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SUMMARY AND CONCLUSIONS 

1. This paper develops three-dimensional 
models for the vestibuloocular reflex (VOR) 
and the internal feedback loop of the sacca- 
die system. The models differ qualitatively 
from previous, one-dimensional versions, 
because the commutative algebra used in 
previous models does not apply to the three- 
dimensional rotations of the eye. 

2. The hypothesis that eye position signals 
are generated by an eye velocity integrator in 
the indirect path of the VOR must be re- 
jected because in three dimensions the inte- 
gral of angular velocity does not specify an- 
gular position. Computer simulations using 
eye velocity integrators show large, cumula- 
tive gaze errors and post-VOR drift. We de- 
scribe a simple velocity to position transfor- 
mation that works in three dimensions. 

3. In the feedback control of saccades, eye 
position error is not the vector difference be- 
tween actual and desired eye positions. Sub- 
tractive feedback models must continuously 
adjust the axis of rotation throughout a sac- 
cade, and they generate meandering, dys- 
metric gaze saccades. We describe a multi- 
plicative feedback system that solves these 
problems and generates fixed-axis saccades 
that accord with Listing’s law. 

4. We show that Listing’s law requires 
that most saccades have their axes out of 
Listing’s plane. A corollary is that if three 
pools of short-lead burst neurons code the 
eye velocity command during saccades, the 
three pools are not yoked, but function inde- 
pendently during visually triggered saccades. 

5. In our three-dimensional models, we 

represent eye position using four-component 
rotational operators called quaternions. This 
is not the only algebraic system for describ- 
ing rotations, but it is the one that best fits 
the needs of the oculomotor system, and it 
yields much simpler models than do rotation 
matrix or other representations. 

6. Quaternion models predict that eye po- 
sition is represented on four channels in the 
oculomotor system: three for the vector com- 
ponents of eye position and one inversely re- 
lated to gaze eccentricity and torsion. 

7. Many testable predictions made by 
quaternion models also turn up in models 
based on other mathematics. These predic- 
tions are therefore more fundamental than 
the specific models that generate them. 
Among these predictions are I) to compute 
eye position in the indirect path of the VOR, 
eye or head velocity signals are multiplied by 
eye position feedback and then integrated; 
consequently 2) eye position signals and eye 
or head velocity signals converge on vestibu- 
lar neurons, and their interaction is multipli- 
cative; 3) tonic neurons carrying different 
components of the eye position signal are in- 
terdependent, so malfunction of one compo- 
nent will affect the others; and 4) in the feed- 
back control of saccades, the error signal is 
the desired position of the eye divided by the 
actual position. 

INTRODUCTION 

The aim of this paper is to develop three- 
dimensional versions of two models that are 
central to current understanding of the ocu- 
lomotor system. The first is the oculomotor 
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integrator, a hypothetical network which 
transforms eye velocity signals in the brain 
stem and midbrain into the eye position sig- 
nals carried by extraocular motoneurons. 
This integrator figures prominently in the 
vestibuloocular reflex (VOR) and the sacca- 
die system. The second model is the internal 
feedback loop of the saccadic system, in 
which the output of the integrator, coding 
eye position, is subtracted from a signal cod- 
ing desired eye position to yield an error sig- 
nal that drives the saccade. Both models will 
be seen to require significant modification 
before they will work in three dimensions. 

The idea of a three-dimensional model of 
the oculomotor system is not new. Consider- 
able work has been done on the three-di- 
mensional properties of the direct path of the 
VOR, analyzing the conversion of head an- 
gular velocity signals from the semicircular 
canals into eye angular velocity signals ( 18, 
22,23). But the indirect path of the VOR, in 
which the eye velocity signal is transformed 
into an eye position signal, has not been 
treated in three dimensions. As we shall see, 
the obvious approach, sending the three 
components of the eye velocity vector 
through three integrators, will not yield what 
is required, namely a signal that specifies eye 
position. We shall show that the move to 
three dimensions brings much more pro- 
found change to the indirect path than it did 
to the direct; quite apart from the usual ques- 
tions of coordinate systems and cross-cou- 
pling, three-dimensional analysis unmasks a 
fundamental flaw in the integrator hypoth- 
esis and forces a qualitative restructuring of 
the indirect path model. The new velocity to 
position transformation that emerges, re- 
placing the oculomotor integrator, will also 
appear in the saccadic system and in any 
oculomotor subsystem that in one dimen- 
sion requires integration of eye or head velo- 
city signals. 

Why does the move to three dimensions 
bring such changes to the indirect path 
model? The reason is fundamental: in three 
dimensions, one of the controlled variables, 
the orientation of the eye as it rotates about 
its fixed center, does not obey the same 
mathematical laws as the scalar variables of 
one-dimensional models and the vector vari- 
ables, eye and head velocity, in three-dimen- 
sional direct path models. For example, ro- 

tations, and hence the angular positions of 
rotating bodies, do not combine by addition. 
Unlike vector or scalar addition, which is 
commutative (that is, u + v always equals 
v + u), composition of rotations is noncom- 
mutative: in general, rotation p followed by q 
gives a different overall angular displacement 
than does q followed by p. The rotating 
knights in Fig. 1 illustrate this behavior. 
Starting from the same orientation, the 
knights undergo identical rotations in differ- 
ent orders. Their overall displacements 
clearly differ. In the figure, the rotations are 
identical with respect to a coordinate system 
fixed in space, but rotations about body- 
fixed axes also do not commute. 

With this nonadditivity in mind, it is per- 
haps not so surprising that integration of an- 
gular velocity, which is a sort of continuous 
summation of small angular displacements, 
does not yield cumulative angular displace- 
ment in three dimensions. Further, since 

A 

B 

4 
FIG. 1. Composition of rotations is not commuta- 

tive. In A and B, the knights, starting from the same 
position, undergo the same rotations with respect to in- 
ertial coordinates, but their final positions differ. *The 
figure also shows that angular position is not the integral 
of angular velocity. A: the knight rotates, from time t = 
0 to 1 s, at 42 radians/s about a vertical axis (shown as 
an arrow). Its angular velocity w is therefore (0, 0, -7r/2). 
For the next second, it rotates at the same speed about a 
horizontal axis (arrow), so w = (0, 7r/2, 0). Hence the 
integral of w from t = 0 to 2 s is (0, 7r/2, -7r/2). B: the 
knight, starting from the same position, rotates with w = 
(0, 7r/2, 0) for the first second, w = (0, 0, -7r/2) for the 
next. Again, the integral of w from t = 0 to 2 s is (0,7r/2, 
-42). That is, the integrals are the same, though the 
final positions differ. 
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negative feedback involves subtraction of eye 
position signals, we can see why the local 
feedback model of the saccadic system also 
requires modification before it will work in 
three dimensions. 

Noncommutative composition has not 
been a problem in oculomotor models before 
now because it disappears in one special case: 
two rotations do combine commutatively 
and additively if they are about the same 
axis. In one-dimensional models, all move- 
ments are about a single axis; this restriction 
hides the peculiarities of the angular position 
variable and makes the oculomotor integra- 
tor and the local feedback model work. As 
for existing three-dimensional models, we 
mentioned earlier that they deal only with 
angular velocity transformations and avoid 
the eye position variable. 

