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Abstract

We discuss the statistics of spikes trains for different types of integrate-and-fire neurons and different types of synaptic noise models.
In contrast with the usual approaches in neuroscience, mainly based on statistical physics methods such as the Fokker–Planck equation
or the mean-field theory, we chose the point of the view of the stochastic calculus theory to characterize neurons in noisy environments.
We present four stochastic calculus techniques that can be used to find the probability distributions attached to the spikes trains. We
illustrate the power of these techniques for four types of widely used neuron models. Despite the fact that these techniques are mathe-
matically intricate we believe that they can be useful for answering questions in neuroscience that naturally arise from the variability of
neuronal activity. For each technique we indicate its range of applicability and its limitations.
� 2007 Published by Elsevier Ltd.
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1. Introduction

During the past 40 years, modelling and understanding
the effects of noise in cortical neurons has been a central
and difficult endeavor in neuroscience. Many approaches
have been used in order to characterize the spikes trains,
most of them borrowed from statistical physics. At the level
of the cell, the effects of noise have been studied first by Ger-
stein and Mandelbrot (1964) who proposed random walk
models to emulate the stochastic activity of a neuron, and
Stein (1967) who first modeled and simulated the neuronal
variability. Knight (1972) in 1972 introduced and studied
the first noisy integrate-and-fire neuron model. His work
has been generalized by Gerstner and Kistler (2002). Brunel
and colleagues used the Fokker–Planck equation to charac-
terize the effect of noise at the level of the cell (Brunel and
Sergi, 1998; Brunel and Latham, 2003) and of the network
(Brunel and Hakim, 1999; Brunel, 2000). Samuelides and
his colleagues used the mean-field and large deviations
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framework to characterize large sets of randomly connected
neurons driven by noise (Samuelides and Cessac, 2007). In
the present paper we adopt the point of view of the theory of
stochastic calculus in an attempt to characterize the sto-
chastic properties of neuron models and the statistics of
the spikes trains they generate. We illustrate these tech-
niques with four types of widely used neuron models.

The techniques are mathematically quite intricate. Nev-
ertheless, we believe that they can be useful for answering
questions in neuroscience that naturally arise from the var-
iability of neuronal activity. For instance, they can give
access to the probability distribution of the spikes trains,
while other methods only give partial informations on this
distribution. Moreover, the use of stochastic calculus meth-
ods enables us to get rid of such technical hypotheses as the
stationarity of the process, the sparsity of the networks or
the time scales approximations, which are generally
required. For each technique presented we indicate its
range of applicability and its limitations.

In the first section, we discuss the origin of the variability
in cortical neurons and their mathematical modelling, and
justify the use of the Brownian motion. In the second sec-
tion, we present different classical mathematical models,
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1 There exists models taking into account the finite number of ion
channel, and that they can reproduce the observed variability in some
cases(see for instance Chow and White, 1996).
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which differ in their intrinsic dynamics or in the noise
models used. The third section is dedicated to the presenta-
tion of four important stochastic methods for computing
spikes trains statistics, and to their application to the differ-
ent types of neurons presented in the second section. A large
appendix summarizes briefly the main mathematical
notions that are needed in order for the paper to be self-
consistent for readers whose stochastic calculus is a bit
rusty.

2. Noise in neurons: sources and models

In vivo recordings of neuronal activity are characterized
by their high variability. Different studies of the spikes
trains of individual neurons indicate that the firing patterns
seem to be random. The origin of the irregularity in the elec-
trical activity of cortical neurons in vivo has been widely
studied and has received no satisfactory answer so far. Nev-
ertheless it is commonly admitted that (a) part of this vari-
ability can be considered as noise (Softky and Koch, 1993;
Shadlen and Newsome, 1994), and (b) that a large part of
the noise experienced by a cortical neuron is due to the
intensive and random excitation of synaptic sites.

We describe some of the biological evidence that sup-
ports these statements and propose mathematical models
of the synaptic noise.

2.1. Sources of variability

It is generally agreed that a large part of the noise expe-
rienced by a cortical neuron is due to the intensive and ran-
dom excitation of synaptic sites.

It has been observed from in vivo recordings of cortical
neurons, in awake (Burns and Webb, 1976) and anesthe-
tized animals (Destexhe and Paré, 1999) that a spontaneous
activity exists and that the related spike process can be con-
sidered as Poisson. This Poisson model of independent syn-
aptic inputs, or rather its diffusion limit approximation, is
the model we use here.

The origin of irregularities is still poorly known. Gerst-
ner and Kistler (2002) discuss this question at length. They
obtain an interesting classification, and show that we can
distinguish between intrinsic noise sources that generates
stochastic behavior at the level of the neuronal dynamics
and extrinsic sources arising from network effects and
synaptic transmission. We briefly summarize the main
points:

• A permanent noise source is the thermal noise linked
with discrete nature of electric charge carriers. Fluc-
tuations linked with this phenomenon are however of
minor importance compared to other noise sources in
neurons.

• The finite number of ion channels is another noise
source. Most of the ion channel have only two states:
they are open or closed. The electrical conductivity of
a patch of membrane is proportional to the number of
open ion channels. The conductivity therefore fluctuates
and so does the potential.1

• Noise is also due to signal transmission and network
effects (extrinsic noise): synaptic transmission failures,
randomness of excitatory and inhibitory connections,
for instance, and global networks effects (see for instance
Brunel and Hakim, 1999) where random excitatory/
inhibitory connectivity can produce highly irregular
spikes trains even in the absence of noise.

In term of neuron models we concentrate on several
classes of integrate-and-fire spiking neuron models because
they bring together a relative mathematical simplicity and a
great power for reproducing many observed neuronal
activities (Izhikevich, 2003). In this field, Knight (1972),
pioneered the study of the effect of noise with a simplified
model in which the threshold was drawn randomly after
each spike. Gerstner and Kistler (2002) extended these
results and studied both slow noise models, in which either
the threshold or the reset is drawn randomly after each
spike, and fast escape rate noise models. In the context of
synchrony in neuronal networks, Abbott and van Vre-
eswijk (1993) studied a phase noise model. However, none
of these models can represent in a realistic way the synaptic
noise as experienced by cortical neurons.

We concentrate on the effect of synaptic currents. Syn-
aptic currents can be described by a simple system of ordin-
ary differential equations (see for instance Destexhe et al.,
1998). We study the impact of noise originating from real-
istic synaptic models on the dynamics of the firing proba-
bility of a spiking neuron.

Because of space constrains we only explore two levels
of complexity for the synaptic currents, (1) instantaneous
(described by delta function) synaptic currents, and (2) syn-
aptic currents described by an instantaneous jump followed
by an exponential decay. The dynamics of the firing prob-
ability of a neuron receiving a bombardment of spikes
through such synaptic currents is studied in the framework
of the diffusion approximation (in the neuronal context, see
Tuckwell, 1988). This approximation is justified when a
large number of spikes arrive through synapses that are
weak compared to the magnitude of the firing threshold,
which is the relevant situation in the cortex. In the diffusion
approximation, the random component in the synaptic cur-
rents can be treated as a Brownian motion in the case of
instantaneous synapses. On the other hand, when synapses
have a finite temporal response, as in the more realistic
models, synaptic noise has a finite correlation time and
thus becomes ‘‘colored’’ noise. Thanks to the diffusion
approximation, the dynamics of the firing probability can
be studied in the framework of the stochastic calculus the-
ory (see for instance Karatzas and Shreve, 1987).
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2.2. Synaptic noise modeling

Many mathematical descriptions of the synaptic current
Isyn have been proposed (see Destexhe et al., 1998 or Gerst-
ner and Kistler, 2002). We consider two types of increas-
ingly complex synaptic current models:

(i) Instantaneous synapses: if we neglect the synaptic
integration, considering that the synaptic time con-
stants are small with respect to the membrane interac-
tion, the post-synaptic input can be described by a
Brownian motion, which is the diffusion approxima-
tion of a rescaled sum of Poisson processes. For this
we assume that the synaptic inputs are spikes arriving
at N synapses i 2 {1, . . . ,N}, each with a synaptic effi-
ciency xi, at the spikes times tk

i . The input synaptic
current can be written:
2 Th
to justi
technic
very in

3 In
of time
dI syn
t ¼

XN

i¼1

xi

X
k

dðt � tk
i Þ ¼

def
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i¼1

xi dSiðtÞ; ð1:1Þ

where the Si(t)s are point processes representing the
spikes trains arriving in each synapse.Neurons are
connected to thousand of neurons (in general,
N � 103–104). If we assume that the synaptic input
spikes times follow a probability law with mean li

and variance r2
i (for instance Poisson processes,

r2
i ¼ li) and are pairwise independent,2 Isyn is the

sum of N independent Poisson processes, of mean
xili and of variance x2

i li. We assume that the xis
are such that there exist l, r in (0,1) such that3:
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By Donsker’s theorem (Billingsley, 1999)

XN

i¼1

xiðSiðtÞ � litÞ!
L

rW t ð1:2Þ

where (Wt)tP0 is a standard Brownian motion (see
Appendix A.1 for a definition), and the symbol !L

indicates that the process on the lefthand side con-
verges in law to the process on the righthand side
when N!1.The diffusion approximation consists
in approximating the synaptic jump process (1.1) by
the continuous process:
I syn
t ¼ lt þ rW t ð1:3Þ
e independence hypothesis is a key hypothesis and is quite difficult
fy biologically. Nevertheless, the same result would hold under very
al and strong conditions on the decorrelation of the process. It is a
tricate theory and we will not deal with it here.
general this condition can be achieved by a rescaling and a change

applied to the process.
(ii) Exponentially decaying synaptic current: because the
post-synaptic interaction has a finite integration time,
say ss, the following equation arises naturally
ss dI syn
t ¼ �I syn

t dt þ
XN

i¼1

xi

X
k

dðt � tk
i Þ ð1:4Þ

Note that we have assumed that ss was the same for
all synapses and neglected the rise time of the synap-
tic current. The second assumption is justified on the
ground that the rise time of a synapse is typically very
short compared to the relaxation time.A diffusion
approximation similar to the one in the previous par-
agraph yields the following diffusion approximation
of the synaptic noise with exponential decay:
ss dI syn
t ¼ ð�I syn

t þ lÞdt þ rdW t ð1:5Þ
3. Neuron models

In this paper, a neuron model is defined by (i) a mem-
brane potential dynamics and (ii) a synaptic dynamics.
The neuron emits a spike when its membrane potential
reaches a, possibly time-varying, threshold function h(t).
We are interested in characterizing the sequence {ti},
i = 1, . . . , ti > 0, ti+1 > ti when the neuron emits spikes.
We present four simple models of spiking neurons submit-
ted to noisy synaptic input, discuss their biological rele-
vance and perform a basic stochastic analysis of the
spikes times. In detail, a neuron model is defined by an
equation:

sm dV t ¼ f ðt; V tÞdt þ I eðtÞdt þ dI synðV t; tÞ ð2:1Þ
where f(t,v) governs the free membrane potential dynam-
ics, Ie(t) is the injected or external current and the deter-
ministic term of synaptic integration, and I syn

t represents
the noisy synaptic inputs due to background synaptic
activity.

