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CHAPTER 11
Sensorimotor optimization in higher dimensions
Douglas Tweed�
Departments of Physiology and Medicine, University of Toronto, Centre for Vision Research, York University, Toronto,
ON, Canada

Abstract: Most studies of neural control have looked at constrained tasks, with only a few degrees of
freedom, but real sensorimotor systems are high dimensional — e.g. gaze-control systems that coordinate
the head and two eyes have to work with 12 degrees of freedom in all. These extra degrees of freedom
matter, because they bring with them new issues and questions, which make it hard to translate low-
dimensional findings into theories of real neural control. Here I show that it is possible to predict high-
dimensional behavior if we apply the optimization principles introduced by 19th-century neuroscientists
like Helmholtz, Listing, and Wundt. Using three examples — the vestibulo-ocular reflex, saccadic eye
movements, and depth vision — I show how simple optimization theories can predict complex, unexpected
behaviors and reveal fundamental features of sensorimotor control, e.g. that neural circuits perform non-
commutative algebra; that in rapid gaze shifts the eye controllers deliver commands with three degrees of
freedom, not two; and that the eyes roll about their lines of sight in a way that may simplify stereopsis.

Keywords: sensorimotor; optimization; degrees of freedom; control; oculomotor; vision; vestibulo-ocular
reflex (VOR); saccades; stereopsis; computational; behavioral
In sensorimotor control, as in science fiction,
strange things happen in higher dimensions. For
simplicity, most studies of neural control have fo-
cused on low-dimensional tasks, meaning ones
with few degrees of freedom, such as purely hor-
izontal movements of an eye or flexions of a single
joint. But real sensorimotor systems are high di-
mensional. An arm, for instance, has 7 degrees of
freedom — 3 for the shoulder, 2 for the elbow, and
2 for the wrist. A single eye rotates with 3 degrees
of freedom — horizontal, vertical, and torsional.
The head moves with 6 degrees of freedom, and so
gaze-control systems that coordinate the head and
two eyes have to work with 12 dimensions in all. In
these cases and others, the hope has been that if we
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can first manage to understand the system in a
simple, constrained setting, we can then extrapo-
late to higher dimensions. But the extrapolation
has often proved difficult. The key problem is that
fundamentally new issues arise in higher dimen-
sions, making it hard to generalize from low-
dimensional findings. Here I will give examples of
new concepts emerging in this way, but I will also
argue that it is possible to predict high-dimen-
sional behavior if we extrapolate in the right way,
based on optimization.

Optimization theories of the brain go back to
Helmholtz, Listing, Wundt, and other oculomotor
pioneers of the 19th century (Helmholtz, 1867). To
analyze a neural system by this approach, you first
figure out what it is trying to do and state your
guess precisely, in the form of a cost function. In
an eye or arm movement, for instance, the cost
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Fig. 1. Three-dimensional rotations do not commute. (Adapted

with permission from Tweed (2003).)
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might be the time to reach the target. To test the
theory, you devise a controller that minimizes that
cost function, and compare it to real human or
animal behavior. Here I will show how simple
optimization theories have predicted complex,
high-dimensional behaviors that might otherwise
have been inscrutable, or might never have been
found. For instance, they predicted that certain
random-dot stereograms are perceived as three-
dimensional (3-D) only when they are viewed
looking up, not down; and that in some gaze shifts
the eyeballs twirl about their lines of sight at up
to 2001/s for a fraction of a second and then
unwind again. More importantly, these theories
have revealed fundamental features of sensorimo-
tor control, e.g. that in depth vision the brain
searches for matching images in the two eyes over
fixed rather than mobile patches of retina and that
the two eyes are coordinated so as to shrink these
patches; that eye control during gaze shifts is 3-D
even though the line of sight has just 2 degrees
of freedom; and that there is noncommutative
computation in the sensorimotor circuitry of the
brain.
Noncommutativity in the brain

One example of a concept that emerges in higher
dimensions is noncommutativity. A process is said
to be noncommutative if order matters when
things combine; if order makes no difference, the
process is commutative (Hamilton, 1853). For in-
stance ordinary multiplication of numbers is com-
mutative because the order of factors is irrelevant,
e.g. 5� 7 ¼ 7� 5. 1-D rotations are also commu-
tative — turning first 101 right and then 201 right
yields the same outcome as turning first 201 and
then 101. But 3-D rotations are noncommutative:
the same two rotations applied in different orders
can yield different overall rotations (Westheimer,
1957; Tweed and Vilis, 1987; Carpenter, 1988;
McCarthy, 1990). This point is illustrated in Fig. 1,
where the chess knight, starting from the same
orientation, undergoes the same two rotations, 901
right and 901 down, in different orders and winds
up in different final positions (in this figure the
motions are defined in a knight-fixed frame, but
rotations defined in a space-fixed frame do not
commute either).