In what follows, we shall review how the 
equation relating motoneuron activity to eye 
motion in one dimension first prompted the 
integrator hypothesis. A generalization of 
this equation will then lead us to seek a ve- 
locity to position transformation that works 
in three dimensions. Four-component rota- 
tional operators called quaternions, ideally 
suited to the task, will be introduced. With 
quaternions in hand, the proper transforma- 
tion follows quickly. The remainder of the 
paper deals with some implications of the 
algebraic properties of eye position for the 
saccadic system. Preliminary results of this 
work have been reported previously (27,28). 

MODELS 

The oculomotor integrator in one dimension 
We shall take the historical route to the 

integrator, starting from the finding that the 
firing rate m of a horizontal extraocular mo- 
toneuron (a neuron innervating a muscle 
that rotates the eye in the horizontal plane) is 
related to horizontal eye position H by the 
equation 

m = k(H - HT) + &I (1) 

where HT is a threshold position, I% is the rate 
of change of H, and k and r are constants 
(20). To be specific, the firing rate of, say, a 
right medial rectus motoneuron is approxi- 
mately equal to the larger of k(H - HT) + &I 
and 0, with the convention that H and I!!l are 
positive for deviations and motions to the 

left (in the pulling direction of the neuron). 
Negative firing rates appear when we regard 
m as the difference between the activity 
levels of a medial and a lateral rectus moton- 
euron with the same k, r, and HT. If we as- 
sume, for simplicity of modeling, that the 
shared HT is the zero or straight ahead posi- 
tion, we get 

m = kH + &I (4 

The position component kH of motoneu- 
ron firing reflects muscular tension exerted 
against the orbital tissue elastic torque -kH, 
which pulls the eye back toward primary, or 
straight ahead, position. The velocity com- 
ponent rH reflects muscular torque exerted 
against the viscous drag -rfi of the orbital 
tissues (20). 

Skavenski and Robinson used this finding 
in their 1973 model of the VOR (25). The 
reflex rotates the eyes at the same speed as, 
but in the opposite direction to, head rota- 
tion to keep the line of sight stationary dur- 
ing head movement. What are the sources of 
the position and velocity components of m 
in this reflex? Since the point of the reflex is 
to make eye velocity equal the negative of 
head velocity, and since vestibular neuron 
firing rates are proportional to head velocity 
during most natural head movements (12, 
3 l), it was natural to suppose that vestibular 
neuron output, inverted and appropriately 
amplified, created the velocity component of 
motoneuron activity. The anatomical find- 
ing that vestibular neurons monosynapti- 
tally contact extraocular motoneurons sup- 
ported this idea (8). As for the position com- 
ponent, it must be computed from the 
velocity signal. Since motoneurons them- 
selves do not integrate their input, Skavenski 
and Robinson postulated an oculomotor in- 
tegrator that receives velocity commands 
and drives motoneurons. 

The integrator was also incorporated in 
models for saccadic eye movements, where it 
transforms a velocity signal from short-lead 
burst neurons into a position signal (2 1). Ex- 
perimental evidence for integration of burst 
neuron activity was found by Cohen and 
Komatsuzaki (3). Velocity commands of the 
pursuit and optokinetic reflex systems may 
also be routed through the same integrator 
(4, 2 1, 3 1) (Fig. 2). 

An equation analogous to Eq. 1 holds for 
vertical motoneurons (14), and many find- 
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FIG. 2. The oculomotor integrator in one dimension. 

Horizontal eye velocity commands from the saccadic 
(I%,), pursuit (HP), optokinetic (I&J, and vestibular (I&) 
systems are all believed to pass through the same in- 
tegrator to yield a single horizontal eye position com- 
mand H. 

ings suggesting the existence of an integrator 
have been replicated for nonhorizontal 
movements (13, 14). Thus it appears that 
gaze control in three dimensions requires a 
three-dimensional analogue of the oculomo- 
tor integrator. 

Eye movements in three dimensions 
We shall make the simplifying assumption 

that three pairs of muscles rotate each eye 
about three orthogonal axes. We shall do this 
to provide the simplest possible setting for 
the question at hand: the implications for the 
oculomotor system of the unfamiliar mathe- 
matical properties of rotations. The resulting 
model is readily refinable to a more anatomi- 
cally exact version by the methods of Bel- 
lionisz, Llinas, Ostriker, and others (18, 19). 
That the axes of muscle action may shift 
when the eye moves is another complication, 
easily incorporated in the model, but calcu- 
lations by Robinson suggest that such shift- 

ing is negligible (23). For simplicity, we as- 
sume that the axes are fixed in the head. 

By association, the motoneurons inner- 
vating the muscles may be divided into three 
orthogonal sets. Total motoneuron activity, 
then, may be represented by a three-compo- 
nent vector m. For example, the vertical 
component of m is the difference between 
the firing rates of two typical motoneurons, 
one pulling leftward and one rightward 
about a vertical axis (Fig. 3). 

To state the relation between m and eye 
motion, we need expressions for eye position 
and velocity in three dimensions. We can 
define an eye position vector using Euler’s 
theorem that a body with one point fixed can 
go from any orientation to any other by a 
single rotation about an axis through that 
fixed point. If the eye can move from pri- 
mary position to some new position by a ro- 
tation of a radians about the unit vector n 
(clockwise looking in the direction of n), call 
the new position a = an. This designation is 
unique if-r < a 5 7~ We stress that a is not a 
vector fixed in the eye. Rather, it is a vector 
representation of a rotation from primary 
position; the vector a lies along the axis of 
rotation and the magnitude of a is the ampli- 
tude of the rotation. 

The vector a is the natural representation 
of eye position for models of ocular me- 
chanics because it is the only generalization 
of H (from Eq. 2) that is symmetric, in the 
sense that it treats all axes on even footing. In 
contrast, the systems of Fick (6a) and Helm- 
holtz (10) are asymmetric because they ex- 
press a position as a triplet of rotations, two 
of whose axes depend on the rotation about 
the third, fixed axis. Put another way, the 
systems of Fick and Helmholtz are physically 

FIG. 3. Idealized geometry of the muscles rotating the right eye. Muscles 1 and 2, the inferior and superior recti, 
rotate the eye about the y-axis. The inferior and superior obliques (muscles 3 and 4) pull about the x-axis, and the 
medial and lateral recti (muscles 5 and 6) about the z-axis. If f; is the firing rate of a typical neuron innervating muscle 
i, then m = (f3 - f4, fi - f2, f5 - fs). 



836 D. TWEED AND T. VILIS 

implemented as gimbals, or nested sequences 
of axes, where again the orientations of some 
axes depend on the rotations about others. 
But the eye does not move on gimbals. The 
three components of m, which determine eye 
position, apply their torques simultaneously 
about three nearly fixed axes, so their actions 
are minimally, and probably mutually, in- 
terdependent. The symmetry of this arrange- 
ment favors the a vector representation of 
eye position. 

A vector expression for eye velocity is ob- 
tained similarly: an eye spinning at w ra- 
dians/s about the unit vector u has angular 
velocity o = WU. This is the standard defini- 
tion of angular velocity and yields the most 
natural generalization of I%, obtained by 
making the axis of rotation arbitrary. But 
note two, perhaps surprising, properties of w. 
First, the directions of w and a are different, 
and in fact the angle between the two vectors 
can take any value from 0 to 1 80°. Second, it 
will be very helpful to observe that, despite 
its name, the angular velocity vector was not 
defined to be the time derivative of a. We 
shall soon confirm that w is not the deriva- 
tive of a, or of angular position in any sense. 