In the following sections, we review different models of
neuronal dynamics in which the synaptic current can be
described by one of the models discussed in Section 1.2.

3.1. Model I: The noisy leaky integrate-and-fire model with

instantaneous synaptic current

The simplest model we consider is the integrate-and-fire
where the membrane potential V follows the following sto-
chastic differential equation:

sm dV t ¼ ðV rest � V t þ I eðtÞÞdt þ rdW dW t

V 0 ¼ 0

�
ð2:2Þ

where sm is the time constant of the membrane, Vrest the
rest potential and Wt a Brownian process representing
the synaptic input. This equation is the Ornstein–Uhlen-
beck equation. The neuron emits a spike each time its
membrane potential reaches a threshold h or a threshold
function h(t). When a spike is emitted, the membrane po-
tential is reinitialized to the initial value, e.g. 0.
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This is the simplest continuous noisy spiking model. The
leaky integrate-and-fire neuron was first introduced by
Lapicque (1907) in a discussion on membrane polarizabil-
ity. It idealizes the neuron as a capacitor in parallel with
a resistor and driven by a current Ie (see e.g. Gerstner
and Kistler, 2002).

The noisy integrate-and-fire neuron with instantaneous
synaptic current (2.2) has recently received a lot of atten-
tion to investigate the nature of the neural code (Marsalek
et al., 1997; Troyer and Miller, 1997; Bugmann et al., 1997;
Shadlen and Newsome, 1998). As shown in Section 1.2, Eq.
(1.3), it can be seen as the diffusion approximation of
Stein’s model (Gerstein and Mandelbrot, 1964; Stein,
1965) where the synaptic inputs are considered as Poisson
processes.

It is one of the few neuronal models for which analytical
calculations can be performed. Indeed, Eq. (2.2) can be
solved in a closed-form:

V t ¼ V rest 1� e�
t

sm

� �
þ 1

sm

Z t

0

e
s�t
sm IeðsÞds

þ r
sm

Z t

0

e
s�t
sm dW s ð2:3Þ

The stochastic process Vt is Gauss–Markov. It is the sum
of a deterministic part and the product of e�t=sm with the
random process

R t
0

es=sm dW s defined by a stochastic integral
(see Appendix A.1). Thanks to a change of time scale
through the Dubins–Schwarz’ Theorem A.6 it can be
turned into a Brownian motion. It is easy to show that it
is a centered Gauss–Markov process with covariance func-
tion qðtÞ ¼ sm

2
ðe2 t

sm � 1Þ. This function is used in the appli-
cation of the Dubins–Schwarz’ theorem to change the
time scale to obtain a Brownian motion:

R t
0

es=sm dW s¼
L

W qðtÞ.
The spiking condition of this neuron, Vt = h(t), can be

written in term of this simpler stochastic process:Z t

0

e
s

sm dW s ¼ W qðtÞ

¼ sm

r

�
ðhðtÞ � V restÞe

t
sm þ V rest

� 1

sm

Z t

0

se
s

sm IeðsÞds
�
¼def aðtÞ ð2:4Þ

In order to fulfill our program we are thus naturally led to
study the first hitting time of the Brownian motion Wq(t) to
the curved boundary a(t).

3.2. Model II: The noisy leaky integrate-and-fire model with

exponentially decaying synaptic current

We modify the model of Section 2.1 to include an expo-
nentially decaying synaptic current as described in Section
1.2, Eq. (1.5):

sm dV t ¼ ðV rest � V tÞdt þ IeðtÞdt þ I syn
t dt

ss dI syn
t ¼ �I syn

t dt þ rdW t

�

This model is a more precise description of the synaptic
current and is still simple enough to be analyzed mathemat-
ically. Nevertheless, its analytical study is quite challenging
and only a few results are available.

We integrate this system of two stochastic differential
equations as follows. The first equation yields

V t ¼ V rest 1� e�
t

sm

� �
þ 1

sm

Z t

0

e
s�t
sm I eðsÞdsþ 1

sm

Z t

0

e
s�t
sm I syn

s ds;

and the second equation can be integrated as

I syn
t ¼ I syn

0 e�
t
ss þ r

ss

Z t

0

e
s�t
ss dW s;

where I syn
0 is a given random variable.

We define 1
a ¼ 1

sm
� 1

ss
. Replacing in the first equation I syn

t

by its value in the second equation we obtain

V t ¼ V rest 1� e�
t

sm

� �
þ 1
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Z t

0

e
s�t
sm I eðsÞds

þ I syn
0

1� sm
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e�
t
ss � e�

t
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� �
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smss

e�
t
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0

e
s
a
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e
u
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� �
ds

The membrane potential is the sum of a deterministic pro-
cess and a function of the non-Markov Gaussian differen-
tiable process4 Xt defined by:

X t ¼
Z t

0

es=a

Z s

0

eu=ss dW u

� �
ds ð2:5Þ

The spiking condition can be written:

X t ¼ �
ass

r
I syn

0 ðe
t
a � 1Þ

þ smss

r
ðh� V restÞe

t
sm þ V rest �

1

sm

Z t

0

e
s

sm IeðsÞds
� �

:

ð2:6Þ

Studying the spikes sequence of the LIF model with expo-
nentially decaying synaptic currents amounts to studying
the first hitting time of the process Xt defined by (2.5) to
a continuous deterministic boundary.

With no significant analytical complexity we deal with a
slightly more general process, which we call the double inte-

gral process (DIP), defined by:

X t :¼
Z t

0

gðsÞM s ds ¼
Z t

0

gðsÞð
Z s

0

f ðuÞdW uÞds ð2:7Þ

for some real measurable functions f and g.
We already noted that the process Xt was non Markov-

ian. We show in Appendix C that the two-dimensional pro-
cess (Xt,Mt) is a Gaussian Markov process, and
furthermore, conditionally to Ms, that the increments
(Xt � Xs,Mt �Ms) are independent of the r-field Fs (see
Appendix A.1 for the definitions of these terms).
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For a given t, the random variable Yt :¼ (Xt,Mt) is a
Gaussian two-dimensional variable of parameters:

EðY tÞ ¼ ð0; 0Þ

E½Y T
t � Y t� ¼

qX ðtÞ CðX ;MÞðtÞ
CðX ;MÞðtÞ qMðtÞ

� �8<
: ð2:8Þ

where the functions qX(t), C(X, M)(t) and qM(t) are defined
by:

qMðtÞ :¼
R t

0
f ðsÞ2 ds

qX ðtÞ :¼ 2
R t

0 gðsÞð
R s

0 gðuÞqMðuÞduÞds

CðX ;MÞðtÞ :¼
R t

0
gðsÞqMðsÞds

8><
>: ð2:9Þ

It can be checked that the Markov process (Yt)t transition
measure (see Appendix A.2 for a definition) has a Gaussian
density w.r.t. Lebesgue’s measure ds:

N
xs þ ms

R t
s

gðuÞdu

ms

 !
; ~Cðs; tÞ

 !
ð2:10Þ

where the correlation matrix ~Cðs; tÞ reads:

~Cðs; tÞ

¼
2
R t

s
gðuÞð

R u
s

gðvÞ
R v

s
f ðwÞ2 dwdvÞdu

R t
s
gðuÞð

R u
s

f ðvÞ2 dvÞduR t
s
gðuÞð

R u
s

f ðvÞ2 dvÞdu
R t

s
f ðuÞ2du

 !

ð2:11Þ

We now define the simplest non trivial double integral pro-
cess, which turns out to be of great interest for the study of
the spike train statistics of the present model of neuron: the
Integrated Wiener Process (IWP) where the functions f and
g are identically equal to 1:

X t ¼def
Z t

0

W s ds ð2:12Þ

The transition measure of the process (Xt,Wt) can be
written:

P½X tþs 2 du;W tþs 2 dvjX s ¼ x;W s ¼ y�

¼def ptðuv; x; yÞdudv

¼
ffiffiffi
3
p

pt2
exp � 6

t3
ðu� x� tyÞ2

�

þ 6

t2
ðu� x� tyÞðv� yÞ � 2

t
ðv� yÞ2

�
dudv ð2:13Þ
3.3. Model III: The noisy nonlinear integrate-and-fire neuron

with instantaneous synaptic current

The models studied so far are linear and cannot be used
to model nonlinear behaviors of neurons. For instance, it is
known that many neuron models such as the INa,P, IK cur-
rent model (with a persistent Na+ current with instanta-
neous activation kinetics and a slower persistent K+

current, see Izhikevich (2004, Chapter 4) for a good review)
or the Hodgkin–Huxley model present an Andronov–Hopf
bifurcation. To model the behavior of such neurons in the
vicinity of these bifurcations, Ermentrout and Kopell
(1986) and Izhikevich (2007) proposed the following one-
dimensional model:

dV t ¼ ðV 2
t þ IeðtÞÞdt þ rdW t

V 0 ¼ V reset

�
ð2:14Þ

together with the spiking condition:

V ðt�ÞP h) V ðtÞ ¼ V reset and a spike is emitted:

Note that in the analytical model it can be useful to take
h =1 and in this case, the problem is an explosion time
problem and not a boundary crossing problem. Other types
of nonlinearities can generate other possibly interesting
bifurcations. This is an area of active research (see for
instance Touboul, 2007).

This model has been studied analytically for constant
inputs. The nonlinear stochastic differential equation is
quite intricate to analyze in general. We review some of
its main properties. First, without spiking mechanism, the
process blows up almost surely in finite time, hence the
neuron will fire almost surely in finite time. Secondly, there
exists a weak solution up to the explosion time but the law
of the process is unknown apart from the fact that is not
Gaussian. Its transition density is unknown so far. Usual
approaches like the Fokker–Planck equation (see Appen-
dix A.2) fail in finding this law as we show next.

If the external current is constant, the infinitesimal gen-
erator of the process (2.14) is defined by L :¼ 1

2
r2o

2
xþ

ðx2 þ IeÞox (see Appendix A.2). Its transition probability
density p(t, x, y) is formally solution of the Fokker–Planck
equation:

op
ot
ðt; x; yÞ ¼L�pðt; x; yÞ ð2:15Þ

¼ 1

2
r2o

2
y pðt; x; yÞ � oy ½ðy2 þ IeÞpðt; x; yÞ�: ð2:16Þ

A formal solution is provided by Heun’s triconfluent func-
tion ht (see Ronveaux (1995) and Maple10� documenta-
tion). The solution can be written p(t,x,y) = f1(x)f2(t) where:

f1ðxÞ ¼ a1ht � 3
2

� �2=3 c1

r2=3 ;�3; Ie
ffiffiffiffi
123p

r4=3 ;�
ffiffiffiffiffi

2
3r2

3

q
x


 �
þb1e�

2xð3Ieþx2Þ
3r2 ht � 3

2

� �2=3 c1

r2=3 ; 3;
Ie
ffiffiffiffi
123p

r4=3 ; 1=3
ffiffiffiffiffi

2
3r2

3

q
 �
f2ðtÞ ¼ a2 e

c1
2st

8>>><
>>>:
a1, b1, b2 and c1 are real constants. Unfortunately Heun’s
triconfluent function is a very fast-diverging function which
is not integrable on R. Hence the function p(t,x,y) =
f1(x)f2(t) is not a transition probability density: there is
no solution of the Fokker–Planck equation for this process.