Why does noncommutativity of rotations mat-
ter for the brain? Because many brain processes
have to deal with rotations, e.g. processes such as
spatial perception, navigation, and the control of
rotary joints. If they are to do their jobs even half
decently, these systems have to represent and com-
pute rotations, and for this they need noncommu-
tative algebra (Westheimer, 1957; Tweed and Vilis,
1987, 1990; Crawford and Vilis, 1991; Minken
et al., 1993; Hestenes, 1994a, b; Tweed et al., 1994;
Tweed 1997a; Henriques et al., 1998; Smith and
Crawford 1998), though for a long time this idea
was controversial (van Opstal et al., 1991; Tweed
et al., 1994, 1999; Straumann et al., 1995; Raphan,
1997, 1998; Quaia and Optican, 1998; Smith and
Crawford, 1998; Schnabolk and Raphan, 1994).

Of all the neural systems that deal with rota-
tions, maybe the simplest is the vestibulo-ocular
reflex, or VOR. This reflex acts like a Steadicam
for the eyeballs, stabilizing the retinal images when
the head moves. Sense organs in the inner ear
measure head velocity and send commands to the
eye muscles, moving the eyes in the opposite di-
rection when the head turns, so as to prevent the
eyeballs rotating relative to space (Carpenter,
1988).

That the VOR needs noncommutative compu-
tation is illustrated in Fig. 2. Here a subject sits in
a rotary capsule and looks out through a viewing
screen at a space-fixed target, the black disk. In



Fig. 3. The real VOR is noncommutative. (A) Motion of the

eye in the head, during the task from Fig. 2, as predicted by a

theory of the VOR where the retinal image is perfectly stabi-

lized. The system is noncommutative, yielding different final eye

positions depending on the order of head rotations. (B) Per-

formance, on the same task, of a VOR model in which all

neural processing is commutative. The final eye positions do not

depend on the sequence of body rotations. (C) A real human

subject shows noncommutativity: final eye Positions 3 and 30

differ by about 101, as predicted by the optimization theory.

(Adapted with permission from Tweed et al. (1999).)

Fig. 2. An optimal VOR must be noncommutative. In both the

upper and lower series, the subject sits in a rotary capsule

viewing a space-fixed object (the black disk), and in both series

the target’s initial location relative to the subject is the same: 301

directly to the left. Then the lights go out, and the subject tries

to keep looking at the unseen disk while undergoing two ro-

tations. In the two series the rotations are identical but are

applied in opposite orders. Because of noncommutativity, the

target’s final locations relative to the subject are different.

(Adapted with permission from Tweed (2003).)
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both the upper and lower sequences, the subject
starts out in the same position relative to the tar-
get: looking at it 301 directly to his left. In the
upper series the subject turns first 101 counter-
clockwise (CCW) and then 601 left, so to keep his
eyes on the target; he has to end up looking 301
right and 51 up. In the lower series, the subject
undergoes the same two rotations in reverse order
and winds up looking right and down. In other
words the VOR must compute different final eye-
position commands when the subject goes through
the same rotations in different orders (Tweed
et al., 1999).

The motion of the eye in the head is plotted in
Fig. 3A. If the subject turns first CCW then left,
the eyes counter-rotate first clockwise (CW) then
right, winding up at Position 3. When the subject
rotates in the reverse order the eyes turn right and
then CW, winding up at Position 30. These trajec-
tories are simulations of a theory of the 3-D VOR
(Tweed, 1997b; Tweed et al., 1999) that was ex-
trapolated from earlier, 1-D theories where the eye
moved purely horizontally. There are many ways
to extrapolate from low dimensions to high, but
here the extrapolation preserved the optimization
principle that the VOR acts to minimize retinal-
image slip. So noncommutativity emerged as a
necessary feature.