If the three-dimensional relation between 
motoneuron activity and eye motion is to 
preserve the form of Eq. 2, the elastic torque 
vector exerted by the passive orbital tissues 
must be a linear function of a. Since any 
linear function taking three-component vec- 
tors to three-component vectors is equiva- 
lent to multiplication by a 3 X 3 matrix, the 
elastic torque at any eye position a is -Ka, 
where K is a fixed matrix. Similarly, the vis- 
cous drag at any eye velocity w is -Rw. The 
three-dimensional generalization of Eq. 2 is 
therefore 

m=Ka+Rw (3) 

During head rotation, the velocity compo- 
nent of m comes directly from the vestibular 
neurons, as described in current three-di- 
mensional models of the direct path (18, 22, 
23). The position component is a problem 
because the three-dimensional eye velocity 
signal w cannot be integrated to yield a posi- 
tion signal a. (We use the same symbol to 
represent a physical variable like eye velocity 
and its neural representation.) 

The knights from Fig. 1 can be used to 
show that angular position is not the integral 

of velocity. The angular velocity of each 
knight is a three-component vector which 
varies with time; mathematically, it is a 
function from the real numbers to euclidean 
3-space and as such is integrated compo- 
nent-wise. The computations in the figure 
legend show that, for the motions depicted, 
the integral is the same for both knights, 
whereas the overall displacements and hence 
the final positions clearly differ. Note how 
serious this result is: the same integral corre- 
sponds to what are, in any reasonable defini- 
tion, different angular positions. Thus inte- 
gration of angular velocity does not yield a, 
or angular position in any sense, and angular 
position is not even a function of the integral 
of velocity. In general, no computation can 
derive angular position from the instanta- 
neous output of a velocity integrator. The 
moral for the oculomotor system is that if 
signals from the three semicircular canal 
pairs went through three integrators (or 6 
signals through 6 integrators), as in Fig. 4, the 
output of the integrators would not specify 
eye position. 

If the theoretical advantages and the ac- 
cord with experiment enjoyed by the one-di- 
mensional integrator hypothesis are to be re- 
tained in the three-dimensional model, we 
must devise a replacement for the integrator 
to transform the eye velocity command w 
into the eye position command a. This 
transformation can be effected, with many 
steps and feedback loops, using vector oper- 
ations alone. Introducing a secondary repre- 
sentation of eye position as a nine-compo- 
nent rotation matrix simplifies the process. 
But the simplest approach is to use a four- 
component representation of angular posi- 
tion known as a quaternion, invented by 
W. R. Hamilton and first applied to the ocu- 
lomotor system by Westheimer (32). In fact, 

FIG. 4. A three-dimensional eye velocity integrator. 
In this model, a vector signal coding the eye velocity 
command W, from the semicircular canals or short-lead 
burst neurons or elsewhere, is integrated to yield an eye 
position command a’. This model generates large cumu- 
lative gaze errors and post-VOR drift. 
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if in place of a we adopt the practically indis- 
tinguishable measure of eye position q (ex- 
plained below), quaternion calculus gives the 
transformation from w to q in a very na- 
tural way. 

The velocity to position transformation 
in three dimensions 

A brief introduction to quaternions, and 
some references, may be found in the AP- 

PENDIX. Throughout this section we supply 
the bare essentials of quaternions needed to 
follow the discussion. To give some intuitive 
meaning to the operations, and to facilitate 
comparison with vector models, we present 
the material in a way that strongly empha- 
sizes the links to the conventional vector al- 
gebra of dot and cross products. 

On this approach, a quaternion is a four- 
component entity which can be regarded as 
the sum of a scalar q. and a vector q, thus 

q=qo+q (4) 

Quaternion sums, products, quotients and 
magnitudes are defined in the APPENDIX. 

Any quaternion can be expressed in the form 
)9j (cos 0 + n sin 0), where Jgl is the quater- 
nion magnitude and n is a unit vector (a vec- 
tor of length 1) parallel with q; 0 is called the 
angle of the quaternion. A theorem, which is 
proved in the APPENDIX, says that any qua- 
ternion represents a rotation about an axis in 
the direction of q (or n), through twice the 
angle of q. Thus the quaternion q = 2 cos 
(a/2) + 2n sin (a/2) represents the same rota- 
tion as the vector a, namely a radians about 
the axis n. The vector q is very similar to a: it 
has the same direction, and its magnitude, 2 
sin (a/2), differs from a by less than 4% 
within an oculomotor range of 55 O. At pri- 
mary position, both a and q equal 0, and 
their magnitudes grow with gaze eccentricity 
in any direction. If we let the position com- 
ponent of motoneuron firing be Kq instead 
of Ka, we have a model of the ocular plant 

m=Kq+Rw (5) 

which is practically indistinguishable from 
that of Eq. 3. To simplify the mathematics, 
we make one final modification to the plant 
equation, redefining q and K by dividing the 
former by 2 to get a unit quaternion and 
multiplying the latter by 2 to compensate. 
With a quaternion model we can use the fol- 

lowing equation (proved in the APPENDIX) 

for q in terms of the quaternion product of 
w/2 and q 

W2h = s (6) 

By this formula, it is clear that the network 
in Fig. 
nal to 

5 transforms an angular velocity sig- 
a position signal. The vector part of-q 

is conveyed to the motoneurons; go is only 
for feedback. The main difference from the 
one-dimensional model is that w/2 is multi- 
plied by a feedback signal before integration. 
Angular velocity is multiplied by position 
feedback prior to integration even when vec- 
tors or rotation matrices are used to take ve- 
locity to position, so this unusual use of 
feedback is not a quirk of the quaternion ap- 
proach. 

Implementation of the model would pose 
no special problems, since the quaternion 
equations can be expressed in term s of scalar 
operations. For example, we can break up 
the quaternion in tegrator in Fig. 5 into four 
scalar integrators. The fou rth oft .hese is what 
corresponds, roughly, to the oculomotor in- 
tegrator of the horizontal model. That is, the 
output of the fourth integrator specifies how 
far the eye has rota ted horizo ntally (i.e., 
about a vert ical axis). Expressed in the coor- 
dinate system of Fig. 3, the input of this inte- 
grator is the fourth c om ponent of @q/2, 
which is (olq2 - ti2q1 + u3qo)/2, where q1 and 
q2 are the x and y components of q-the 
nonhorizontal components in the sense that 
z is the axis for horizontal rotation. This for- 
mula shows that the rate of change of the 
fourth component of q depends on the other 
three components and on all three compo- 
nents of U. Similar equations for the other 
components show that if any one component 
of the integrator malfunctioned, the outputs 
of the other three would become inaccurate, 

FIG. 5. A three-dimensional velocity to position 
transformation. The vector w is ocular angular velocity. 
The quaternion q is ocular position with respect to the 
head. ‘II’ indicates quaternion multiplication. Multipli- 
cation of the vector o/2 and the quaternion q is defined 
because a three-component vector is also a quaternion 
with scalar part 0. 
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since each component depends on input 
from all the others. Vector and rotation ma- 
trix models have similar properties. Thus we 
see the extensive cross-coupling that is re- 
quired in the indirect path even with identi- 
cal orthogonal coordinate systems. 