3.4. Model IV: Nonlinear integrate-and-fire models with

decaying synaptic current

The previous model is a special case in a larger class of
nonlinear models defined by the two equations

smdV t ¼ ðf ðV tÞ þ I eðtÞÞdt þ I synðtÞdt

dI synðtÞ ¼ �I synðtÞdt þ rdW t

�
ð2:17Þ



Table 1
Analytical and semi-analytical methods which can be applied to find spike
statistics for different models

I II III IV

Volterra Y N* ? ?
Section 3.1.2 Section 3.1.3

Feynman–Kac Y ? N* ?
Section 3.2.1 Section 3.2.2

Durbin Y* N N N
Section 3.3

Touboul–Faugeras Y* Y* ? ?
Section 3.4

The symbols used in the table are explained in the text.
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together with the spiking condition:

V ðt�ÞP h) V ðtÞ ¼ V reset and a spike is emitted:

f is a nonlinear function, for instance a quadratic function
f(v) = v2 (Izhikevich (2007)), contains an exponential func-
tion f(v) = ev � v (Brette and Gerstner, 2005), or a quartic
function f(v) = v4 (Touboul, 2007).

As expected from the previous discussion very little can
be obtained analytically, since the model combines the dif-
ficulties of the last two models: as in the LIF model with
exponentially decaying synaptic current of Section 3.2,
the membrane potential is non Markovian and, as in the
quadratic IF model, it blows up in finite time almost
surely.
4. Stochastic approach for the statistic of spike trains

In this section we characterize the spikes trains statistics
of the four types of neurons defined in the first part of this
paper.

We have seen that the problem was equivalent to the
first hitting time problem, also called the first passage time,
for stochastic processes (see Eqs. (2.4) and (2.6)). The infor-
mation we would like to obtain is the probability density
function of the spikes times, which contain all the informa-
tion on the statistics of the spikes trains (mean, variance,
higher order moments, when they exist).

First passage time problems for one-dimensional diffu-
sion processes through time-dependent boundary have
received a lot of attention over the last three decades. Unfor-
tunately, the evaluation of the first passage time pdf through
a constant or time dependent boundary is in general an ardu-
ous task which has still not received a satisfactory solution.
Analytic results are scarce and fragmentary, even if closed
form solutions exist for some very particular cases. One is
led either to the study of the asymptotic behavior of this func-
tion and of its moments (see e.g. Nobile et al., 1985a,b), or to
setting up of ad-hoc numerical procedures yielding approxi-
mate evaluations of first passage time distributions. Such
procedures can be classified as follows: (i) those that are
based on probabilistic approaches (see e.g. Ricciardi et al.,
1984; Durbin, 1985; Buonocore et al., 1987; Ricciardi and
Sato, 1988; Durbin, 1992; Nardo et al., 2001), and (ii) purely
numerical methods, such as the widely used Monte-Carlo
method which applies without any restriction, but whose
results are generally too coarse (for numerical methods, see
e.g. Kloeden and Platen, 1992; Giraudo et al., 2001; Anders-
sen et al., 1973; Favella et al., 1982).

In two or higher dimensions, the problem is even more
complex and results can hardly be found. For the simplest

two-dimensional process, the Integrated Wiener Process
(IWP) defined in (2.12), people like McKean (1963), Gold-
man (1971) and Lachal (1991, 1996, 1997) solved the prob-
lem for a constant boundary with stochastic calculus
methods. Lefebvre used the Kolmogorov (Fokker–Planck)
equation to find in some special cases closed-form solutions
(Lefebvre, 1989). Generalizations of these formulas to
other boundaries and other kinds of processes are simply
not available. We have recently proposed a formula for
approximating these hitting times for general Double Inte-
gral Processes (DIP) and general boundaries (Touboul and
Faugeras, 2007).

We focus on analytical or partially analytical methods.
The main goal is to compute the probability distribution
of the spikes times. When this is not possible one can be
satisfied to obtain some statistics of the spikes trains, such
as the mean firing rate (Brunel and Sergi, 1998; Fourcaud
and Brunel, 2002; Brunel and Latham, 2003). This can be
achieved in some cases by approximating the Kolmogorov
equation.

Table 1 shows in its left column the four methods we
emphasize in this paper together with their possible use
for solving the problem for the neuron models presented
in Section 2. The letter ‘‘Y’’ indicates that the method
can be applied to solve the problem, the letter ‘‘N’’ that
it cannot. Question marks ‘‘?’’ are used for open problems
that have no known solution, the main issue being that we
do not have a closed form of the transition probability of
the stochastic process representing the membrane poten-
tial. The bold face indicates the problems we provide solu-
tions for in this paper, including negative results. The star,
‘‘*’’, is used if the result is new, to our knowledge.

4.1. The Volterra method

This method consists in finding a Volterra integral equa-
tion satisfied by the probability density function p of the
first hitting time s of a stochastic process (Xt)tP0 to a
curved boundary. It has been applied by Plesser to the
leaky integrate-and-fire neuron in Plesser (1999) to find
the pdf of the first hitting time of a leaky IF neuron driven
by a general input current.

In this section we first describe the method and general-
ize Plesser’s result to the problem of an IF neuron modeled
as a continuous one dimensional ‘–Markov process (Xt)tP0

where the spiking condition is given by a smooth curved
boundary denoted by a(t). We then apply this to the mod-
els I and II.
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4.1.1. Gauss–Markov processes

By Doob’s theorem (Doob, 1949), we know that there
exist a Brownian motion W, a non-zero real function g

and a non-decreasing real function h such that:

8 t P 0 X t ¼ gðtÞW hðtÞ;

and hence the transition probability density function
q(t,x|s,y) of this process can be written using that of the
standard Brownian motion (see Appendix A.1):

qðt; xjs; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðhðtÞ � hðsÞÞ

p

� exp �
x

gðtÞ �
y

gðsÞ


 �2

2ðhðtÞ � hðsÞÞ

0
B@

1
CA ð3:1Þ

The smoothness of the functions h and g determines that of
the covariance function of the process. Indeed we have, for
s 6 t:

E½X tX s� ¼ gðtÞgðsÞhðsÞ

We assume that this autocorrelation function is continu-
ously differentiable with respect to s and t, which is the case
for most of the processes encountered in practice. Let
x0 < a(0) the starting point at t = 0 of the process (Xt).
By the strong Markov property (see Appendix A.1 for
the definition) of Xt, conditioning on the first hitting time
s of the process to a (see Fig. 1), we can write:

qðt; aðtÞj0; x0Þ ¼
Z t

0

Pðt; aðtÞ; s 2 dsj0; x0Þ

¼
Z t

0

qðt; aðtÞjs; aðsÞÞpðsÞds

¼
Z t

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðhðtÞ � hðsÞÞ

p

� exp �
aðtÞ
gðtÞ �

aðsÞ
gðsÞ


 �2

2ðhðtÞ � hðsÞÞ

0
B@

1
CApðsÞds ð3:2Þ
Fig. 1. Principle of the Volterra’s method: conditioning the transition
probability density by the location of the first hitting time s of the curve h.
This equation is a weakly singular Volterra equation of the
first kind. Indeed, it has a square root singularity at s = t

since we have:

hðtÞ � hðsÞ �
s!t

h0ðtÞðt � sÞ

aðtÞ
gðtÞ�

aðsÞ
gðsÞ


 �2

2ðhðtÞ�hðsÞÞ �s!t

a
g½ �0ðtÞ
h0ðtÞ ðt � sÞ

8>><
>>:
Hence the Volterra equation can be solved: we have exis-
tence and uniqueness of a solution (see e.g. Linz (1985))
which is necessarily the pdf we are looking for.

Different algorithms can be used to numerically solve
this problem. They are reviewed for instance in Linz’ book
(Linz, 1985). We have used in our for simulations a two
points block-by-block method which amounts to solving
a linear system. This method appears to be computation-
ally very efficient and rather robust.

Other Volterra equations have been proposed, for
instance in Buonocore et al. (1987) or Nardo et al.
(2001). The equation proposed in Nardo et al. (2001) is a
second-kind Volterra equation which can be deduced
straightforwardly from (3.2). The formula proposed by
Buonocore in Buonocore et al. (1987) is slightly different,
and has the advantage of removing the singularity of the
kernel in the Volterra equation. The author proposes a sim-
ple algorithm to solve this equation.

Note that this approach can be applied to any other
kind of neuron model which has a Markovian membrane
potential dynamics. Nevertheless the main difficulty is to
find the transition probability density of the underlying
process and to check if the singularity of its transition ker-
nel is integrable or not. For instance the transition proba-
bility density of the quadratic integrate-and-fire neuron is
not known and the Fokker–Planck’s Theorem A.12 cannot
be applied (see Section 3.3).

4.1.2. LIF neuron with instantaneous synaptic currents

The previous method applies directly to the LIF neuron
with instantaneous synaptic conductances (model I) since
we have seen in Section 2.1 that the membrane potential
of such a neuron is governed by a Gauss–Markov process
(an Ornstein–Uhlenbeckk process). Consider the Gauss–
Markov process

Ut :¼
Z t

0

e
s�t
sm dW s

it has the covariance function:

EðUtU sÞ ¼
sm

2
e�ðtþsÞ e

2s
sm � 1


 �
0 6 s 6 t

With the notations of the last section, we have:

gðtÞ ¼ e�t

hðtÞ ¼ sm

2
e

2t
sm � 1


 �(

The associated Volterra kernel is weakly singular, hence
the method described in the last section applies directly.
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Indeed, according to Eq. (2.3), the membrane potential
of such a neuron can be written:

V t ¼ V rest 1� e�
t

sm

� �
þ 1

sm

Z t

0

e
s�t
sm IeðsÞdsþ r

sm

U t

and hence the spiking condition reads:

U t ¼ aðtÞ ¼def

� sm

r
hðtÞ � V rest 1� e�

t
sm

� �
� 1

sm

Z t

0

e
s�t
sm I eðsÞds

� �
;

where h(t) is a time-varying threshold.
The block-by-block algorithm of Linz (1985) for com-

puting the solution of a weakly singular Volterra equation
can be applied to compute the probability distribution of
the spikes for any input current and any (autonomous)
threshold function. This method is very general and con-
verges very fast towards the expected solution. The mid-
point approximation can also be used, and its precision is
Oð

ffiffiffi
k
p
Þ where k is the mesh step used for the integral

approximation. Nevertheless the observed convergence
order is higher. For the block-by-block method, the preci-
sion of the algorithm cannot be computed easily since the
kernel is neither Lipschitz nor differentiable. Nevertheless,
it is commonly accepted that it has a higher precision than
the mid-point method. Those two quadrature methods
amounts solving a linear system, which can be implemented
in a very efficient way. On a an Intel� Core 2 CPU 6700
2.66 GHz, it takes less than 0.02 s for around for a time
step of 0.01 on the interval [0, 5].
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Fig. 2. Influence of the variance of the noise on the statistics of spike train whe
ranges from a Dirac distribution located at the deterministic spike time in the s
time in the large variance case. [Ie(t) = 2 + 2sin(2pt), sm = 1, h = 1, Vr = 0 ].
Fig. 2 shows some examples of the pdfs associated to
various inputs. When the variance is high the law of the
first hitting time of the LIF neuron converges to that of
the standard Brownian motion. In the small variance case,
the behavior of the first hitting time depends on the exis-
tence of a spike in the deterministic case (r = 0). When
there is no deterministic spike, a interesting phenomenon
appears: the probability distribution of the spike is very dif-
fuse over R and vanishes slowly, see Fig. 3.
4.1.3. Exponentially decaying synaptic currents

The problem becomes more difficult for two-dimen-
sional processes such as the ones arising with the linear
or nonlinear neuron models with exponentially decaying
synaptic currents. In this section we derive the equation
satisfied by the probability density of the first hitting time
for the LIF model with exponentially decaying synaptic
currents, model II, show that this equation is not well-
posed and that classical methods for solving integral equa-
tions fail.