This optimal behavior was not predicted by
previous 3-D models of the VOR, because they
were extrapolated from 1-D theories in a different
way, by preserving the 1-D principle that eye-
position commands are integrals of eye-velocity
commands. But integration is commutative in
the sense that the final value of an integral does
not depend on the temporal order of its inputs,
and therefore models based on this principle
neglect noncommutativity and are incompatible
with optimal image stabilization in 3-D. For in-
stance, Fig. 3B shows one such commutative
model (Raphan, 1997): regardless of the order of
rotations, it brings the eye to the same final
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orientation relative to the head, and so relative
to space the eye is incorrectly positioned, off the
target.

On this same task, real human subjects closely
matched the optimization theory, adopting differ-
ent final eye positions that depended on the order
of rotations. For the subject shown in Fig. 3C, the
difference between Positions 3 and 30 (averaged
over several trials) was 9.01 vertically, as compared
to the optimal value of 101. Averaged across all
five subjects, the difference was 10.31 (range
7.4–12.6), and it was significant for each individ-
ual subject.

These findings established that there is non-
commutativity in the VOR: the reflex correctly
computes different final eye-position commands
when put through identical rotations in different
orders. And the broader point is that a simple op-
timization theory, based on minimizing retinal
slip, predicted a fundamental feature of eye con-
trol that was absent in 1-D and was missed by
other approaches. This theory (for details, see
Tweed et al., 1994; Tweed, 1997a, b) has predicted
many features of ocular control (e.g. Tweed,
1997b; Tweed et al., 1999; Misslisch and Tweed,
2000) and continues to find experimental support;
e.g. Klier et al. (2006) recently showed that stim-
ulating the abducens nerve rotates the eyeball
around an axis that tilts as a function of eye po-
sition, in the pattern predicted by this theory.
Fig. 4. (A) Listing’s law. The three heads show three of the

infinitely many different possible eye orientations for the same

gaze direction, but Listing’ law says the eye always chooses the

orientation where torsion is zero. (B) A twisting-saccade task

shows that a time-optimal saccadic system must control ocular

torsion independently of horizontal and vertical eye position

(see text). (C) Experimental data confirm that the eye controller

for saccades has independent control of torsion. In the top row,

a time-optimal controller performs the twisting-saccade task

(number labels 1–4 correspond to Stages 1–4 in the illustration

above). The controller does not move the eye directly (in the

head frame) from its initial Position 1 to its final Position 3, but

instead drives the eye out to 151 of torsion, which is the maxi-

mal allowable in this simulation, and then unwinds to its desti-

nation. This way, the eye stays near zero torsion between

movements, and during gaze shifts it takes the fastest possible

path to its final position in space. In the bottom row, a real

human subject shows the same pattern. (Adapted with permis-

sion from Tweed et al. (1998).)
Optimizing gaze control in three dimensions

In this section we focus on another high-dimen-
sional concept, kinematic redundancy. We say a
system is kinematically redundant if it has more
degrees of freedom that it needs for some job. For
example an arm has 7 degrees of freedom, but it
needs only 6 to place the hand in any possible
position (within a reasonable range near the shoul-
der joint). And in 3-D, an eye also has kinematic
redundancy: it rotates with 3 degrees of freedom,
but the line of sight has just 2, so there are infi-
nitely many different eye positions that are all
compatible with any one gaze direction (Fig. 4A
shows three possible eye positions for straight-
ahead gaze).
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From this infinity of potential positions, the
brain consistently chooses just one — the orienta-
tion in which the eye’s torsional angle is zero, as
shown by the central face in Fig. 4A. This zero-
torsion rule is known as Listing’s law, and it holds
to within a degree or two during fixation and in the
rapid gaze shifts known as saccades, as long as the
head stays still (Helmholtz, 1867; Tweed and Vilis,
1990; Minken et al., 1993; Straumann et al., 1995).

Listing’s law has been taken to mean that the
eye controller for gaze shifts is 2-D, generating
only horizontal and vertical commands. No tor-
sional commands are needed, in this view, because
torsion just stays at zero. But from an optimiza-
tion viewpoint, there is reason to suspect that tor-
sion is under separate, active neural control, and
that the torsional command might be revealed by
looking at saccades involving eye and head. More
precisely, we need torsional control if the saccadic
system is even roughly time-optimal, bringing the
eye to its target position quickly (Tweed et al.,
1998).