Computer simulations 
In Fig. 6 we use computer simulations to 

compare the indirect path model in Fig. 5 
(the quaternion model) with the model 
where the position component of m is the 
integral of eye velocity (Fig. 4). In this way 
we can see in detail where and how badly the 
latter model fails. 

As a rule, it is the angle between q and w 
that matters. As long as q and w remain par- 
allel, an integrator model is approximately 

A 

FIG. 6. Computer simulations of two VOR models. 
Commentary in text. The vectors h, g, and q depict head 
angular velocity, initial gaze direction, and the vector of 
the initial eye position quaternion, respectively; h and g 
are set to length l/2 so as not to dwarf the q vector. A: h = 
(0.353,0,0.353); g = (0.353,0.25,0.25); q = (0, -0.271, 
0.27). B: h = g = (0.353, 0, 0.353); q = (0, -0.383, 0). 
C: g and q are as in A. The three head velocity vectors 
are, in temporal order, hl = (-0.14 1, 0, 0.48); h2 = 
(-0.079, -0.456, -0.189); h3 = (-0.079, 0.456, 
-0.189). 

correct. When the angle becomes large, intol- 
erable errors mount quickly. The simula- 
tions will show that this can happen for eye 
movements within the oculomotor range. 
The quaternion model gives the correct eye 
position signal for all movements. 

In the simulations, we input identical head 
velocity functions to the two models. The 
outputs we consider are the indirect path sig- 
nals, so we are looking at the eye positions 
coded by the instantaneous level of indirect 
path activity, not necessarily the actual eye 
positions. For the quaternion model, there is 
no difference, since the eye position signal is 
perfectly matched to eye velocity. For the in- 
tegrator, the precise gaze path depends on the 
speed of head motion as well as its path. 
Thus, for slow head movements, where the 
indirect path dominates, the gaze trajectories 
will closely resemble those shown in the sim- 
ulations. For fast movements, the actual gaze 
point would more closely follow the correct 
trajectory, but there would be superimposed 
drift toward the position coded by the indi- 
rect path. At the end of the head movement, 
there would be post-VOR drift to the posi- 
tion coded by the indirect path. 

In Fig. 6, solid lines show the eye position 
trajectories coded by the quaternion model. 
Dashed lines show eye positions coded by 
indirect path activity in the integrator model. 
In each case, coded eye positions are shown 
as they would appear monitored with a 
scleral coil and displayed in horizontal-verti- 
cal form on an oscilloscope. Torsional errors, 
which occur in the integrator model in all 
three simulations, are not shown. Circles de- 
marcate an oculomotor range of 55 O. Vec- 
tors drawn beside each simulation depict 
head velocity, h, and, in Fig. 6, A and B, the 
initial gaze (or fixation) vector g and the vec- 
tor of the initial eye position quaternion q. 
The coordinate system is the head-fixed sys- 
tem used in Fig. 3, though here we view it 
from behind to approximate the subjective 
viewpoint used in the simulations. 

In Fig. 6A, the subject is looking 45” up 
and to the left when the head begins to rotate 
leftward about an axis in the sagittal plane 
tipped 45” forward and down from the 
straight-up direction. The initial angle be- 
tween q and w is 120”. The models diverge 
immediately. The quaternion model, appro- 
priately, makes the gaze point arc about the 
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hub of the head rotation, shown as a dot. The the axis. In this situation, which is very 
integrator model slices upward. Gaze error in nearly a live-action version of the simulation 
this model, defined as the angle between the in Fig. 6B, the integrator model predicts a 
gaze directions generated by the two models, horizontal eye excursion of about *5” and a 
runs at -30% of head rotation in this simu- horizontal VOR gain, as defined by Fetter et 
lation. That is, when the head has rotated al. of 0.24. The actual finding was a station- 
through 20”, the error is almost 6”; at 50° ary gaze point and a horizontal gain of 0, as 
the error is 15”. predicted by the quaternion model. 

In Fig. 6B, the head rotates about the same 
axis as in Fig. 6A, but this time the gaze is 
directed along the axis at the start of head 
movement. Clearly, head rotation about the 
fixation line would cause almost no transla- 
tion of the retinal image of an object on this 
line even if the eyes were stationary in the 
head. A correct VOR, therefore, would cause 
no change in gaze direction with respect to 
the head. Figure 6B shows that the quater- 
nion model does in fact leave the craniotopic 
gaze direction unchanged. The integrator 
model drives the eye away from the target, 
rightup, and out of the oculomotor range. 

In summary, then, the simulations show 
how the integrator model departs from the 
kinematically sound quaternion model when 
q and w are not parallel. We can gain some 
insight into both models and their differ- 
ences by expressing Eq. 6 in vector terms. 
The formula for translating a quaternion 
product into vector terms and operations is 
the following 

P9 = Poclo - P l q + Poq + 9oP + P x q (7) 

Multiplying Eq. 6 through by 2 and applying 
Eq. 7, we obtain 

wq = --w*q+q()u+wxq=2q (8) 
Figure 6C shows how errors can accumu- 

late in the integrator model when the head 
moves about more than one axis. As the head 
rotates, cycling twice through a series of three 
axes, the quaternion model draws the eye 
twice around the solid triangle, starting from 
the upper left corner. The integrator model is 
only 5” off at the end of the first, 60° head 
rotation, but an 80° turn about a new axis 
brings the error to 15” and it mounts steadily 
thereafter. An interesting feature of this sim- 
ulation is that we have chosen the head rota- 
tion axes so that the quaternion model obeys 
Listing’s law throughout, showing that inte- 
gration of w does not yield eye position even 
when w is constrained to preserve Listing’s 
law. An integrator model, therefore, will not 
work in the saccadic system any more than 
in the VOR. 

The errors generated by the integrator 
model are so large that subjective observa- 
tion of gaze direction before and after a 
closed-eye head rotation, as in Fig. 6B, seems 
to us sufficient to refute the model. But for 
more objective evidence, and to measure the 
accuracy of the quaternion model, the first 
two simulations would translate readily into 
experiments. Some relevant data are in fact 
available from an experiment by Fetter et al. 
(6), in which a subject was tipped back 60’ 
and rotated in the dark rt24” about an earth- 
vertical axis while looking straight up along 

When q and o are parallel, their cross 
product vanishes, so the equation simplifies 
to 

wq=-wq+qoo=2q (9) 

Extracting vector parts, we get 

that is 
qow = 24 (10) 

d 
cos (a/2)w = 2- [sin (a/2)n] 

dt 

-- 
Hence 

= cos (a/2)& + 2 sin (a/2)ti 

w = an + 2 tan (a/2)li 

(10 

(12) 

If n is not moving (i.e., if ri = 0) then w = 
an = a. This result shows why an integrator 
works in one-dimensional models, where q 
and w are always parallel and n never moves. 

If q and w are not parallel, o X q does not 
vanish, and so q has a component orthogonal 
to W. The error in the integrator model de- 
pends on the size of the o X q component, 
which depends in turn on the angle between 
q and O, and on the magnitude of q, that is, 
the eccentricity of the current eye position. 
These results agree with our simulations, 
where large gaze eccentricities and large 
angles between q and w combined to yield 
particularly large gaze errors, though we 
know from simulation 6C that the smaller 
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errors accrued near primary position can ac- 
cumulate quickly. 