The main difficulty is that the stochastic term Xt defined
in (2.5) of the membrane potential Vt of the neuron is non-
Markovian, but the pair ðX t; I syn

t ÞtP0 is. As usual we denote
by s the first hitting time of the process Xt to a curved
boundary a(t). We prove in Touboul and Faugeras (2007)
that the pair ðs; I syn

s Þ has a density p with respect to
Lebesgue’s measure:

pðt; x; 0; x0; y0Þdt dx ¼ Pðs 2 dt; I syn
s 2 dxjV 0 ¼ x0; I

syn
0 ¼ y0Þ
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Fig. 3. Different simulations with Volterra’s method of the pdf of the hitting time of the LIF neuron with instantaneous synaptic currents,when no spike is
emitted in the deterministic case (see text).
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We use an adapted version of the Markov argument of Sec-
tion 3.1.1 to obtain the following integral equation:

PðX t P aðtÞjX 0 ¼ x0; I
syn
0 ¼ I0Þ ¼

Z t

0

Z
R

PðX t

P aðtÞjX s ¼ aðsÞ; I syn
s ¼ yÞpðs; y; 0; x0; I0Þdsdy ð3:3Þ

This equation is a Fredholm integral equation with respect
to y and a Volterra equation of type I with respect to s. The
kernel, noted K(t,z; s,y), is equal to PðX t P aðtÞjX s ¼
aðsÞ; I syn

s ¼ yÞ. The term on the lefthand side of the equa-
tion, noted g(t,z), is equal to PðX t P aðtÞjX 0 ¼ x0;
I syn

0 ¼ I0Þ. With these notations, Eq. (3.3) can be rewritten
as

gðt; zÞ ¼
Z t

0

Z
R

Kðt; z; s; yÞpðs; y; 0; x0; I0Þdy ds ð3:4Þ

Expressions for g and K can be deduced from the law of the
underlying two-dimensional process and the results of Sec-
tion 2.2. The process Xt is a Gaussian process of mean
x0 þ I0

R t
0

gðuÞdu of variance qX(t) given by (2.9).
Since g can be written:

gðt; zÞ ¼ PðX t P aðtÞjX 0 ¼ x0; I synð0Þ ¼ I0Þ

¼ 1

2
erf

aðtÞ � x0 � I0ssðet=ss � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pqX ðtÞ

p
 !

� 1

 !

it is regular for all values of (t, z).
The kernel K can be written:

Kðt; z; s; yÞ :¼ PðX t P aðtÞjX s ¼ aðsÞ; I synðsÞ ¼ yÞ

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðs; tÞ

p exp � 1

2
ðX ðt; yÞ

�

� lðs; t; zÞÞTCðs; tÞ�1ðX ðt; yÞ � lðs; t; zÞÞ
�
;

where

Dðs; tÞ ¼ detðCðs; tÞÞ

lðs; t; zÞ ¼ aðsÞ þ z
R t

s
gðuÞdu

z

� �

X ðt; yÞ ¼ aðtÞ
y

� �
8>>>><
>>>>:

;

and C(s, t) is the cross-correlation matrix (2.8).
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The general theory for finding solutions to such an inte-
gral equation relies on the regularity and integrability of g

and K and on the reduction to an integral equation of the
second type. The reduction to the second type can be
achieved formally by taking the partial derivative of both
sides of (3.4) with respect to the variable t. Reordering
the terms this yields

gtðt; zÞ �
Z

R

Kðt; z; t; yÞpðt; y; 0; x0; I0Þdy

¼
Z t

0

Z
R

Ktðt; z; s; yÞpðs; y; 0; x0; I0Þdy ds

Because K(t,z; t,y) = d(y � z) (d is the Dirac delta func-
tion), this can be rewritten as

gtðt; zÞ � pðt; z; 0; x0; I0Þ

¼
Z t

0

Z
R

Ktðt; z; s; yÞpðs; y; 0; x0; I0Þdy ds

A Taylor expansion at s = t shows that Kt is singular of or-
der (t � s)�3 and hence does not satisfy the integrability
conditions that are necessary for this equation to be well-
posed.

4.2. The Feynman–Kac’s method

We apply this technique to models I and III. It can be
used to find the Laplace transform of the pdf of the ISI,
which is equivalent to the knowledge of the ISI pdf itself:
the pdf is obtained by computing an inverse Laplace
transform.

4.2.1. Leaky integrate-and-fire neuron with constant external

current and instantaneous synaptic currents

We consider a leaky integrate-and-fire neuron with con-
stant current input Ie and instantaneous synaptic white
noise current. Let W: = (Wt)tP0 be a standard Brownian
motion. Thanks to a change of origin of Vt in Eq. (2.2),
the associated membrane potential process is an Orn-
stein–Ulhenbeck (OU) process V: = (Vt)tP0 with parame-
ter k 2 R, solution of the linear SDE:

dV t ¼ �kV t dt þ dW t

V 0 ¼ x 2 R

�
ð3:5Þ

The process Vt is a diffusion process with infinitesimal gen-
erator denoted by L, given by (see Appendix A):

Lf ðxÞ ¼ 1

2

o2f
ox2
ðxÞ � kx

of
ox
ðxÞ; x 2 R ð3:6Þ

This equation is central to the theory of Hermite’s func-
tions, see Appendix B. The properties of the first hitting
time of the OU process have been widely studied. For in-
stance, in Alili et al. (2005), the authors give three represen-
tations of the probability density of these processes, and in
Ricciardi and Sato (1988) we find an explicit expression of
the moments of those hitting times.

Let a 2 R be a given fixed real number and denote by sa

the first passage time of the process Vt to the constant a.
The Laplace transform of sa can be computed as follows
(Siegert, 1951; Breiman, 1967):

Proposition 3.1. For x < a the Laplace transform of sa is

given by

Ex½e�asa � ¼H�a=kð�x
ffiffiffi
k
p
Þ

H�a=kð�a
ffiffiffi
k
p
Þ
¼ ekx2=2D�a=kð�x

ffiffiffiffiffi
2k
p
Þ

eka2=2D�a=kð�a
ffiffiffi
k
p
Þ

ð3:7Þ

where Hm stands for the Hermite function and D�a=k for the

parabolic cylinder functions respectively (see Lebedev (1972,
chapter 10) for a detailed study of these functions).

Proof. We use the hitting time characterization given by
the Feynman–Kac equations, obtained in Section 2.4.
The Laplace transform of the first passage time is given
by Theorem A.9 as the unique solution of the boundary
value problem:

LuðxÞ ¼ auðxÞ; for x < a

uðaÞ ¼ 1

lim
x!�1

uðxÞ ¼ 0

8><
>: ð3:8Þ

The theory of parabolic equations applies since the coeffi-
cients of the diffusion operator L are C1. This is a singular
value problem since the interval is not bounded. Neverthe-
less one can prove that the solution can be written (see The-
orem A.10):

Ex½e�asa � ¼ waðxÞ
waðaÞ

where wa(Æ) is, up to some multiplicative constant, the un-
ique increasing positive solution of the equation Lu ¼ au
which is, up to a change of variable, the equation for the
Hermite’s functions, see Appendix B. The two fundamental
solutions of this linear differential equations are
H�a=kðx

ffiffiffi
k
p
Þ and H�a=kð�x

ffiffiffi
k
p
Þ. The function wa is up to

a positive constant the one that is increasing. With the ser-
ies expansion of the Hermite’s functions, see Eq. (B.2), it is
clear that waðxÞ ¼H�a=kð�x

ffiffiffi
k
p
Þ. This proves the first

equality in (3.7). The second equality relies on the relation
between Hm and Dm. h

From this characterization, we can compute all the
moments of the law of sa by differentiating the Laplace
transform at 0. This provides the first three moments which
are used later to validate some of our numerical techniques,
see Ricciardi and Sato (1988) for a proof of this:

Theorem 3.2. Let us define a :¼ l
r and b :¼ r

h
ffiffi
s
p and the three

following functions:

U1ðzÞ :¼ 1

2

X1
n¼1

2

b

� �n
1

n!
C

n
2


 �
ðz� aÞn

U2ðzÞ :¼ 1

2

X1
n¼1

2

b

� �n
1

n!
C

n
2


 �
W

n
2


 �
�Wð1Þ


 �
ðz� aÞn

U1ðzÞ :¼ 3

8

X1
n¼1

2

b

� �n
1

n!
C

n
2


 �
ðz� aÞnqð3Þn



88 J. Touboul, O. Faugeras / Journal of Physiology - Paris 101 (2007) 78–98
where C is the gamma function, WðzÞ ¼ C0ðzÞ
CðzÞ is the digamma

function, and

qð3Þn ¼ W
n
2


 �
�Wð1Þ


 �
2þ W0

n
2


 �
�W0ð1Þ


 �
If sh is the hitting time of an OU process starting at 0 to the

barrier h, we have:

E½sh� ¼ sðU1ð1Þ � U1ð0ÞÞ
E½s2

h� ¼ s2ð2U1ð1Þ2 � U2ð1Þ � 2U1ð1ÞU1ð0Þ þ U2ð0ÞÞ
E½s3

h� ¼ s3f6U1ð1Þ3 � 6U1ð1ÞU2ð1Þ þ U3ð1Þ
� 6ðU1ð1Þ2 � 3U2ð1ÞÞU1ð0Þ þ 3U1ð1ÞU2ð0Þ � U3ð0Þg
4.2.2. Quadratic integrate-and-fire neuron

The Feynman–Kac method relies heavily on the very
strong assumption that there exists a solution satisfying
the limit condition lim

x!�1
uðxÞ ¼ 0. This assumption is in

effect satisfied only in very few cases. Furthermore, this
method can only be applied to autonomous systems, and
hence cannot be applied to neuron models with determinis-
tic time-dependent synaptic inputs. For instance we show
here that it cannot be applied to the one-dimensional qua-
dratic integrate-and-fire neuron defined in Section 2.3, even
in the simple case of a constant external current.