The crucial thought experiment is shown in
Fig. 4B. The subject starts out in Position 1, with
the head tilted 301 left-ear-down, looking at a tar-
get light which is 201 straight down relative to the
head, and 1m away. Then the target jumps side-
ways and the subject makes a twisting eye-head
gaze shift to refixate it, passing through Position 2
in mid-saccade and ending up in Position 3. The
interesting stage is 2: the eye is quicker than the
head — it reorients more swiftly when an inter-
esting object appears in the visual periphery
(Roucoux et al., 1980; Laurutis and Robinson,
1986; Guitton and Volle, 1987; Tweed et al., 1995)
— so a time-optimal controller would exploit that
speed, flicking the eye to the target and locking on
while the head catches up. The eye should move
quickly to its final 3-D orientation in space, turn-
ing not just horizontally and vertically but also
torsionally, so that midway through the head
movement, the eye is twisted in its socket in the
CW direction (from the subject’s viewpoint), as
shown in Stage 2. It should then hold still in space
as the head completes its motion. If the target then
jumps back to its original location, we should ex-
pect a similar return trajectory, this time with a
strong CCW twist in mid-saccade, as in Stage 4.
This is the time-optimal strategy, and clearly it
requires a torsional controller that can twist the
eye rapidly in its orbit.

The top row of Fig. 4C shows a simulated time-
optimal controller (Tweed, 1997a; Tweed et al.,
1998) performing this task. Again, the interesting
thing is the eye’s path relative to the head: it does
not simply jump from Position 1 to 3, but takes a
wide horizontal and torsional detour through Po-
sition 2, twisting through about 151 and then un-
winding back to near-zero torsion (and similarly
on the return trip through Position 4).

Faced with this same task, real human subjects
behave like the time-optimal model. The subject in
Fig. 4C showed the predicted torsional loops,
ranging from 171 CW to 151 CCW. Across all four
subjects, the torsional range averaged 291, which
far exceeds the 2–41 seen during head-fixed gaze
shifts (Helmholtz, 1867; Tweed and Vilis, 1990;
Minken et al., 1993; Straumann et al., 1995). And
these huge torsional excursions really were visually
evoked gaze shifts, not vestibular reactions to head
motion, because they usually began 20–60ms be-
fore the head started moving (Tweed et al., 1998).
The eye spun about its line of sight at up to 2001/s
for 80ms and then unwound to near-zero torsion
over 200ms (Tweed et al., 1998), so that Listing’s
law was in force at the end of the movement.

Obeying Listing’s law brings advantages: it
likely requires less muscle force to hold torsion
near zero; and the eye, at the center of its torsional
range, is optimally placed for the next gaze shift,
which may go either CW or CCW (Hepp, 1990;
Tweed, 1997c). So why does the eye break Listing’s
law during the gaze shift? As shown in Fig. 4B, the
eye twists to anticipate the impending torsional
motion of the head. This way, it reaches its final
position in space while the head is still in mid-
movement. From then on, the eye holds a stable
orientation in space, so the visual world remains
stationary on the retina, blur is reduced, and visual
analysis is simplified in other ways as well (Tweed
et al., 1998). So there is more to torsional eye
movement than simply holding at zero, and this
study shows how an optimization model led to the
discovery of an independent torsion-control sys-
tem that helps drive saccades and underlies List-
ing’s law.
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The motor side of depth vision

For our final example we turn to stereopsis, where
the visual system computes the 3-D locations of
objects based on their images in the two eyes. The
first step is to identify corresponding image fea-
tures on the two retinas (Julesz, 1960). Figure 5
illustrates the problem: the eyes view a cloud of 21
dots, which cast 21 identical images on each retina.
How does the brain know which dot on the right
retina corresponds to which one on the left? We
know the brain can find these matches, even when
the images are thousands of identical dots, as in
random-dot stereograms.

How does it manage? Geometry may help: as
shown in Fig. 5, the optics of the situation restrict
matching images to what are called epipolar lines
(Ogle, 1950; Rogers and Bradshaw, 1996). So if it
could locate these epipolar lines, the brain could
simplify its quest for matching images: it would
not have to search the entire retina for a match,
but could carry out a 1-D search along the epipo-
lar line, like looking for lost hikers along a single
trail rather than combing the whole forest.