Feedback control of saccades 
Another place where the algebraic proper- 

ties of rotations call for changes in current 
oculomotor models is the feedback control 
of saccades. The evidence for feedback is that 
saccades can attain their targets, despite un- 
predictable interference. For example, brief 
electrical stimulation of omnipause cells, 
which inhibits the short-lead burst neurons, 
slows an ongoing saccade but does not make 
it inaccurate (1). In the one-dimensional 
local feedback model for saccades, the out- 
put of the integrator, coding eye position, is 
subtracted from a signal coding desired eye 
position to give an error signal that drives the 
short-lead burst neurons until the target is 
reached (29) (Fig. 8A). The move to three 
dimensions brings an immediate complica- 
tion: the error signal must have a direction as 
well as an amplitude. The comparator, given 
desired and actual eye position, must com- 
pute the speed and direction of motion that 
will best reduce the error. If we were dealing 
with translational motion, this would be a 
job for vectors. The vector difference be- 
tween desired and actual position would give 
the magnitude of the error and the optimal 
direction of correcting movement. But as we 
are dealing with rotations, vector methods 
are unwieldy. The vector difference between 
desired and actual eye position does not give 
the optimal direction of rotation. 

Figure 7 makes this clear. Figure 7, A-C, 
shows the primary, present, and desired po- 
sitions of the globe, respectively, together 
with the corresponding q vectors. (In Fig. 74 
q = 0.) In Fig. 70 the arrow is the vector 
difference v between the q’s of the desired 
and actual positions; the globe shows the ori- 
entation reached by rotating about v, 
through the angle specified by v, starting 
from position B. This orientation does not 
match the desired position C, showing that 
the vector difference between B and C is not 
the rotation that takes B to C. In other words, 
it is not an accurate error signal. In this case, 
the final position is correct except for tor- 
sion, but in general no rotation about the 
difference vector, through whatever angle, 
will bring even the line of sight to the right 
mace. 

The correct error direction may be found 
by computing an eigenvector of the quotient 
of the desired and actual rotation matrices. 
Rotation matrix methods for finding the 
error magnitude are also cumbersome. But 
with quaternions one division yields both. 
The quotient of desired and actual eye posi- 
tion quaternions is the error quaternion E. 
The vector of E determines the optimal ocu- 
lar angular velocity. The mathematical basis 
for these assertions is the quaternion formula 
for composition of rotations (proved in the 
APPENDIX): if a body undergoes rotation q 
and then rotation E, its overall angular dis- 
placement is the quaternion product Eq, 
which is not in general equal to qE. Thus, if 
the eye is at position q and the desired eye 
position is q*, the error E is the rotation that 
satisfies the equation Eq = q*. Right-multi- 
plying each side by q-‘--that is, dividing 
both sides by q-we obtain the formula E = 
q*q-‘. (Because q is a unit quaternion, its 
inverse is easily computed: q-l = go - q-see 
APPENDIX.) 

To move toward the target, then, the eye 
must rotate about an axis in the direction of 
E. That is, the direction of E is the direction 
of the optimal velocity W. As in the one-di- 
mensional model, E passes through a non- 
linear element (in this model, three orthogo- 
nal pools of short-lead burst neurons) to de- 
termine the magnitude of the eye velocity 
command. When the feedback signal q 
equals the desired eye position q*, then E = 
q*q*-l = 1; the vector of 1 (when 1 is viewed 
as a quaternion) is 0, so E, and therefore w, 
vanish and the movement stops. Conversely, 
if q* is a unit quaternion the velocity com- 
mand will not vanish unless q = q*, so the 
system will not stop off target. Figure 8C is 
the flow diagram for a three-dimensional ser- 
vomechanism based on these properties of 
quaternions. 

If we use computer simulations to com- 
pare the multiplicative feedback model in 
Fig. SC with the subtractive model in Fig. 
8B, we see that they both perform well for 
saccades within the oculomotor range. The 
reason the subtractive model works is that, 
although its error signals are not optimal, 
they are close to correct for targets in the 
oculomotor range, and the error signals ap- 
proach the optimal as the saccade progresses. 
Gaze traiectories. disnlaved as thev would 
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position error in inertial coordinates. Note 
that Fig. 8B is well designed apart from its 
comparator; in particular, it has a quaternion 
velocity to position transformation, so any 
poor performance is attributable to its use of 
subtractive feedback. The subject is initially 
standing with head erect, looking 45” down 
in the sagittal plane. The target appears at 
eye level directly behind the subject. Again, 
gaze trajectories are shown as they would ap- 
pear monitored with a scleral coil and dis- 
played in horizontal-vertical form on an 
oscilloscope, but since gaze saccades are sel- 
dom displayed this way, it may be more 
helpful to think of the subject as standing at 
the center of a large glass sphere; gaze trajec- 
tories show where the subject’s fixation line 

B 

FIG.7. Eye position error is not the difference between desired and present eye position. A: primary, or 
reference, position of the globe. B: present position, reached from primary position by rotating r/2 radians about 
the y-axis, is represented by q = -sin (r/4)j, (arrow). C desired position, reached from primary position by rotating 
7r/2 radians about the z-axis, is represented by q* = sin (?r/4)k (arrow). D: the arrow is v = q* - q = sin (7r/4)k + sin 
(r/4)j = (k + j)llb = sin (r/2) (k + j>/B. S ince q* and q are both in the yz plane, so is v. The orientation reached by 
rotating 7r radians about v, starting from q, does not match q*. This is, the globe cannot rotate from q to q* about v. 
The difference vector v, therefore, is an inaccurate error signal. 
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B 

C 

FIG. 8. Feedback control of saccades. A: the one-dimensional local feedback model. H* is the desired horizontal 
position of the eye. The error signal E = H * 
I%. B: 

- H passes through a nonlinear element to yield the velocity command 
a three-dimensional subtractive feedback model where the actual eye position quatemion q is subtracted from 

the desired position q* to yield an error signal which drives the saccade. C a kinematically sound three-dimensional 
model. The leftmost ‘II’ indicates tht q* is multiplied by q-l, that is, divided by q. The vector of the quotient E passes 
through a nonlinear element to yield 42. 

intersects the sphere. In Fig. 9A we view the 
saccade from directly in front of the subject; 
in B, from the subject’s left side. The gaze 
trajectory of the multiplicative feedback 
model, shown as a solid line, sweeps around 
to the target. The subtractive model (dashed 
line), veers too high, descends, and wobbles 
ever more slowly toward home, effectively 
stalling at the end of the dashed track. 

The reason the model is having such trou- 
ble when it is so close to the target (within the 
range of a large nongaze saccade), is that, as 
we shall see in more detail below, the inaccu- 
racy in subtractive error estimates depends 
not only on the size of the error, but also on 
the size of q, where q, for these gaze saccade 
simulations, is the position of the eye in in- 
ertial coordinates. When q is large, as at the 
end of the 180’ gaze saccade, subtractive 
error estimates are almost orthogonal to the 
true error direction. This difficulty with large 
angles is not a result of the sine nonlinearity 

in the quaternion representation of rotations. 
A model that eliminates the sine functions 
by computing a from the output of the qua- 
ternion integrators and subtracting that from 
a desired eye position vector a* does not do 
any better. On attempting a 180” gaze sac- 
cade like the one above, this model veers 
wildly on its trip around to the target and 
then settles into a slowly widening oscillation 
near the correct gaze direction. 