Assume that the membrane potential of the neuron sat-
isfies the stochastic differential equation:

dX t ¼ f ðX tÞdt þ rdW t

The infinitesimal operator of the associated semigroup L is
given by:

LhðxÞ ¼ 1

2
r2 d2h

dx2
ðxÞ þ f ðxÞ dh

dx
ðxÞ; x 2 R ð3:9Þ

Let uk be the Laplace transform of the first hitting time sa

to a constant a:

ukðxÞ ¼ Eðe�ksa jX 0 ¼ xÞ
uk is a solution, when it exists, of the Feynman–Kac differ-
ential Eq. (A.10), which in the case of the quadratic inte-
grate-and-fire neuron can be written:

1
2
r2 d2ukðxÞ

dx2 þ ðx2 þ IeÞ dukðxÞ
dx � kukðxÞ ¼ 0

ukðaÞ ¼ 1

ukðxÞ !
x!�1

0

8>><
>>: ð3:10Þ

This ordinary differential equation is a triconfluent Heun
equation with boundary conditions (see e.g. Ronveaux,
1995, Proposition 1.3.6 and Maple� documentation). As
in Section 2.3 we denote by ht the triconfluent Heun func-
tion. We have

ukðxÞ ¼ aht �
32=3kffiffiffi

a3
p ; 3;

b
ffiffiffi
33
p

a2=3
;�1=3

32=3xffiffiffi
a3
p

 !

þ bht �
32=3kffiffiffi

a3
p ;�3;

b
ffiffiffi
33
p

a2=3
; 1=3

32=3xffiffiffi
a3
p

 !
e�1=3

xð3bþx2Þ
a

ð3:11Þ
It can be verified again that the triconfluent Heun function
ht(a, 3,b,x) diverges very fast when |x|!1. Hence there is
no solution to the boundary problem (3.10).

4.3. Durbin’s method

The problem of the first hitting time of the Brownian
motion to a (convex or concave) boundary has also been
studied by Durbin (1985, 1992) who uses an integral equa-
tion like the one arising in Volterra’s method. This equa-
tion characterizes the probability density function of the
first hitting time of the process. He uses this integral equa-
tion to deduce a series approximation of the pdf and proves
convergence when the boundary considered is concave or
convex.

This result is summarized in the

Theorem 3.3 (Durbin). Let (Wt)tP0 be a standard Brown-

ian motion and a(Æ) be a continuously differentiable boundary
function such that a(0) > 0. The first-passage density p(t) of

Wt to a(t) is solution of the following integral equation

q0ðtÞ ¼ pðtÞ þ
Z t

0

pðrÞ aðtÞ � aðsÞ
t � s

� a0ðtÞ
� �

f ðtjsÞds;

which can be written for all k 2 N as

pðtÞ ¼
Xk

j¼1

ð�1Þj�1qjðtÞ þ rkðtÞ;

where

qjðtÞ ¼
Z t

0

qj�1ðsÞ
aðtÞ � aðsÞ

t � s
� a0ðtÞ

� �
f ðtjsÞds j P 1:

a 0(t) is the derivative of a(t) and q0 is given by

q0ðtÞ ¼
aðtÞ

t
� a0ðtÞ

� �
f0ðtÞ;

where f0(t) is the density of Wt on the boundary, i.e.

f0ðtÞ ¼
1ffiffiffiffiffiffiffi
2pt
p e�

aðtÞ2
2t ;

and f(t|s) is the joint density of Ws and Wt �Ws on the

boundary, i.e.

f ðtjsÞ ¼ f0ðsÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðt � sÞ
p e�

ðaðtÞ�aðsÞÞ2
2ðt�sÞ

The remainder rk(t) goes to 0 when k!1 if a(t) is convex or

concave.

This theorem is quite restrictive: the process must be a
Brownian motion, the boundary must be convex or con-
cave, and there is no estimation of the convergence of the
approximation. Nevertheless we have been able in our sim-
ulations to compare the results of Durbin’s method applied
to non-convex or non-concave boundaries and the expan-
sion seems to converge, see Fig. 5. Unfortunately these
findings are only experimental.



Table 2
Values of the first three moments of the OU process and the empirical values, for the parameters: h = r = 2, Vrest = sm = 1, Ie = 0, see Eq. (2.2)

Method E½T � E½T 2� E½T 3�
Theoretical values 1.9319289 7.1356162 40.0830265
Durbin, 30 terms, Tmax = 1036, step = 10�2 1.9292822 7.1269290 39.8541918
Monte-Carlo, 106 realizations, step = 10�4 1.932180 7.139402 40.079556
Volterra, step = 0.02 1.9319291 7.1356167 40.0830298
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Simulations of the LIF neuron with periodic inputs
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Fig. 4. Four terms of the series approximation of the pdf when
Ie(t) = sin(2pt) and the resulting pdf (the horizontal scale is in units of
q, see text).
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4.3.1. LIF neuron with instantaneous synaptic currents and

constant external input current

In the case of the LIF neuron with instantaneous synap-
tic currents and a constant deterministic external input cur-
rent, the membrane potential is the realization of an
Ornstein–Uhlenbeck (OU) process, and the threshold func-
tion a(t) is convex. Hence the hypotheses of Durbin’s the-
orem are satisfied, and Durbin’s expansion converges to
the law of the first hitting time. A comparison of the values
of the first three moments computed from the pdf of the
hitting time obtained from Durbin’s theorem, Volterra’s
equation and by Monte-Carlo simulation with the analyti-
cal values of Theorem 3.2 (obtained by truncating the series
Ui) is shown in Table 2. This table shows that the theoret-
ical values can be closely approximated if sufficiently many
terms are taken into account in Durbin’s series expansion.
We see that Volterra’s method is the most accurate. It is
also computationally the most efficient. Note that all these
methods converge to the real pdf. The choice of the param-
eters has been driven by the computation time required by
the Monte-Carlo and Durbin’s methods. The parameters in
Volterra’s method have been chosen to get a good accu-
racy, but still the computation time is under half a second.
Table 3 gives an estimation of the convergence of Durbin’s
method as a function of the number of terms taken into
account in the expansion. The Monte-Carlo method is
known to converge as

ffiffiffiffi
N
p

where N is the number of simu-
lated sample paths, and Volterra’s method being based on
a numerical integration converges quite fast to the solution.

4.3.2. LIF neuron with instantaneous synaptic currents and

periodic external input current

When Ie(t) = sin(2pft) the hypotheses of Theorem 3.3
are not satisfied. Table 3 shows the values of the integral
of the estimated pdf for various times of integration and
various orders of truncation of the series. The parameters
are the same as in the previous example and f = 1. It seems
to indicate that a very good approximation of the pdf can
be obtained with only five terms in the series (Faugeras
et al., 2006).
Table 3
Values of the integral of the estimated pdf for Ie = sin(2pt)

Time-terms 3 5 7 9

103 0.86 0.88 0.88 0.88
105 0.86 0.97 0.96 0.96
107 0.82 1.00 0.98 0.98
109 0.88 0.97 1.00 0.99
We have also noticed that Durbin’s series converged
very quickly, even if the associated boundary was neither
convex nor concave. Fig. 4 shows the shape of the pdf of
the first passage time and the first four terms in the series
approximation. The total computation time is 8 s on a
2 GHz computer for 800 sample points.

Hence Durbin’s method seems to converge even for non-
convex boundaries. Nevertheless, to apply Durbin’s expan-
sion, one has to use the exponential time-change qðtÞ ¼
sm

2
ðe2 t

sm � 1Þ. Hence evaluations are done on an exponential
scale which is very inefficient.
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Fig. 5. Graphical comparison with Monte-Carlo simulation and Durbin’s
simulations.
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In Fig. 5 we compare three of the methods available for
the LIF neuron: Durbin’s method, Volterra’s method and a
Monte-Carlo simulation. We see that the simulation time is
very high for both Monte-Carlo and Durbin’s methods
(around 10s for both, the Monte-Carlo simulation runs
106 sample paths and Durbin’s method 800 sample points
and 9 terms of the series). Volterra’s method is very effi-
cient and for 104 sample points, takes less than 0.02s. We
also see from the enlargement in the figure that the
Monte-Carlo simulation does not have the expected regu-
larity even at this level of precision.

4.4. Touboul–Faugeras method

We present a new semi-analytical method for finding the
probability density function of spikes of a LIF neuron with
exponentially decaying synaptic conductances. This
method is based on new results for the integrated Wiener
process (IWP) introduced in Section 2.2 and a new method
of approximation of hitting times, inspired by very recent
works on the Brownian motion hitting times. It has the fol-
lowing features:

(i) It generalizes the results obtained in the classical liter-
ature for the IWP to a large class of boundaries.

(ii) It builds a piecewise approximation of the general
boundary which is in the class of (i) in each bin of
the mesh.

(iii) It guarantees that the first hitting time of the process
to the approximated boundary converges to the first
hitting time of the process to the general boundary
(and quantifies this convergence).

(iv) It extends these results to a general double integral
process (DIP).

For the Brownian motion, Wang and Pötzelberger
(1997) build a piecewise affine approximation of the bound-
ary and find an approximate expression for its first hitting
time to a curved boundary. Later Novikov et al. (1999)
found an expression for the convergence of this technique.
These results have been generalized to a wider class of
processes, with sharper error bounds but it is still a very
active research subject (Pötzelberger and Wang, 2001;
Borovkov and Novikov, 2005; Wang and Potzelberger,
2006). Touboul and Faugeras (2007) proposed a general
approximation formula solving the problem of the
statistics of spike trains for LIF neurons with exponentially
decaying synaptic currents.

4.4.1. Approximating the first hitting time of the IWP to a

general boundary

One of the main difficulties comes from the fact that the
process is non-Markov, implying that we have to refer to
the underlying Wiener process.

Lachal (1991) studies this problem in the case where the
boundary is a constant. To make things more clear we
define the process Ut = (Xt + x + ty, Wt + y) where Wt a
standard Brownian motion and Xt is the associated IWP.
We denote by

sa :¼ infft > 0; X t þ xþ ty ¼ ag
the first passage time at a of the first component of the two-
dimensional Markov process Ut. The work of Lachal
(1991) follows the work of McKean (1963) who computed
the joint law of the process ðsa;W saÞ in the case x = a, and
that of Goldman (1971). McKean’s density can be written:

P½sa 2dt; jW sa j 2dzjU 0¼ða;yÞ� ¼def
Pða;yÞðsa 2 dt; jW sa j 2 dzÞ

¼ 3z

p
ffiffiffi
2
p

t2
e�ð2=tÞðy2�jyjzþz2Þ

Z 4jyjz=t

0

e�3h=2 dhffiffiffiffiffiffi
ph
p

� �
1½0;þ1ÞðzÞdzdt

ð3:12Þ

Lachal (1991) extended this result and gave the joint distri-
bution of the pair ðsa;W saÞ in all cases. The quite complex
formula reads:

Pðx;yÞ½sa 2 dt;W sa 2 dz�

¼ jzj½ptðx;y;a; zÞ�
Z t

0

Z þ1

0

Pð0;�jzjÞ

� ðs0 2 ds;W s0
2 dlÞpt�sðx;y;a;�elÞ�1AðzÞdzdt ð3:13Þ

where A = [0,1) if x < a and A = (�1, 0] if x > a, e = sig-
n(a-x), Pð0;�jzjÞ is given by McKean’s formula (3.12), and pt

is defined by Eq. (2.13). We denote this density by la
x;yðt; zÞ.

Starting from there, the authors study in Touboul and
Faugeras (2007) the first hitting time problem of the IWP
to a cubic boundary and find a closed-form expression of
its pdf using Girsanov’s Theorem A.6. We indicate in the
sequel the main results without proofs, the mathematical
aspects being very technical.