Most theories of stereopsis have proposed that
the brain searches along epipolar lines. But these
theories were worked out assuming stationary
eyes. When we consider that the eyes move, the
theories hits a snag: the epipolar lines migrate on
the retinas (Garding et al., 1995; Stevenson and
Schor, 1997; Tweed, 1997c). As shown in Fig. 5,
the same point on one retina corresponds to
different epipolar lines on the other retina, de-
pending on the configuration of the eyes (in the
figure, the eyes rotate about their own lines of
sight, but other sorts of rotations also shift the
epipolar lines). Again this is a problem of dimen-
sionality: earlier theories neglected all three di-
mensions of eye rotation (or all six, counting both
eyes), and new issues arise when we consider these
extra degrees of freedom.

In light of this complication, there are two ways
the brain might find matching images in mobile
eyes (Schreiber et al., 2001). The options are illus-
trated in Fig. 6. Given an image falling on some
locus in one retina, the brain could use eye-posi-
tion information to locate its epipolar line on the
other retina. The other option is to forget about
finding epipolar lines and instead search a 2-D
patch of retina large enough to encompass all
possible locations of the epipolar line in any likely
eye configuration. This way, the stereoptic system
would not have to monitor eye position, but it
would lose the advantage of a 1-D search. So the
question is: Does the brain search for matches
along epipolar lines, or over retina-fixed 2-D
zones?

We can answer this question using rotated ster-
eograms, as shown in Fig. 7. We construct a ran-
dom-dot stereogram in the usual way and then
rotate the disks. If the disk viewed by the right eye
is turned CCW, and the other CW, as in Fig. 7, the
stereogram is incyclorotated. If the rotations are
reversed, it is excyclorotated. Why are these stereo-
grams useful? We know that when people converge
their eyes and look up — when they look at some-
thing close to their forehead — they excycloverge,
rotating the upper poles of both eyeballs outward
(Allen, 1954; Mok et al., 1992; Van Rijn and Van
den Berg, 1993; Minken and Van Gisbergen, 1994;
Tweed, 1997c; Kapoula et al., 1999; Steffen et al.,
2000; Schreiber et al., 2001); and when they
converge and look down, they incycloverge. So
the prediction is this: if our stereo search zones
are retina-fixed, we should be better able to see
excyclorotated stereograms on upgaze, incyclo-
rotated on downgaze.

For example, suppose you view a stereogram
that is excyclorotated by 51. When your eyes are
also excycloverged 51, just like the stereogram
disks, then the optical correspondence should be
normal, just as if you were viewing a normal,
nonrotated stereogram with zero cyclovergence, so
the image should be easy to see. But when your
eyes are cycloverged 01 then corresponding dots in
the two excyclorotated disks will project onto odd
locations on your two retinas, making the stereo-
image hard to see. And again, this is the prediction
if stereo search zones are retina-fixed; if instead the
search zones move with the epipolar lines then eye
position should not affect visibility.

Figure 8A confirms that the search zones move
with the retinas, not with the epipolar lines. It
plots the probability of stereoptic vision versus
cyclorotation of the stereogram at three eye ele-
vations for a typical subject. For instance when a



Fig. 5. Any animal with stereopsis must solve the stereo-matching problem, deducing which images on the right retina correspond to

which ones on the left. The task can be simplified using epipolar lines, but when the eyes move, the epipolar lines migrate on the retinas.
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Fig. 6. There are two ways the visual system could look for

matching images in mobile eyes. The nine small circles are nine

images projected onto the right retina, one foveal and the others

151 eccentric (the large gray disk is the region within 22.51 of the

fovea). Corresponding images on the left retina must lie some-

where on the line segments, which are pieces of epipolar lines,

but the lines are in different places depending on the positions

of the eyes. White patches cover the ranges of motion of the

epipolar segments when the eyes move over a realistic range.

(Adapted with permission from Schreiber et al. (2001).)

Fig. 7. Top: cyclorotated stereograms are visible only in certain

eye positions. Cross-fuse the disks from 30 cm away and depress

your gaze as far as possible, holding the paper orthogonal to the

plane of your sight lines. You should see a depth image (a triangle)

in this position, but not when you do the same on upward gaze. If

the image never disappears, your search zones are too large for

this stereogram; try the examples in Schreiber et al. (2001).