We can analyze the difference between the 
subtractive and multiplicative models in 
more detail if we express the multiplicative 
feedback equation E = q*q-1 in vector terms 

E=qo*40+Q**Q+90Q*-90*4+qXq* (13) 

The vector part of the error signal is 

E = WI* - so*a + q x q* (14) 

The first two addends on the right side give a 
linear combination of q and q*, so their con- 
tribution lies in the same plane as q and q*. 
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FIG. 9. Computer simulations of gaze saccades. Commentary in text. A: front view. B: view from subject’s left 
side. C: the initial gaze vector g, the initial q, and the desired g* and q* are shown in an inertial coordinate system; 
gaze vectors are set to length 1. Thus g = (0.707, 0, -0.707); q = (0, 0.383, 0); g* = (- 1, 0, 0); q* = (1, 0, 0). 

This plane also contains q* - q, which is the 
subtractive estimate of error. The final ad- 
dend on the right side, q X q*,is perpendicu- 
lar to the plane of q and q*, so when this 
vector is large the subtractive estimate of 
error will be inaccurate. There are two fac- 
tors that tend to make q X q* large: large 
vectors q and q* and a large acute angle be- 
tween q and q*. 

When q and q* are parallel, as in one-di- 
mensional models, then 

E = 904” - ah 

= cos (a/2) sin (a*/2)n* - cos (a*/2) sin (a/2)n 

= sin [(a* - a)/2]n (15) 

This last term is approximately equal to q* - 
q when a is small. Hence the subtractive 
error estimate points in the same direction as 
the true error and is approximately equal to 
it in magnitude. 

When q and q* are near 0, as in head-fixed 
saccades near primary position, then go and 
q$ are near 1, because q and q* are unit qua- 

ternions. Hence qoq* - qoq*, which is ap- 
proximately equal to q* - q, is a small vector 
but q X q*, the product of small vectors, is 
negligible. Thus the vector of q*q-’ is ap- 
proximately equal to q* - q and the subtrac- 
tive error estimate is approximately correct. 
As a result, the subtractive system moves the 
eye in about the right direction and so q and 
q* come closer to being parallel, causing the 
cross-product term to shrink still further. The 
magnitude of q may be increasing, tending to 
enlarge the cross product, but for saccades 
within the oculomotor range the shrinking 
effect dominates, the error estimates become 
more accurate, and the eye reaches the he- 
sired position. 

When q and q* are of near unit length, as 
they are at the end of the gaze saccade in Fig. 
9, q. and q$ are near 0. The vector part of E is 
approximately equal to q X q*, which is or- 
thogonal to the plane of q* - q, so the sub- 
tractive error estimate can be ~90~ off the 
correct direction if q X q* is large. The eye 
may be guided away from the target and into 
a loop nearby. 
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Before leaving the subject of gaze saccades, 
we mention that the gaze saccade feedback 
models of Guitton and Volle (9) and Laur- 
utis and Robinson (17) incorporate integra- 
tors of head velocity, which keep track of 
head position. Since the head can rotate full 
circle repeatedly, these hypothetical integra- 
tors handle very large angular displacements. 
They are therefore subject, but in a more ex- 
treme way, to the same problems that beset 
the three-dimensional eye velocity integrator 
in Fig. 4. If we model three-dimensional gaze 
saccades using head position trackers, they 
will require the sort of multiplicative feed- 
back structure shown in Fig. 5. 

The system in Fig. 8C has some interesting 
properties that can be tested experimentally. 
First, it makes straight saccades (as measured 
with scleral coils and viewed in horizontal- 
vertical display on an oscilloscope) toward 
and away from primary position. The sub- 
tractive feedback model in Fig. 8B does the 
same, and so do cats, monkeys, and humans, 
with varying degrees of precision (5, 7, 15). 
Saccades that are not directly toward or away 
from primary position are slightly curved in 
both models. But all saccades in model 8C 
have fixed axes, whereas in subtractive 
models the axis may rotate as much as 30” 
during a movement. Thus an examination of 
instantaneous eye velocity during saccades 
that are neither centripetal nor centrifugal 
would provide evidence for choosing be- 
tween the two models. 

The subtle curvature of noncentripetal, 
noncentrifugal saccades in both models can 
make it look like the “horizontal compo- 
nent”, say, of a saccade is over before the 
“vertical component.” The direction of one 
component can also appear to reverse even 
though, in model SC, the saccade is actually 
proceeding efficiently, as a smooth rotation 
about a single fixed axis. These observations 
show that differences in timing between the 
horizontal and vertical components of sac- 
cades, as measured with scleral coils, do not 
necessarily entail independent horizontal 
and vertical saccade generators. However, 
the asynchronous horizontal and vertical 
components found by King et al. (15) are 
probably not due to this effect because the 
saccades studied were approximately centrif- 
ugal. Their curvature may have been due to 
imprecision in the comparator or in the 

nonlinear element that computes desired eye 
velocity from motor error by adjusting the 
length of the latter vector while preserving its 
direction. If error direction were imperfectly 
computed or preserved, systematic curvature 
of saccades could result. 

A second interesting property of model 8C 
is that, if the input q* has its vector in the 
coronal plane, the system obeys Listing’s 
law. The law holds that the eye assumes only 
those orientations that can be reached by ro- 
tation from the primary position about an 
axis in Listing’s plane, which is a coronal 
plane fixed in the head and orthogonal to the 
fixation line in primary position. By defini- 
tion, the eye position vector a and the vector 
q lie along the axis about which the eye 
would turn to get from primary position to 
its current position in a single rotation. List- 
ing’s law, then, can be stated in the following 
form: q is always in the coronal plane. If we 
use the coordinate system in Fig. 3, where the 
yz plane coincides with the coronal plane, 
the law becomes ql = 0. [This compact for- 
mulation of Listing’s law is due to Wes- 
theimer (32).] If the desired eye position sig- 
nal q* has its vector in the coronal plane, the 
final eye position will too. That is, the eye 
position at the end of the saccade will fit 
Listing’s law. Further, it can be shown that if 
the start position also fits Listing’s law, so 
will all intermediate positions. 

It is noteworthy that a system that rotates 
the eye about axes in Listing’s plane may not 
preserve Listing’s law. For example, in Fig. 7, 
position C fits Listing’s law, and therefore 
any position with the same gaze direction but 
different torsion does not fit the law. In par- 
ticular, 70 does not. But the rotations from 
primary position to B and thence to D are 
both about coronal axes. Thus confining the 
rotation axes to the coronal plane does not 
preserve Listing’s law. Conversely, a system 
that preserves Listing’s law must often rotate 
the eye about axes not in the plane. (For ex- 
ample, see Fig. 6C.) In fact, Eq. 14 shows that 
unless q and q* are parallel, that is unless the 
saccade is purely centripetal or centrifugal, 
the saccade axis will have a nonzero compo- 
nent, q X q*, out ofthe plane. In other words, 
Listing’s law requires that q always be in the 
coronal plane, and that w usually be out of 
the plane. [See also Helmholtz ( 1 O).] 