Theorem 3.4. Let sC be the first hitting time of the standard

IWP to the curve
CðtÞ ¼ aþ bðt � sÞ þ a
2
ðt � sÞ2 þ b

6
ðt � sÞ3; t P s

Under the reference probability P, the law of the random var-
iable ðsC;W sC Þ satisfies the equation:

Ps;ðx;yÞðsC 2 dt;W sC 2 dzÞ
¼ da;bðs; x; y � b; t;CðtÞ; zÞ � Ps;ðx;y�bÞðsa 2 dt;W sa

� bþ aðsa � sÞ þ b
2
ðsa � sÞ2 2 dzÞ ð3:14Þ

where we noted:

da;bðs; x; y; t; u; vÞ

¼ exp � 1

6
b2ðt3 � s3Þ � 1

2
abðt2 � s2Þ � 1

2
a2ðt � sÞ

�
� aþ tbÞvþ ðaþ sbÞy þ bðu� xÞð Þ ð3:15Þ

and Pðsa 2 dt;W sa 2 dzÞ is given by Lachal’s formula (3.13).

We remind the reader of the notation Ps;ðx;yÞ used to indi-
cate the probability law deduced fromP by conditioning
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with respect to the event {(Xs,Ws) = (x,y)} Hence we
obtain a boundary with four free parameters. From this
formula, we deduce an approximation formula for the first
hitting time of the IWP to a general boundary.

4.4.2. Approximating the first hitting time of the DIP to a
general boundary

Having solved the problem for the IWP lays the ground
for its solution for a general Double Integral Process (DIP)
to a general boundary f as follows.

The key observation, Touboul and Faugeras (2007),
is that the study of the first hitting times of a general
DIP Xt is equivalent to the study of the simpler
process:

Y t ¼
Z t

0

gðsÞW s ds; ð3:16Þ

where g(Æ) is a continuously differentiable function and Wt

a standard Brownian motion.
Let p be a partition of the interval [0, T]:

ðpÞ :¼ f0 ¼ t0 < t1 < t2 < � � � < tN ¼ Tg
We denote by gp the piecewise constant approximation of
g:

gpðtÞ ¼
XN�1

i¼0

gðtiÞ1½ti ;tiþ1ÞðtÞ ð3:17Þ

and by Yp the associated process:

Y p
t ¼

Z t

0

gpðsÞW s ds: ð3:18Þ

We also denote by fp a cubic spline approximation of the
boundary function f on the partition (p). The next propo-
sition characterizes the convergence of the process Y p

t .

Proposition 3.5. The process Y p
t converges almost surely to

the process Yt. Furthermore, there exists a real positive

process Zt such that:

sup
06s6t
jY p

s � Y sj 6 dðpÞZt ð3:19Þ

With some technical calculations and the use of this
proposition, we can prove the following approximation
theorem:

Theorem 3.6. The first crossing time sp of the process Yp and
the curve fp tends in law to the first hitting time sf of the

process Y to the curve f (see Fig. 6).

In the IWP case we can quantify the convergence as
expressed in the

Theorem 3.7. The first hitting time of the IWP to the curve

(fp(t)) before T > 0 converges in law to the first hitting time

of the IWP to the curve f before T.
Furthermore, if f is four times continuously differentiable,

the convergence of this approximation is of order 4. More

precisely, if P(t,g) denotes the probability:
P ðt; gÞ ¼ PðX t P gðtÞ forsome t 2 ½0; T �Þ;

for a real function g, there exists a constant C(f) depending

on the function f such that we have:

jP ðt; f pÞ � P ðt; f Þj 6 Cðf ÞdðpÞ4 ð3:20Þ

A closed-form expression for the law of sp is given in the
following

Theorem 3.8. Let g be a Lipchitz continuous real function,

T > 0 and p a partition of the interval [0,T]

0 ¼: t0 < t1 < � � � < tp :¼ T

Let f be a continuously differentiable function. The first hit-

ting time sp of the approximated process Yp defined by (3.18)

to a cubic spline approximation fp of f on the partition p sat-
isfies the equation:

Pðsp P T jU 0Þ

¼
Z ð2pÞYp

k¼1

ptk�tk�1

xk � xk�1

gðtk�1Þ
; yk � yk�1; 0; 0

� ��

�
Z tk

tk�1

Z
R

ptk�s

xk � f pðsÞ
gðtk�1Þ

; yk � ys; 0; 0

� �
Ps;ð0;ysÞ

� sðf p�xk�1Þ=gðtk�1Þ 2 ds;W s 2 dysÞ
� �

dxk dyk ð3:21Þ

where Pðsf p 2 ds;W s 2 dysÞ is given by Eq. (3.14).

The expressions in Theorem 3.8 involve integrals com-
puted over R2p if there are p points in the mesh. These have
no closed-form expression. The numerical computation of
these integrals can be quite intricate and inefficient, and this
introduces another approximation besides that in Theorem
3.6. The principle of the numerical approximation we use is
to express these integrals as expectations with respect
to some probability measure and to use a Monte-Carlo
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algorithm to compute this probability measure. The
accuracy of this approximation can be assessed through
standard procedures for Monte-Carlo simulations (Nieder-
reiter, 1992; Ripley, 1987). This idea leads to the following

Corollary 3.9 (of Theorem 3.8). Let g be a Lipchitz

continuous real function, T > 0 and p a partition of the

interval [0,T]

0 ¼: t0 < t1 < � � � < tp :¼ T

Let f be a continuously differentiable function. The first hit-
ting time sp of the approximated process Yp defined by (3.18)

to a cubic spline approximation fp of f on the partition p can

be computed as the expectation:

Pðsp P T jU 0Þ ¼ E½hg;p
p ðX t1 ;W t1

; . . . ;X tp ;W tpÞjU 0� ð3:22Þ

where the function hg;p
p is defined by:

hg;p
p ðx1; . . . ; xpÞ ¼

Yp

k¼1

ptk�tk�1

xk�xk�1

gðtk�1Þ
; yk � yk�1; 0; 0


 �
ptk�tk�1

ðxk; yk; xk�1; yk�1Þ

8<
:

�
Z tk

tk�1

Z
R

ptk�s
xk�f pðsÞ
gðtk�1Þ

; yk � ys; 0; 0

 �

ptk�tk�1
ðxk; yk; xk�1; yk�1Þ

� Ps;ð0;ysÞðsðf p�xk�1Þ=gðtk�1Þ 2 ds;W s 2 dysÞ

9=
;

ð3:23Þ
where Pðsf p 2 ds;W s 2 trmdysÞ is given by Eq. (3.14).

The problem is now stated in terms of the expectation of
a function of the Gaussian random vector ðX 0;W 0;X t1

;
W t1

; . . . ;X tp ;W tpÞ. This vector is Gaussian of mean 0 and
covariance matrix defined by blocks by the expression:

Kðt1; . . . ; tpÞ ¼
1
3
jtj � tij3 1

2
jtj � tij2

1
2
jtj � tij2 jtj � tij

 !
ði;jÞ2f0...pg

ð3:24Þ

The Monte-Carlo algorithm we use to compute the
expected probability is the following:

(i) Compute the square root K(t1, . . . , tp)1/2 of the covari-
ance matrix (3.24) (using for instance a Cholesky
decomposition).

(ii) Generate an i.i.d. sample u = (u1, u2, . . . ,u2p)T from
the normal standard distribution Nð0; 1Þ.

(iii) Compute the transformation x = K(t1, . . . , tp)1/2 Æ u

(iv) Calculate hg;p
p ðxÞ.

(v) Repeat steps (ii)–(iv) N times and calculate the
frequency
P N ¼
1

N

X
realizations

hg;p
p ðxÞ
The probability Pðs P T Þ is then estimated by PN. The
standard error of this estimator is given by:

EðNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
realizations½h

g;p
p ðxÞ � P N �2

NðN � 1Þ

s
ð3:25Þ
5. Conclusion

In this paper we studied four different types of neuron
models from the point of view of the stochastic calculus.
We showed that characterizing the spikes times of a neuron
was equivalent to solving a first hitting time problem for a
stochastic process to a given continuous curve. We then
presented four methods which can be applied to solve such
problems. One of them, the Feynman–Kac method, is very
restrictive, since it can only be applied to stationary bound-
aries (this is also the case of the Fokker–Planck equation
formalism). The three other methods provide a unique
solution and a way to compute this probability distribu-
tion. Durbin’s method and Volterra’s method are com-
pared in the case of the LIF neuron with instantaneous
synaptic currents. The last method presented is a new
method wich enables us to compute the distribution of
the spikes times for the LIF neuron with exponentially
decaying synaptic conductances. In this case, the only
available and partial result is Brunel’s who computed the
stationary firing rate of this neuron model (Brunel and
Sergi, 1998). Nevertheless for the nonlinear models of types
III and IV the stochastic calculus methods still fail to pro-
vide the complete statistical information about the spikes
and one has to resort to the Fokker–Planck approximate
formalism. Studying more complex and biologically plausi-
ble mechanisms such as STDP in this framework is another
interesting perspective of the present study. We hope to be
able to report new findings for these three cases in the near
future and, despite these partially negative results, consider
that the approach developed in this paper has enabled us to
solve difficult open problems and has great potentials for
applications to neuroscience.

Appendix A. A crash course on probabilities and stochastic

calculus

We recall some of the basic definitions and results on
stochastic processes. The aim of this section is not to be
complete but to serve as a quick reference for readers with
little background in stochastic calculus. Most of the proofs
are omitted. The interested reader can find details in the
extensive literature on the subject and follow the reading
suggestions given within each section.

A.1. Probability basics

This section heavily relies on Karatzas and Shreve’s
book (1987) and on lecture notes by Le Gall (1997), where
the interested reader can find all the theoretical material.
We assume that the reader is familiar with elementary mea-
sure theory (Rudin, 1976).

Probability theory is a branch of mathematics concerned
with the analysis of random phenomena. The randomness
is captured by the introduction of a measurable space
ðX;FÞ, called the sample space, on which probability mea-
sures can be placed. Elements of X are denoted in general



J. Touboul, O. Faugeras / Journal of Physiology - Paris 101 (2007) 78–98 93
by x. Subsets of X are called events. F is a r-algebra of
subsets of X.

Definition A.1. A probability measure P on ðX;FÞ is a
positive measure such that

PðXÞ ¼ 1

ðX;F;PÞ is called a probability space.

Definition A.2. A random variable is a measurable function
from X to a measurable set ðX ;XÞ called the state space.

Definition A.3. A stochastic process is a collection of ran-
dom variables X ¼ fX t; t 2 Tg on ðX;FÞ taking values in
a state space ðX ;XÞ. The set T is called the time set. In
the present paper, T is simply Rþ and is referred to as
the time of the process. The state space considered is the
d-dimensional Euclidian space equipped with the r-fields
of Borel sets ðRd ;BðRdÞÞ.