Fig. 8. Stereopsis depends on gaze elevation. (A) For this typi-

cal subject, the small black dots show the probability of seeing the

stereoimage as a function of the cyclorotation of the stereo-

gram when the elevation of the eyes is 01. Curves plot performance

at three gaze elevations. Larger circles are perceptual thresholds —

cyclorotation angles at which stereoimages were perceived with

probability 0.5. (B) Stereoptic thresholds depend on gaze elevation

and cyclovergence. (C) For all five subjects, these thresholds varied

significantly with gaze elevation, shifting toward incyclorotation on

downgaze (leftmost symbol in each string of three) and toward

excyclorotation on upgaze (rightmost symbol). The average slope is

1.06, very close to the slope of 1 predicted if stereo search zones are

retina-fixed. (Adapted with permission from Schreiber et al. (2001).)
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stereogram is incyclorotated by 61 then it is per-
ceived with probability 1 when the eyes are di-
rected 301 down (dotted line) and with probability
0 when the eyes are 301 up (thin gray line) — i.e.
this stereogram is visible on downgaze but not on
upgaze.

Figure 8B plots perception thresholds — the
angles of cyclorotation at which stereograms were
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perceived 50% of the time — versus ocular cyclo-
vergence, for the same subject as in Fig. 8A, for the
same three eye elevations. And as in Fig. 8A, white
symbols indicate data collected on downgaze, gray
means upgaze, and black means level. So for in-
stance, of the nine plotted points in this panel, the
small white one at the lower left corner means that
this subject, when looking 301 down (and con-
verging 301) had about 4.51 of incyclovergence,
and an incyclorotation threshold of 101; i.e. the
subject perceived stereoimages with probability 0.5
when the stereogram was incyclorotated by that
amount. Similarly, the leftmost point on the upper
line of the plot means this subject’s excyclorotation
threshold under these conditions was about 41.
The large dot halfway between the in- and ex-
cyclorotation thresholds is the average of the two
thresholds.

Figure 8C shows thresholds and midpoints for
all five subjects. If stereo search zones were per-
fectly fixed on the retinas then the line of mid-
points would have a slope of 1 (because the
cyclorotation thresholds would rotate exactly as
far as the eyes), as indicated by the dashed line.
The actual slope, averaged over all subjects, was
1.06, and not significantly different from 1. So the
data indicate that stereo search zones are retina-
fixed.

This finding suggests that eye control plays a
central part in stereopsis. An optimized controller
could coordinate the eyes so as to minimize the
motion of the epipolar lines, allowing stereopsis to
get by with the smallest possible search zones. The
normal pattern of eye control when viewing dis-
tant objects is Listing’s law (Helmholtz, 1867;
Carpenter, 1988), but on near gaze the law is bro-
ken (Allen, 1954; Mok et al., 1992; Van Rijn and
Van den Berg, 1993; Minken and Van Gisbergen,
1994; Tweed, 1997c; Kapoula et al., 1999; Steffen
et al., 2000; Schreiber et al., 2001) and it can be
shown that the deviations from Listing’s law
shrink the required search zones (Schreiber et al.,
2001). The zones are not precisely minimized —
the eye’s deviations from Listing’s law are not
large enough for that — but the reason may be
that the controller is balancing the benefits of
small zones against the advantages of Listing’s law
(Carpenter, 1988; Hepp, 1990; Tweed, 1997c).
Conclusion

Most studies of neural control have focused on
low-dimensional tasks, with few degrees of free-
dom, but real sensorimotor systems are high di-
mensional. I have argued that new issues arise in
higher dimensions, but I have also shown, with
three examples, that it is nevertheless possible to
extrapolate usefully from low-dimensional findings
if we do it based on optimization principles. Each
of these three examples suggests further questions
and generalizations. I have shown that there is
noncommutative computation in the circuitry of
the VOR, and by similar reasoning, one would
expect noncommutativity also in many other brain
systems that deal with rotations, such as those for
head and limb control, auditory and visual local-
ization, space constancy, and mental rotation of
objects (Hestenes, 1994b; Tweed, 1997a; Hen-
riques et al., 1998). Optimization ideas clarified
the implementation of Listing’s and Donders’
laws, and there are doubtless, waiting to be dis-
covered, many higher-dimensional analogs of
these laws, constraining the motions of the eyes,
head, and limbs in complex tasks. An optimization
model clarified the relation between stereopsis and
eye control in six dimensions, and this model, too,
leads to further predictions, for instance that the
layout of stereo search zones on the retinas should
resemble the optimal pattern in Fig. 6 (Schreiber et
al., 2001). And optimization methods have been
applied with great success to many other sensori-
motor problems besides my specific examples.
From the pioneering work of Helmholtz to the
present day, probably no other approach has been
so successful at illuminating the complex control
systems of the brain.
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