This result has implications for the con- 
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nections of short-lead burst neurons, whose 
outputs code saccadic eye velocity com- 
mands. In 198 1, Robinson and Zee (24) pro- 
posed that there are three populations of 
short-lead burst neurons with nearly orthog- 
onal action vectors aligned with the sensitiv- 
ity vectors of the three semicircular canal 
pairs. Recent studies support this contention 
(11, 30). Robinson and Zee suggested that 
Listing’s law is preserved because, for vi- 
sually triggered saccades, the inputs to the 
burst neurons are arranged so that the total 
eye velocity command coming from the 
three burst cell pools is always a vector in the 
coronal plane. They also suggested that the 
true on-direction of a nonhorizontal burst 
neuron could not be determined by looking 
for maximal responses to voluntary saccades: 
since all such saccades would have axes in 
the coronal plane, they would activate 
equally both populations of nonhorizontal 
burst neurons, whose action vectors, aligned 
with the sensitivity vectors of the canals, 
would make nearly equal and opposite (45”) 
angles with the coronal plane. 

As we saw, however, Listing’s law actually 
requires that the rotation axis be out of the 
coronal plane for most saccades. It is there- 
fore unlikely that the nonhorizontal short- 
lead burst neurons are yoked so as to keep 
the velocity vectors of saccades in the coro- 
nal plane. 

Given that Listing’s law does not restrict w 
to the coronal plane, how does it constrain 
O? The answer is that Listing’s law, coupled 
with the proposition that all saccades have 
fixed axes, does not rule out any direction for 
eye velocity. But the further requirement 
that movements be restricted to the oculo- 
motor range does constrain the eye velocity 
vector as follows: if an animal obeys Listing’s 
law and makes saccades with fixed axes, 
those axes all lie within (x/2)” of the coronal 
plane, where x0 is the limit of the animal’s 
oculomotor range. [This result, like most of 
the geometric implications of Listing’s law, 
was known to Helmholtz ( 1 O)]. For example, 
in monkeys, whose oculomotor range is 
about 45”, no fixed-axis saccade between 
points fitting Listing’s law has an axis tilting 
more than 22.5” out of the coronal plane. If a 
short-lead burst neuron had its action vector 
orthogonal to the plane of a nonhorizontal 
canal, at say 45” to the coronal plane, no 

visually triggered saccade would activate it 
maximally. Thus its precise on-direction 
could not be ascertained by looking at its 
activity during voluntary saccades. Never- 
theless, it should be possible to distinguish 
burst neurons aligned with different nonhor- 
izontal canal planes by looking for differen- 
tial activation during visually triggered sac- 
cades with axes tilted in front of and behind 
the coronal plane. 

DISCUSSION 

Three-dimensional analysis has been seen 
to reveal several qualitatively new features 
of the vestibuloocular reflex and the saccadic 
system. These new properties appear because 
three-dimensional rotations do not have the 
mathematical properties assumed in pre- 
vious models. Thus we are able to reject the 
notion of an eye velocity integrator in the 
indirect path of the VOR because we found 
that when the rotation axis is free to move, 
integration of angular velocity does not yield 
angular position. In fact, no computation 
can derive angular position from the instan- 
taneous output of a velocity integrator. 
Computer simulations of an indirect path 
model incorporating a velocity integrator 
show large, cumulative gaze errors and post- 
VOR drift, which are clearly unphysiologi- 
cal. A new velocity to position transforma- 
tion is therefore required. 

In the internal feedback control of sac- 
cades, we found that eye position error is not 
the vector difference between desired and ac- 
tual eye position. A system using such sub- 
tractive error estimates must continuously 
adjust the rotation axis of the eye throughout 
a saccade. The problem is most apparent in 
large gaze saccades, where substractive feed- 
back can make the gaze point follow a wan- 
dering path and stall short of the target. 

Note that these two results follow from 
simple principles of rotational kinematics. 
Quaternions serve merely as a computa- 
tional tool in their derivation; the results 
themselves require no assumptions about 
whether the oculomotor system actually uses 
a quaternion representation of eye position. 
Also in this category are the results clarifying 
Listing’s law. We found that this law requires 
that the rotation axes for most saccades lie 
outside the coronal (Li sting’s) pl ane and that 
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the axes of fixed-axis saccades between posi- 
tions fitting Listing’s law can lie as much as 
(x/2)” out of the plane, where x0 is the ocu- 
lomotor range. If we assume that there are 
three pools of short-lead burst neurons cod- 
ing the saccadic eye velocity command, we 
have the corollary that the three pools are not 
yoked, but function independently during 
visually triggered saccades. 

In developing three-dimensional replace- 
ments for the integrator and the comparator 
of the saccadic system, we have worked al- 
most entirely with quaternions. The reason is 
that quaternions, while not the only possible 
representation of eye position, are the repre- 
sentation that best fits the needs of the ocu- 
lomotor system. Quaternions mirror the 
properties of rotations with a fidelity and di- 
rectness matched only by nine-component 
rotation matrices, and quaternions yield 
much simpler models than rotation matrices 
do: because they represent rotations in terms 
of axes and amplitudes, quaternions connect 
more smoothly with the plant equation, they 
are better for computing the angular velocity 
that will take the eye from its current posi- 
tion to some desired orientation, and they 
simplify the implementation of Listing’s law. 
For these reasons, we believe that quaternion 
models of the VOR and saccadic system are 
the best concrete proposals now available. 

The most striking specific test of the qua- 
ternion models is the fourth channel: ac- 
cording to these models, eye position is rep- 
resented in the oculomotor system in the ac- 
tivity of not three but four populations of 
tonic neurons, the new one coding the scalar 
or q. component of eye position, cos (a/2). 
The firing rates of such cells would be in- 
versely related to the eccentricity of gaze in 
any direction. They would also code torsion. 
Within an oculomotor range of 45”, though, 
cos (a/2) is always between 0.92 and 1, so if 
the coding were linear, the activity of these 
cells might appear constant and unrelated to 
eye position. Unless one were specifically 
looking for it, this fourth channel might eas- 
ily escape detection. Other specific tests of 
the quaternion models would involve look- 
ing for neural correlates of the precise equa- 
tions and operations used in the models. 

Most of the predictions discussed in this 
paper do not yield tests specific to quater- 
nion models, because other models (in fact, 

all viable models we devised), based on other 
mathematical systems such as vectors and 
rotation matrices, yield the same predictions. 
Clearly, this unanimity greatly increases the 
plausibility of the predictions. In fact, we 
emphasize that the chief virtue of the qua- 
ternion models is that they generate funda- 
mental predictions and present these predic- 
tions in the simplest possible setting. For ex- 
ample, whether the transformation from 
angular velocity to position is done using 
vectors alone, vectors and rotation matrices, 
or quaternions, angular velocity is multiplied 
by position feedback before integration. In 
the first two versions, this fundamental fea- 
ture is more or less obscured in a welter of 
operations; in the quaternion model it stands 
out clearly. The fact that this feedback loop 
recurs in all viable models strongly suggests 
that the actual transformation in the brain, 
whatever its specifics, will share the multipli- 
cative feedback structure of Fig. 5. Similarly, 
quaternion and rotation matrix models both 
show that in the feedback control of sac- 
cades, the error signal depends on the quo- 
tient of actual and desired eye position, sug- 
gesting that a multiplicative interaction is es- 
sential. On this view, Fig. SC shows the basic 
multiplicative feedback loop required for the 
control of saccades. To sum up, then, we re- 
gard quaternion models as revealing the bare 
bones of the structure imposed on the oculo- 
motor system by its computational tasks. 