The temporal feature of a stochastic process suggests a
flow of time, in which at every moment t P 0 we can talk
about the past, present and future of the process. To quan-
tify the information flow of the process, we can equip the
sample space ðX;FÞ with a filtration, i.e. a non-decreasing
family fFt; t P 0g of sub-r-fields of F:

8 s 6 t;Fs 	Ft 	F:

Given a stochastic process, the simplest choice of filtration
is that generated by the process itself, i.e.,

FX
t :¼ rðX s; 0 6 s 6 tÞ;

the smallest r-field with respect to which Xs is measurable
for every s 2 [0, t].

We interpret A 2FX
t to mean that by time t, an observer

of X knows wether or not A has occured. Hence Ft can be
seen as the accumulated information up to time t.

A stochastic process X is said adapted to a filtration
ðFtÞtP0 iff for all t P 0 the random variable Xt is Ft-
measurable.

A stochastic process X is said to be right-continuous
(resp. left-continuous) iff almost every sample path is right-
(resp. left-) continuous.

Definition A.4 (Brownian Motion/Wiener process). A
standard one dimensional Brownian motion (also called a
Wiener process) is a continuous adapted process
W ¼ fW t;Ftt P 0g defined on some probability space
ðX;F;PÞ, with the properties that:

(i) W0 = 0 a.s.
(ii) for all 0 6 s 6 t the increment Wt-Ws is independent

of Fs and is normally distributed with mean 0 and
variance t-s.
Let us now imagine that we are interested in the occu-
rence of a certain phenomenon (e.g. a spike modeled as a
threshold crossing of a given process in the present paper).
We are thus forced to pay a particular attention to the ran-
dom instant s(x) at which the phenomenon manifests at
the first time. Interesting models should be such that the
event {x;s(x) 6 t} is part of the information accumulated
by that time. Random variables s satisfying this property
are called stopping times:

8 t P 0; fs 6 tg 2Ft
Example. For instance, the first hitting time of a contin-
uous stochastic process X to a given deterministic bound-
ary g defined by:

s :¼ infft P 0; X t ¼ gðtÞg

is is a stopping time with respect to the natural filtration of
X. Indeed, the event {s 6 t} is the same as {$s 2 [0, t]Xs P
f(s)}. From the continuity property, this last set is equal to
f9s 2 ½0; t� \Q;X s P f ðsÞg which is a countable union of
sets of FX

t and hence is contained in FX
t .

Definition A.5 (Conditional Expectation). Let Y be a L1

random variable of ðX;F;PÞ and let G be a sub-r-field
of F. There exists a unique element EðY jGÞ of
L1ðX;G;PÞ called conditional expectation of Y knowing
G, such that for all X bounded and G-measurable:

EðXY Þ ¼ EðEðY jGÞX Þ

A process fX t;Ft; t P 0g is called a submartingale (resp
supermartingale, martingale) if for every 0 6 s < t <1 we
have P-almost surely EðX tjFsÞP X s (resp EðX tjFsÞ 6
X s, EðX tjFsÞ ¼ X s).

Theorem A.1 (Optional Sampling Theorem). Let

fX t;Ft; t P 0g be a right-continuous submartingale, S and

T be two stopping times almost surely bounded (i.e.

PðT <1Þ ¼ 1 and PðS <1Þ ¼ 1). Let XT be the random
variable defined by XT(x) = XT(x)(x). Let FS :¼ fA 2F;
A \ fT 6 tg 2Ftg. Assume that S 6 T amost surely. Then

we have:

EðX T jFSÞP X Sa:s:P:

Definition A.6. Let X be a stochastic process on a probabil-
ity space ðX;F;PÞ. Let ðFtÞtP0 be the natural filtration of
the process X. The process X is a Markov process iff
"t 6 t1 6, . . . ,6 tn <1, for all C1; . . . ;Cn 2 X,

PðX t1 2 C1; . . . ;X tn 2 CnjFtÞ ¼ PðX t1
2 C1; . . . ;X tn

2 CnjrðX tÞÞ:

It is strongly Markovian if for all T stopping time for the
ðFtÞt, for all g1, . . . ,gn positive random variable Fs-mea-
surable, we have:

PðX sþg1
2 C1; . . . ;X sþgn

2 CnjFsÞ ¼
PðX sþg1

2 C1; . . . ;X sþgn
2 CnjrðX sÞÞ:
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Proposition A.2. The Brownian motion is strongly

Markovian.

Definition A.7. A process (Mt, t P 0) is a continuous local
martingale iff it is a continuous adapted process such that
there exists an increasing sequence of stopping times
ðT nÞn 2 N such that Tn! n!11 and that for each
n 2 NðMt^T n �M0Þt is a uniformly integrable martingale.

Theorem A.3. Let M be a local martingale. There exists a

unique non-decreasing process hMit such that ðM2
t�

hMitÞtP0 is a continuous local martingale. For M and N

two continuous local martingales, there exists a unique finite

variation process such that (MtNt � hM,Nit)t is a local mar-

tingale. Moreover, the application (M,N) # hM,Ni is bilin-
ear symmetrical.

Theorem A.4 (Stochastic Integral). Let M be a continuous

local martingale and H a measurable process such that for

all t > 0,
R t

0
H 2

s dhMis <1 (the set of such processes is

denoted by L2
locðMÞ).

There exists a unique continuous local martingale H Æ M

starting from 0 such that for all local martingale N we have:

hH �M ;Ni ¼ H � hM ;Ni

This martingale is denoted ðH �MÞt ¼:
R t

0
H sdM s and is

called the stochastic integral of H with respect to the local

martingale M.

Moreover, we have for all t > 0 and 0 ¼: tn
0 < tn

1 <
� � � < tn

pn
:¼ t sequence of nested mesh whose step tends to

0, we have in the sense of probability:Z t

0

H s dM s ¼ lim
n!1

Xpn

i¼1

H tn
i�1
ðX tni
� X tn

i�1
Þ

Theorem A.5 (Itô formula). Let X = (X1, . . . ,Xn) be n con-

tinuous semi-martingales and F : Rn 7!R a C2 map. Then we
have:

F ðX tÞ ¼ F ðX 0Þ þ
Xn

j¼1

Z t

0

oF
oxj
ðX sÞdX j

s

þ 1

2

Xn

j¼1

Xn

k¼1

Z t

0

o
2F

oxjoxk
ðX sÞdhX j;X kis

Theorem A.6 (Dubins–Schwarz). Let M be a continuous

local martingale such that hMi1 =1 a.s. Then there exists

a Brownian motion B such that

Mt ¼ BhMit

Theorem A.7 (Girsanov). Assume that Q � P on F. Let

Dt ¼ dQ
dP
jt and L be the unique local martingale such that

D ¼ expðL� 1
2
hLiÞ. Then for all M P-local martingale con-

tinuous, the process M-hM, Li is a Q-local martingale

continuous.

In particular if M is a P-Brownian motion, then M � hM,

Li is a Q-Brownian motion.
Definition A.8 (Stochastic Differential Equation). Let B be
a d-dimensional Brownian motion, r : Rþ � Rd 7!Rd�m and
b : Rþ � Rd 7!Rd two measurable locally bounded func-
tions. The stochastic differential equation (SDE) associated
to r and b is defined by:

dX t ¼ rðt;X tÞdBt þ bðt;X tÞdt

This expression is a notation and means:

X t ¼ X 0 þ
Z t

0

rðs;X sÞdBs þ
Z t

0

bðs;X sÞds

Under suitable conditions on the coefficients r and b

(for instance if both are continuous and (locally) Lips-
chitz), we have existence and (pathwise) uniqueness of a
solution. In the Lipschitz case, then the solution is strongly
Markovian.
A.2. Stochastic processes and partial differential equations

The aim of this section is to show the link between some
functionals of a diffusion process X and PDEs. For more
details on diffusion processes we refer to the excellent book
of Bass (1998). Interested readers are also referred to Itô
and MacKean (1996), Stroock and Varadhan (1979). The
diffusion process studied here satisfies the equation:

dX t ¼ bðX tÞdt þ rðX tÞdBt ðA:1Þ
where B :¼ ððBðiÞt ÞtP0Þi¼1;...;d is a d-dimensional Brownian
motion. This process (X) is called a multi-dimensional dif-

fusion process.
We assume that b and r are bounded and at least C1. We

define L to be the diffusion operator associated to the dif-
fusion process (A.1)

Lf ðxÞ :¼ 1

2

Xd

i;j¼1

aijðxÞ
o2

oxioxj
f ðxÞ þ ðbðxÞ � rÞf ðxÞ ðA:2Þ

where aðxÞ ¼ ðaijðxÞÞi;j 2Md is the symmetrical matrix
defined by a(x) = r(x)rT(x).

Let us now define a real function q, called potential, in
reference with Schrödinger’s theory.

We consider the operator, called Schrödinger’s operator,
defined by:

GuðxÞ :¼LuðxÞ þ qðxÞuðxÞ ðA:3Þ
We have the

Theorem A.8. Let D be a smooth bounded domain, q a C2

function on �D, f a continuous function on oD. Let sD be the

first hitting time of the border oD of D by the process X:

sD :¼ infft > 0; X t 2 oDg ¼ infft > 0; X t 2 oDg
Let u be the solution of the PDE equation with Dirichlet

condition:

LuðxÞ þ qðxÞuðxÞ ¼ 0 8x 2 D

uðxÞ ¼ f ðxÞ 8x 2 oD

�
ðA:4Þ
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If q is such that:

Ex½e
R sD

0
qþðX sÞds� <1 ðA:5Þ

where q+(x): = max(q(x), 0), then u, solution of (A.4), can be

written:

uðxÞ ¼ Ex½f ðX sDÞe
R sD

0
qðX sÞds� ðA:6Þ

We provide the proof of this theorem because it is simple
and because it is a good example of the use of the notions
we introduced in Section A.1.

Proof. Let Y t :¼
R t

0 qðX sÞds and consider the stochastic
process eY t uðX tÞ. Itô’s formula gives the following expres-
sion for this process:

eY t uðX tÞ ¼ uðX 0Þ þ
Z t

0

eY s uðX sÞdY s þMt

þ
Z t

0

eY sLuðX sÞds

¼ uðX 0Þ þMt þ
Z t

0

eY sðLuðX sÞ

þ qðX sÞuðX sÞÞds

¼ uðX 0Þ þMt þ
Z t

0

eY sGuðX sÞds ðA:7Þ

where Mt denotes an associated local martingale:

Mt ¼
Xd

i¼1

Z t

0

eY s biðX sÞ
ou
oxi
ðX sÞds

Let us stop the process under consideration at the stopping
time sD. Let Sn: = inf{t; dist(Xt, oD) < 1/n}. We clearly
have Sn %

n!1
sD. Then since u 2 C2ð�DÞ we have the property

that Mt^Sn is a martingale for all n 2 N. Let us take the
expectation and apply the optimal stopping theorem to
(A.7). Stopping the process at time Sn ensures us that
GuðX sÞ is 0 because Xs is always inside the domain D.
We then have

eY t^Sn uðX t^SnÞ ¼ uðX 0Þ þMt^Sn ; and taking the expectation

Ex½eY t^Sn uðX t^SnÞ� ¼ uðxÞ

Finally, letting n!1 and using Lebesgue’s theorem (the
function u is bounded inside the domain D and the hypoth-
esis (A.5) ensures us to have a L1 bound) we get:

Ex½eY t^sD uðX t^sDÞ� ¼ uðxÞ8t > 0

We can conclude letting t!1, since the expectation con-
verges by Lebesgue’s theorem. h

There is also an interesting connection between the
Laplace transform and the diffusion operator associated
to a one-dimensional diffusion process. Let X = (Xt; t > 0)
be a one-dimensional diffusion process given by the
equation:

dX t ¼ bðX tÞdt þ rðX tÞdBt ðA:8Þ
where B = (Bt)tP0 is a standard one-dimensional Brownian
motion.
Let sa(X) be the first passage-time of X to the fixed
barrier a and let uk(x) be the Laplace transform of sa(X)
conditionally on the fact that X0 = x.

saðX Þ :¼ infft > 0; X t ¼ ag
ukðxÞ :¼ Ex½e�ksaðX Þ�; k P 0

ðA:9Þ
Theorem A.9. Assume that x < a. The Laplace transform

uk(x) is solution of the following PDE together with limit

conditions:

LukðxÞ � kukðxÞ ¼ 0

ukðaÞ ¼ 1

lim
x!�1

ukðxÞ ¼ 0

8><
>: ðA:10Þ

Remark 1. The case x > a can be treated in the same way
with only a few changes as stated in the beginning of the
section.

