimuth is 
given by the phase relation between the yaw angles at 
the arm and forearm.) Four other parameter&,. at the 
most, appear to be needed to determine plamlr 
elevation (see Appendix) while it is most I~kcly rhat 
the eight parameters which describe the mean and 

amplitude of the modulation of thr joint angles iIn 

the intrinsic coordinate frame) arc used to specify the 
size of the figure to be drawn and its location In space. 
This latter aspect of the problem. how~‘~~r. dots 

require further investigation. az does the quest:on 
whether there is some simple means to zpccif) the 
torques required to produce the angular motions and 
how they can be partitioned among the participating 
muscles. 

The question now is: is the proposed algorithm the 
one which is actually utilized by the nervous system’! 
Since a direct demonstration or refutation IS mlpos- 

sible, one is confined to argue this subject on the basis 
of indirect evidence. While we have been unable so 

far to find substantive arguments which speak agamst 
the point of view we are pursuing, the follouing bet 
of arguments is presented here in supporr of our 

position: (I) the algorithm has general vahdiry and 
can readily account in a simple way for phcnomcnrt 
as complex as “motor equivalence”. (1) I Iwrc arc 

consistent and predictable distortions in the motion 
of the wrist when subjects are asked to draw circles 
and ellipses in certain planes of space and these 
distortions are reproduced by the algorithm in simu- 
lation experiments. 

Since the second point is the best evidence :n favor 
of our point of view, it needs to be pursued In some 

detail. First of all, we have shown previously’” that 
when subjects are asked to draw a circle in a sagittal 
plane there is a flattening of the portion of the 
trajectory which is closer to the subject. This charac- 
teristic distortion is reproduced in simulatlonx. In 
that case, the angular motion (in terms 01 angles 
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60 cm 

defined in the intrinsic coordinate system) is strictly 
sinusoidal and therefore distortion in the angular 
motions does not contribute to the distortion the 
wrist trajectory. 

To reinforce this observation, we present in Fig. 12 
typical examples. from two subjects, for ellipses 
drawn in oblique planes (see the actual trajectories of 
the wrist drawn in perspective at the left of the 
figure). Wrist motion was then rotated into the 
principal plane (13) and the plots in the upper row 
(on the right of Fig. 12A and B) show an edge-wise 
and head-on view of the motion in that plane. In both 
trials, note the flattening of the proximal portion of 
the wrist trajectory (on the left in the planar 
projection in Fig. 12A and on the right in Fig. 12B). 
The fundamental component of the modulation in 
each of the orientation angles was computed by 
Fourier analysis and the traces labeled “simulation” 
show the wrist trajectory predicted by the algorithm 
assuming pure sinusoidal angular motion, The asym- 
metry in the proximal and distal portions of the 
movement is evident in both cases. 

Another question is: can the experimental results 
be used to infer whether the movements we studied 

60 cm\ 

med. 

are planned and organized in terms of kinematic 
variables of the joints (intrinsic coordinates) or of the 
endpoint (extrinsic coordinates)? At first glance the 
answer may seem obvious since the task required the 
production of a specified motion of the endpoint. 
More generally, however, a number of investigators 
have used the existence of invariant relations among 
extrinsic or intrinsic parameters to try to answer the 
question posed above.?,‘?.” If one follows this line of 
reasoning, the data we have described are compatible 
with both possibilities since invariant relations exist 
among extrinsic parameters (namely the relation be- 
tween curvature and speed) and among intrinsic 
parameters (namely the phase relation between the 
two angular elevations). Therefore, arguments based 
on the existence of invariances vir-b-G this particu- 
lar question can be of limited utility. 