The prediction that an eye position feed- 
back loop participates in the velocity to posi- 
tion transformation implies that head or eye 
velocity signals and eye position signals con- 
verge on cells in the vestibuloocular pathway 
upstream from the integrator. (Not an angu- 
lar velocity integrator, but the integrator of 
velocity times position.) The quaternion, 
vector and rotation matrix realizations of 
Fig. 5 also require that the interaction of po- 
sition and velocity be multiplicative, so that 
doubling the velocity input doubles the out- 
put. All models yield the further predictions 
that more than one canal signal contributes 
to each component of the eye position signal 
and that each component is computed using 
position feedback of other components. As 
mentioned above, this interdependence sug- 
gests that isolated malfunction of a single 
component of the eye position signal, say the 
horizontal, should be a rare event, because 
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such a malfunction would have to interfere 
with the horizontal signal that goes to the 
motoneurons but spare the feedback version 
which influences the other components. We 
mention again that this cross-coupling is re- 
quired even with identical orthogonal coor- 
dinates for the position and velocity signals. 

Finally, we note that the mathematical 
properties of rotations embodied in these 
models are relevant not only to the oculo- 
motor system, but also to any motor system 
that moves the limbs about joints with more 
than one degree of freedom. 

APPENDIX 

Quaternions 
Quaternions were invented by W. R. Hamilton 

in 1843. Trying to define multiplication and divi- 
sion for three-component vectors, Hamilton 
found he could not obtain a closed algebraic sys- 
tem of three dimensions and was obliged to con- 
sider four-component entities, the quaternions. 
Dot and cross products have superseded Hamil- 
ton’s quaternion multiplication in the algebra of 
three-component vectors, but in the study of 
three-dimensional rotations, quaternions live on, 
albeit under new names. The rotation group 
SU( 2), the Cayley-Klein parameters, spinors, and 
the Pauli spin matrices are some modern aliases. 
For our purposes, the quaternions in their original 
form are most convenient. 

Westheimer (32) has applied quaternions to oc- 
ular kinematics in a paper which gives an oculo- 
motor introduction to their algebra. More general 
presentations are available in Tait (26) and Brand 
(2). In this section we outline the quaternion prop- 
erties used in the models in this paper. 

In quaternion language a vector (vi, v2, v3) is 
written v& + vj + Vgk, where i, j and k have the 
properties 

i2 = j2 = k2 = -1 

ij = -ji = k jk = -kj = i ki = -& = j 

A real quaternion q has the form q. + q,i + qj + 
q,k; where qo, q, , q2, and q3 are real numbers. A 
three-component vector is thus a quaternion with 
q. = 0. Sett ing go = 0 in q yields q, the vector of 
the quaternion. Quaternions are added and mul- 
tiplied like polynomials, keeping the order of the 
i’s, j’s, and k’s and using the properties in Eq. 16. 
Because i, j, and k do not commute, quaternion 
multiplication, though associative, is not commu- 
tative. These properties it shares with matrix mul- 
tiplication, and in fact the quaternion q = q. + q,i 
+ qi + q3k, is equivalent to the complex matrix 

72 + iSI 90 - iq3 

(See Ref. 16). The identification with matrices 
shows, among other things, that quaternion mul- 
tiplication is distributive over addition. 

The norm, or magnitude, of a quaternion is 

lq( = dqg + q: + qi + q:. Every nonzero quater- 
nion q has a unique inverse 9-l such that 99-l = 
q-lq = 1. The inverse of q is (q. - q,i - qj - 
q3k)/1q12; so we have lq-‘I = l/lql. Any quaternion 
can be written lql (cos 8 + nli sin 8 + ni sin 8 + 
n3k sin 0) where (n,, n2, n,) is a unit vector; 0 is 
called the angle of the quaternion. 

The following property is the basis for the use- 
fulness of quaternions in the study of rotating 
bodies: if q is a nonzero quaternion and r is a 
three-component vector, then qrq-’ is the vector 
obtained by rotating r about an axis parallel with 
q, through twice the angle of q. This theorem es- 
tablishes a correspondence between quaternions 
and rotations of three-component vectors. 

To prove the theorem, we first establish that 
q( )q-l is a linear operator on three-component 
vectors, that is, if cl and c2 are any real numbers 
and v1 and v2 are vectors then q(clvl + c2v2)qp1 = 
clqvlq-l + czqvzq- I. The verification uses the fact 
that quaternion multiplication distributes over 
addition and that scalars commute with quater- 

q(cPl + c2v2w = (W,Vl + qc2v2w 

= @Wl + c2w2w 

= c,qv,q-' + c2qv2q-1 (17) 

We now define three vectors of length one: i 
parallel with q; j orthogonal to i and in the plane 
of r and i; and k such that i, j, and k define a 
right-handed orthogonal coordinate system. If X 
is the acute angle between r and i, then r = iI-1 (i 
cos X + j sin X) (Fig. 10). 

Since coaxial quaternions commute, we have 
qiq -I = id = i, so q (Irl cos X i)q-’ = Irl cos Xi. 
Further, if 8 is the angle of q we have qjq-’ = 191 
(cos 8 + i sin O)jlq-‘1 ( cos 8 - i sin 0). Since lqV1l = 
1 /lql, the two norms cancel and we have 

al -I = (cos 8 + i sin O)j(cos 8 - i sin 0) 

= (j cos 8 + k sin B)(cos 8 - i sin 8) 

= j(cos2 0 - sin’ 0) + k(2 sin 6’ cos 0) (18) 

Hence qjq -’ = j’ = j cos 26 + k sin 20, the vector 
obtained by rotating j about i through an angle of 
28, clockwise looking in the direction of i (see 
Fig. 10). 

Thus r = Irl cos Xi + Irl sin Aj is taken to Irl cos X 
i + Irl sin Aj’, the vector obtained by rotating r 
about q through an angle of 20. This completes the 
proof. 
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FIG. 10. The operator q( )q-’ rotates an arbitrary 
vector r about the axis i (parallel with q), through twice 
the angle 0 of q. Proof in APPENDIX. 

The quaternion formula for composition of ro- 
tations is very simple: the product qp is equivalent 
to rotation p followed by rotation q. To prove this, 
we use the previous theorem to put an arbitrary 
vector r through rotations p and q in that order. 
At the end of the first rotation, r has gone to prp-‘. 
The second rotation takes the vector prp-’ to 
q(prp-‘)q-’ = (qp) r(p-‘q-l). On the other hand, 
putting r through the rotation qp yields 
(qp)r(qp))‘. We need to show that for any nonzero 
quaternions q and p, (qp)-’ = pblqP1. But this is 
easily verified. Note that (qp)(p-‘q-l) = 
q(pp-‘)q-1 = qq-1 = 1. Similarly, (p-‘q+)(qp) = 
1. Hence pP’qP1 is indeed the inverse of qp. 

To prove that wq/2 = q, we shall use the for- 
mula for the derivative of a product pq, Ijq + pq, 
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