Theorem A.10. The Laplace transform of the hitting time of

a diffusion with generator L can be written:

Ex½e�ksaðX Þ� ¼ WkðxÞ
WkðaÞ

ðA:11Þ

where Wk(Æ) is proportional to the unique increasing positive

solution of

LWk ¼ kWk

(i.e. the eigenfunction of the diffusion operator L associated

to the eigenvalue k).

Let us now consider section a one-dimensional diffusion
process X = (Xt; t > 0) given by the equation:

dX t ¼ bðX tÞdt þ rðX tÞdBt ðA:12Þ
where B = (Bt)tP0 is a standard one-dimensional Brownian
motion.

Let a(t) be the boundary, and sa(X) the first passage time
of X to the boundary.

We denote uk(x) be the Laplace transform of sa(X) con-
ditionally on the fact that X0 = x.

saðX Þ :¼ infft > 0; X t ¼ aðtÞg
ukðxÞ :¼ Ex½e�ksaðX Þ�; k P 0

ðA:13Þ
Theorem A.11. Assume that x < a(0). Then the Laplace

transform uk(x) = vk(0, x) where vk(t, x) is solution of the

following PDE together with limit conditions:

otvkðt; xÞ þLvkðt; xÞ � kvkðt; xÞ ¼ 0

vkðt; aðtÞÞ ¼ 1

lim
x!�1

vkðt; xÞ ¼ 0

8><
>: ðA:14Þ
Proof. The proof of the necessary condition, i.e. assuming
that a regular solution (C1,2), the proof is very similar to
the one of Theorem A.9.

To prove this theorem we only have to use Itô’s formula
to the (assumed) C1,2 function e�ktv(t, Xt). The local
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martingale will be a real martingale (it is necessary to
bound the process X also to get a martingale, as we did in
the last proof), and the optimal stopping theorem will
apply and we will eventually get:

Ex½e�ksaðX Þ� ¼ vkð0; xÞ �

In the present paper we also use several times the Fokker–
Planck partial differential equation. This equation which
governs the transition probability density of a given process
can be deduced straightforwardly form the previous theory.

Theorem A.12 (Fokker–Planck equation). Let X be a

diffusion process solution of the stochastic differential

equation:

dX t ¼ bðX tÞdt þ rðX tÞdW t: ðA:15Þ
Under suitable conditions on b and r, the process X is un-

iquely defined by (A.15), strongly Markovian with station-
naty increments. Its transition function is:

P ðt; x;CÞ :¼ PX tþs 2 CjX s ¼ xÞ
We assume that this probability has a density with respect to

Lebesgue’s measure P ðt; x;CÞ ¼
R

C pðt; x; yÞdy and that this

density satisfies regularity conditions on op
ot,

op
oxi and o2p

oxioxj. In

this case, the transition density probability is the fundamental
solution (Green’s function) of the equation:

opðt; x; yÞ
ot

¼ 1

2

X
i;j

ad
i;j¼1ðxÞ

o
2pðt; x; yÞ
oxioxj

þ
Xd

j¼1

bjðxÞ
opðt; x; yÞ

oxj
: ðA:16Þ

i.e. opðt;x;yÞ
ot ¼Lxpðt; x; yÞ. This equation is called forward Kol-

mogorov equation.

Under regularity conditions on op
ot ,

op
oyi and o2p

oyioyj, the

transition probability density is the fundamental solution

(Green’s function) of the backward Kolmogorov equation, or

Fokker–Planck equation:

op
ot
¼ 1

2

Xd

i;j¼1

o2ai; jðyÞpðt; x; yÞ
oyioyj

�
Xd

j¼1

obiðyÞpðt; x; yÞ
oyi

ðA:17Þ

or:

opðt; x; yÞ
ot

¼L�
y pðt; x; yÞ
Appendix B. Hermite’s function

The special functions used in previous sections are
recalled below and we refer to Lebedev (1972) for most
of the results and proofs.

Definition B.1. The Hermite function Hm is defined by:

HmðzÞ ¼def 2mC 1
2

� �
C 1�m

2

� �/ � m
2
;
1

2
; z2

� �

þ
2mþ1

2C � 1
2

� �
C �m

2

� � z/
1� m

2
;

3

2
; z2

� �
ðB:1Þ
where / denotes the confluent hypergeometric function (or
Kummer’s function of the first kind) and C the gamma
function.
/ða; b; zÞ ¼def
1þ a

b
zþ aðaþ 1Þ

bðbþ 1Þ
z2

2!
þ aðaþ 1Þðaþ 2Þ

bðbþ 1Þðbþ 2Þ
z3

3!

þ . . . ¼def
X1
k¼0

ðaÞk
ðbÞk

zk

k!

Proposition B.1. Hermite function satisfies the following
relations:

(i) The Hermite function has the following series

representation:
HmðzÞ ¼
1

2Cð�mÞ
X1
m¼0

ð�1Þm

m!
C

m� m
2


 �
ð2zÞm;

jzj <1 ðB:2Þ
(ii) The following recurrence relations hold:
oHmðzÞ
oz

¼ 2mHm�1ðzÞ ðB:3Þ

Hmþ1ðzÞ ¼ 2zHmðzÞ � 2mHm�1ðzÞ ðB:4Þ
(iii) HmðzÞ and Hmð�zÞ are fundamental solutions of the

ordinary so called Hermite equation:
f 00ðzÞ � 2zf 0ðxÞ þ 2mf ¼ 0 ðB:5Þ
Proof. The series expansion of i. comes from the definition
of the / function.

The recurrence relations of ii. come from the funda-
mental relation on C: C(1 + z) = zC(z) and the series
expansion (B.2): on one hand we have
oHmðzÞ
oz

¼ 1

2Cð�mÞ
X1
m¼1

ð�1Þm

m!
C

m� m
2


 �
2mð2zÞm�1

¼ �2

2Cð�mÞ
X1
m¼0

ð�1Þm

m!
C

mþ 1� m
2

� �
ð2zÞm

changing m to mþ 1
On the other hand,

2mHm�1ðzÞ ¼
2m

2Cð1� mÞ
X1
m¼0

ð�1Þm

m!
C

m� mþ 1

2

� �
ð2zÞm

And conclude with the relation C(1 � m) = �mC(�m).
The second recurrence relation comes also from those two

relations. To check this relation we compare the coefficient
of the power of 2z of the series expansion of the two sides of
(B.4) and play with the fundamental relation of C.

Finally, the ordinary differential Eq. (B.5) is no more
than (B.4), writing Hm�1 and Hm�2 in terms of derivatives
of Hm using (B.3). h
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Appendix C. Some calculations

Proposition C.1. The two-dimensionnal process (Xt,Mt) is a

Gaussian Markov process.

Proof. First of all, note that if FX
t (resp. FM

t ) defines the
canonical filtration associated to the process X (resp. M)
then it is clear that "t P 0, FX

t 	FM
t .

It is also clear that M is a martingale, and satisfies the
Markov property. Let s 6 t. We have:

X t ¼
Z t

0

gðuÞMu du ¼
Z s

0

gðuÞMu duþ
Z t

s

gðuÞMu du

X t ¼ X s þ
Z t

s

gðuÞðMu �M sÞduþM s

Z t

s

gðuÞdu ðC:1Þ

Conditionally to Ms, the process
R t

s
gðuÞðMu �M sÞdu is

independent of FM
s so the law of Xt knowing (Xs,Ms) is

independent of the filtration FðX ;MÞ
t and so does M, so

eventually the couple (X,M) is Markov.
The pair is clearly a Gaussian process since its two

components are. Indeed, M is Gaussian as the limit of the
Riemann sums of Brownian increments, which are Gauss-
ian, and X is also the limit of Riemann sums of a Gaussian
process, namely M, with the weights given by g. h

Remark 2. In the proof of Proposition C.1, we also proved
that conditionally to Ms, the increment (Xt � Xs,Mt �Ms)
are independent of the r-field Fs. The proof also shows
that Xt is non-Markov since its law depends on Mt.
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mouvement brownien. Ann. I.H.P. Sect. B 33, 1–36.

Lapicque, L., 1907. Recherches quantitatifs sur l’excitation des nerfs
traitee comme une polarisation. J. Physiol. Paris 9, 620–635.

Le Gall, J.-F. 1997. Mouvement Brownien et Calcul Stochastique. Lecture
notes.



98 J. Touboul, O. Faugeras / Journal of Physiology - Paris 101 (2007) 78–98
Lebedev, N., 1972. Special Functions and Their Applications. Dover
publications.

Lefebvre, M., 1989. First-passage densities of a two-dimensional process.
SIAM J. Appl. Math. 49, 1514–1523.

Linz, P., 1985. Analytical and numerical methods for Volterra equations.
SIAM Stud. Appl. Math.

Marsalek, P., Koch, C., Maunsell, J., 1997. On the relationship between
synaptic input and spike output jitter in individual neurons. PNAS 94,
735–740.

McKean, H.P., 1963. A winding problem for a resonator driven by a white
noise. J. Math. Kyoto Univ. 2, 227–235.

Nardo, E.D., Nobile, A.G., Pirozzi, E., Ricciardi, L.M., 2001. A
computational approach to first passage time problems for Gauss–
Markov processes. Adv. Appl. Prob. 33, 453–482.

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte
Carlo Methods. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

Nobile, A.G., Ricciardi, L.M., Sacerdote, L., 1985a. Exponential trends of
first-passage-time densities for a class of diffusion processes with
steady-state distribution. J. Appl. Prob. 22, 611–618.

Nobile, A.G., Ricciardi, L.M., Sacerdote, L., 1985b. Exponential trends of
ornstein-uhlenbeck first-passage-time densities. J. Appl. Prob. 22, 360–
369.

Novikov, A., Frishling, V., Kordzakhia, N., 1999. Approximations of
boundary crossing probabilities for a Brownian motion. J. Appl. Prob.
36, 1019–1030.

Plesser, H.E., 1999. Aspects of signal processing in noisy neurons. PhD
thesis, Georg-August-Universität.
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