This last point we wish to consider deals with the 
possibility of using the proposed algorithm to ac- 
count for any arbitrary movement executed in ail 
possible planes of space. Here we begin by noting that 
the relationship between angular velocity and curva- 
ture was shown to be generally valid for all curved 
trajectories9.“*2’ and that this relationship is satisfied 

Fig. 12. Distortion of wrist motion: experimental data and simulation. ‘On the left, perspective 
representation of wrist motion in three-dimensional space for two trials in which subjects were asked to 
draw an ellipse in an oblique plane in free space. In the top row on the right of (A) and (B) are shown 
an edge-wise and head-on view of the wrist motion and below, a simulation of the experimental data 
assuming undistorted sinusoidal angular motion of the arm and forearm. Note the flattening of proximal 

portion of the wrist trajectory which is reproduced by the simulations. 
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identically if the motion at the wrist is sinusoidal (see lar velocity would be satisfied within each segment 

Introduction). Secondly, there is strong evidence that and the torsion, that is the rate at which the plane of 

complex trajectories, such as handwriting, are made motion changes, would be zero except at the points 

of unit segments,20,22 and segmentation of hand- of junction between segments. This latter prediction 

writing was one of the basic assumptions of Hol- is in agreement with some experimental observations 

lerbach’s simulation studies.” Starting from these of Morasso” and was found to be true in ud /W 

premises there is a way in which one can extend the designed experiments to be reported. Note also that 

use of the proposed algorithm to all apparently the validity of the two assumptions as well as the 

continuous, complex movements if the following adequacy of the algorithm to generate complex 

assumptions are made: (1) these movements do in fact movements in arbitrary planes of free space can be 

consist of unit segments, and (2) each segment con- submitted to experimental verification. 

sists of an arc which is generated by using the rules 
of the proposed algorithm. Acknowledgement-This work was supported by grants 

If so, the relationship between curvature and angu- from NSF (BNS-8418539) and from USPHS (NS-ISOIS). 
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APPENDIX 

In this Appendix we take up the question how the planar 
elevation of wrist motion can be specified in terms of 
parameters related to the orientation angles. Some insight 
into this problem can be obtained by examining the manner 
in which the normal to the plane of motion b depends 
explicitly on the orientation angles. Substituting (15) into 
(14). differentiating to obtain wrist velocity and acceleration 
and calculating b from the vector cross-product between 
velocity and acceleration, one obtains 



where 

).‘o = vo - “0 

SO,, = sin On CO, = cos 0, 

and the other parameters are defined in (15). Higher order 
terms, which vary with time, have been neglected in (Al). 

From the definition of azimuth (x) and planar elevation 
( Y ) given in (12) we obtain 

negative. Since n,, x , , s& and SO, are all positive. the tvvo 
terms in the numerator in (A2) will tend to cancel when sri, 
and 36, (the phases of n and a relative to (I) have the same 
sign and 1 will be close to 0 When ~6, and ~6, have the 
opposite sign, the terms in the denominator will tend to 
cancel and x will be close to 90 , in agreement with the 
simulation results presented in Fig. 9. 

and 

The expression for planar elevation Y is more compli- 
cated. However, considering the numerator in (A3). one can 
see that ‘f’ will be small if 0, CO, and ,!I, cp,, have the same sign 
and cancel each other. (/I0 was usually less than 90 when 

(AI) wrist motion was close to the vertical plane.) One way to 
increase the size of the numerator and to decrease the 
denominator is to make fl, small, & approximately equal to 
90 (i.e. the forearm horizontal) and to decrease O,, (i.e. to 
bring the upper arm closer to the vertical). In fact. thts is 
what our subjects did most often when they were asked to 
draw ellipses in the horizontal plane. While we have not 
pursued this problem further, based on (Al) and (A3) it 
does appear feasible to regulate the planar elevation of wrest 
motion by varying the mean and amplitude of the modu- 
lation of the angular elevation of arm and forearm (l.c. O,,. 
0,. &,. p, ) and maintaining a fixed phase difference of I X0 
between these two angular motions 

tan Y = -h,/[H,sH, + rY,s&] 

X [n;“%,,.G6, + I:“2&s’6, 

+ 2t/, r,sl),,sg,c~“ss,s6,]‘~?. (A3) 

Regarding the expression for azimuth x, one can make the 
following observation: The mean value Q, of arm yaw is 
generally positive, while that of forearm yaw a,, is usually 
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